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Abstract
The slow RANS-LES transition is a well-known shortcoming in hybrid turbulence models such as Delayed-
Detached Eddy Simulation (DDES). The present work assesses the feasibility of 2D sensitive LES models
for naturally triggering turbulence, rather than using the specifically designed techniques available in the
literature. This research has been carried out with OpenFOAM, which has been used for simulating the
flow in a Backward-Facing Step configuration. The results have been compared with a DNS data set,
showing the good mitigation capabilities of such LES techniques. Nevertheless, other cases should be
studied before extracting any relevant conclusion.

Introduction

Accurate numerical simulations are essential for understanding the complex flow physics present in many aeronautical
applications. RANS models are commonly used in the industry, as they are cost-effective, but their limitations for
predicting complex flow behaviours and providing unsteady data are also well-known. Moreover, the routine use
of accurate numerical methodologies such as Large Eddy Simulation (LES) require heavy computational cost, so their
applications are not yet feasible. In this regard, Delayed-Detached Eddy Simulation (DDES)9 is intended to circumvent
the massive costs of pure LES simulations, modelling the boundary layer using RANS and simulating the unsteady
flow behaviour with LES at the core. This hybrid turbulence model is widely used due to its user-friendly non-zonal
approach and its proved success in several applications. Especially in those situations where RANS applications are
unreliable. Apart from that, hybrid turbulence models (in contrast to RANS) can provide high quality transient data,
which is completely necessary for simulating complex coupled physics, such as Fluid-Structure Interaction (FSI) and
Computational Aeroacoustics (CAA). It is therefore not surprising that during the last decade, these methods have been
gaining importance in the aeronautical industry. However, some of their well-known weaknesses are still present. In
particular, the slow transition from RANS to LES leads to unphysical results, delaying the flow instabilities in complex
zones such as free shear layers. The zone where this issue takes place is named Grey Area (GA). In the literature, there
are two main strategies for leading this shortcoming4 . One of them consists on using artificial oscillations in specific
areas (zonal approach), whereas the other is based on reducing the subgrid-scale viscosity,

νsgs = (Cm∆)2 Dsgs (ū) , (1)

νsgs, in LES 2D flow regions. The second approach is preferable as it is aligned with the initial non-zonal DES philos-
ophy. This reduction could be forced by any of the terms present in Eq. 1. The idea of attributing kinematic sensitivity
to the Subgrid-Length Scale (SLS) coefficient, ∆, was initially explored by Mockett et al.4 (∆̃ω) and Shur et al.8 (∆S LA).
Later we proposed another approach, which was initially developed for LES12 (∆lsq). Surprisingly, even though ∆lsq

was initially designed for LES applications, first studies6 show how its performance mitigating the GA in DDES was
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Figure 1: Schematic figure of the Backward Facing Step problem, ER = H/(H − h) = 2, and details about its geometry
and grid spacing (size of zones and concentration factors; arrows indicate the grid refinement direction). Not to scale.

rather promising. It is important noting here that, in contrast to the other specifically designed techniques for mitigating
the GA shortcoming, ∆lsq is completely based on a physical and mathematical basis.

The significant influence of the differential operator, Dsgs (ū), into the GA mitigation was also reported in the
literature. Some authors such as Fuchs et al.2 and Probst et al.7 investigated the impact of using the σ − LES model,
instead of Smagorinksy, due to its ability for switching off in 2D flow regions. Taking into account that unsteady 2D
flows can not be considered as turbulent, the idea of deactivating the model in such regions look reasonable. In fact, the
∆S LA presented by Shur et al.8 was also based on the same approach (Eq. 2), as the ∆ turned zero in 2D flow regions.
Therefore, both strategies strenghten the importance of deactivating the turbulence model in 2D flow areas.

νsgs = (Cm∆S LA)2 Dsgs (ū)

=
(
Cm∆̃ω

)2
(FKH(〈VT M〉)2Dsgs (ū))

=
(
Cm∆̃ω

)2
D2D

sgs (ū) . (2)

In this paper, the mitigation capabilities of both strategies, ∆ and Dsgs (ū), are analysed. The selected configuration case
for assessing these methodologies is an incompressible Backward-Facing Step (BFS). The fact that the flow separation
is purely induced by geometry, makes this case suitable case for studying the GA numerical issue.

Case Description

Backward-Facing Step represents a canonical configuration to study wall-bounded fluids subjected to sudden expan-
sions (see figure 1). The flow is massively separated at the step-edge, but downstream reattached due to the geometry.
The abrupt separation leads to a shear layer, which becomes a source of the well-known Kelvin-Helmholtz instabili-
ties (KH) at high enough Re values. These instabilities are fed, paired and elongated along the shear layer, affecting
the flow behaviour until they impinge at the lower wall. These instabilities are not always well-captured for Hybrid
RANS-LES turbulence models due to its slow RANS to LES transition. The fact that the flow separation is purely
induced by geometry, makes the BFS a suitable case for studying such numerical issue.

The selected dimensions are 24h×2h×2h in the stream-wise, cross-stream and span-wise direction, respectively.
The sudden expansion with an expansion ratio, ER = H/(H − h), equal to 2 is located at Lu = 4h from the inflow. The
domain length downstream of the step is Ld = 20h. The origin of coordinates is placed at the sharp edge. Regarding the
mesh, three different refinement levels at the free shear layer (stream-wise direction downstream the step-edge) have
been considered for evaluating the mesh resilience capabilities of the studied strategies. The length of the first node
after the step-edge in the stream-wise direction is 8, 16 and 32 times y+ (inflow conditions). All meshes have 11800
cells per xy-plane and 60 planes in the periodic direction. Concerning the boundary conditions, the inflow is fed with
a steady (but turbulent) channel flow profile at Reτ = 395, which has obtained from a previous RANS simulation. The
span-wise and outflow boundary conditions are defined as periodic and convective, respectively. Walls are considered
no-slip.
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Mathematical Model

All simulations carried out in this study have been run using OpenFOAM - v1706. The DDES turbulence model
presented by Spalart et al.9 has been used, including the Ψ term specially designed to override the unintended low-
Re terms. The Hybrid convection scheme presented by Travin et al.11 for hybrid RANS/LES calculations is used in
this simulation. For the temporal discretisation, a 2nd implicit backward scheme is considered with Courant values
below 0.8. The velocity-pressure system is coupled using the well-known PIS O algorithm.

Definition of the ∆’s

A brief introduction about the subgrid-length scales assessed in this paper is presented. First, the volume cubic root
was initially presented by Deadorff,1

∆vol = (∆x∆y∆z)1/3 , (3)

which by far is the most widely used for LES applications. Later on, the maximum length scale,

∆max = max (∆x,∆y,∆z) (4)

was introduced in the first DES version,10 as a good candidate for dividing the RANS and LES regions. However,
Mockett et al.4 and Shur et al.8 observed as both definitions, ∆vol and ∆max, were inextricably linked to unintended
length scale changes due to mesh variations, as neither one considers the kinematic fluid behaviour. This directly leads
to a poor mesh resilience for anisotropic meshes. In this context, a kinematic sensitive approach resistant to mesh
anisotropies was proposed by Mockett et al.4 ,

∆̃ω =
1
√

3
max

n,m=1,...,8
|ln − lm|, (5)

defending the importance of using the maximum meaningful scale at each LES control volume. This method was
improved by Shur et al.8 for DDES/IDDES applications, where a rapid transition from RANS to LES is required to
avoid unphysical instability delays,

∆S LA = ∆̃ωFKH(〈VT M〉). (6)

Where l = ω/‖ω‖ × rn, rn (n=1,. . . ,8 for hexahedral cell) are the locations of the cell vertices and FKH is a blending
function which depends on the average Vortex Tilting Measure coefficient defined in Eq. 7.

VT M =
| (S · ω) × ω|

ω2
√
−QS̃

(7)

Where S̃ is the traceless part of the rate-of-strain tensor, S = 1/2
(
∇ū + ∇ūT

)
, i.e. S̃ = S − 1/3tr(S )I. Note that for

incompressible flows tr(S ) = ∇ · ū = 0, therefore, S̃ = S . Finally, QA refers to the second invariant of a second-
order tensor A. Although successful results have been obtained for a broad spectrum of fluid behaviours,3, 4, 8 a lack
of physical meaning can be attributed to ∆̃ω. In this regard, Trias et al.12 suggested a new subgrid length scale only
based on the velocity gradient, ∆lsq. This subgrid length scale, which is derived from physical LES well-established
assumptions, is not only resistant to grid anisotropies but also computationally inexpensive and adapted for any sort of
grid, structured and unstructured ones.

∆lsq =

√
JGT G : JGT G
GT G : GT G

, Ji =

 J
x
ii
J

y
ii
J z

ii

 ,J l
ii =

1∑
j!=i ‖Gl

i j‖
(8)

Where J is the Jacobian, which colapses to J = diag(∆x,∆y,∆z) in a Cartesian structured and non-uniform mesh.
Gl

i j referes to the components of the gradient operator, G, in the l direction. It is important to note that the gradient
tensor, G, is actually being computed in any LES and DES code. The ∆lsq approach was tested in LES simulations
(incompressible flow) using different kind of anisotropic meshes, showing good mesh resilience in all cases.

Results

For the sake of clarity, the effect of ∆ and Dsgs (ū) has been studied separetly. The former is focused on the influence
of ∆, keeping the LES turbulence model constant (S MG). The fact that ∆ does not only influence the νsgs, but also
limits the RANS/LES region is a crucial aspect for understanding the observed results. The latter mainly affects the
νsgs value, but also has a significant impact improving the rms values at the GA (especially, those differential operators
sensitive to 2D flows).
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Figure 2: Resolved Reynolds stresses, urms
1 , along the stream-wise direction at x2 = 0, considering similar meshes with

different aspect ratios, ∆x1/∆x2, at the step edge. These are: 8 (left), 16 (middle) and 32 (right). Where Uo refers to
the inflow bulk velocity. Reference solid line has been obtained from Pont-Vílchez et al.5

Subgrid Length Scales, ∆

The influence of the aspect ratio, ∆x1/∆x2, at the first cell downstream of the step edge is first discussed using the results
shown in Fig. 2. For this purpose, three slightly different meshes have been used (see section 2). The highest aspect
ratio (right) presents some non-physical oscillations at x1/h = 0. This is not the case for the other two figures (left, cen-
tre), where the aspect ratio is considerably smaller. Apart from that, the performance of the SLS in different meshes
can also be appreciated. A general good mesh resilience is observed for ∆lsq and ∆S LA, whereas ∆̃ω presents a strong
mesh dependency. It can be justified, taking into account that ∆̃ω strongly depends on the stream-wise cell length in
2D flow configurations. This is not the case for ∆S LA and ∆lsq, as the former is deactivated in 2D flow areas and the
latter mainly depends on the normal cell due to the flow kinematics in such region.6 Taking into account the results
observed in Fig. 2, from now one the rest of results have been obtained using the mesh with ∆x1/∆x2 = 16 (middle).
The evolution of the mean flow and the rms in the stream-wise direction at different positions is shown in figure 3.
In this case, we can observe how the mean flow is almost non-affected, whereas the rms present only significative
differences at the free shear layer zone, where the GA shortcoming takes place (Fig. 2).

The effect of the GA into the growth of instabilities at the shear layer is also analised using the same approach
described by Pont-Vílchez et al.5 A scheme view of this phenomenon is presented in figure 4 (left). The characteristic
length of the instabilities in the stream-wise direction, ∆δ1, is calculated using a set of 2-point correlations of u′2 along
the stream-wise direction downstream of the step-edge (Fig. 4). Unfortunately, this technique cannot be applied for
assessing the size of instabilities in the normal direction, ∆δ2, as the flow behaves laminarly in some parts along the
normal direction. For this reason, another approach based on mean quantities has been used,5, 13

∆δ2 = ∆U1/(∂ 〈u1〉 /∂x2)max. (9)

Even though the rms profiles present a strong dependence on the S LS (Fig. 2) along the shear layer, this is not so
significant in the ∆δ1 distribution (Fig.4, right). In particular, ∆lsq, together with ∆S LA, show the best alignment at
x1 ∈ [0, 0.7h]. However, the strength of correlation with DNS data is notably reduced further downstream, leading to
a distinct departure of the slope gradient from the reference data, which is mainly attributed to the mesh coarsening
in this region. Regarding ∆δ2, it seems to be quite sensitive to the SLS (such as rms profiles), presenting strong
differences in values and slopes (Fig. 5, right). The fact that we are using Eq.9, instead of a 2-point correlation
along the normal direction, plays an important role as (∂ 〈u1〉 /∂x2)max is highly influenced by the rms. This is clearly
observed in figure 5 (right) where the diffusion introduced by ∆S LA and ∆̃ω may be permitted to grow to excessive
levels, preventing the KH instabilities from properly developing along the shear layer.
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Figure 3: Mean velocity (top), 〈u1〉, and resolved Reynolds stresses (bottom), urms
1 , along the recirculation region

downstream the step edge. Reference solid line has been obtained from Pont-Vílchez et al.5
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Figure 4: Schematic view of the KH vortices in a shear layer (left) and estimation of the KH rate of growth in the
streamwise direction downstream of the step-edge, ∆δ1 (right). Different SLS definitions have been used. Reference
solid line has been obtained from Pont-Vílchez et al.5
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Figure 5: Schematic view of the KH vortices in a shear layer (left) and estimation of the KH rate of growth in the
streamwise direction downstream of the step-edge, ∆δ1 (right). Different SLS definitions have been used. Reference
solid line has been obtained from Pont-Vílchez et al.5

Differential operator, Dsgs (ū)

A set of simulations using different operators is presented, including ∆S LA, S MG;8 ∆̃ω, σ − LES ;2 ∆̃ω, S 3QR and
∆lsq, S 3QR.6 In this case all turbulence models are able to be deactivated in free shear layer 2D flow domains, either
by ∆S LA or D2D

sgs (ū). Different rms profiles along the recirculation region are shown in figure 6, as well as the rms
distribution along the shear layer after the step-edge. Even though a similar positive and linear trend is observed in all
cases, the ∆lsq in combination with the S 3QR provides significantly better results than the other strategies. However,
the comparison between the rms distribution along the stream-wise direction (bottom) with Fig. 2 (middle) indicates
that the S 3QR turbulence models has a little, if any, contribution to the final result. This is mainly attributed to the
predominance of the ∆, which contributes to the definition of the RANS and LES regions. This is not the case for
the differential operator, which only affects the νsgs value in the LES area. Regarding ∆̃ω, both S 3QR and σ − LES
improve the mesh resiliance capabilities of the SLS (Fig. 2), which is directly observed in figure 6 (bottom). These
results are really similar to those provided by ∆S LA, S MG, supporting the observations made in section 1. Indeed, the
results observed in this section are in good agreement with the studies carried out by Fuchs et al.2 and Probst et al.,7

regarding the importance of using Dsgs (ū) sensitive to 2D flows. The growth of the shear layer instabilities along the
stream-wise and normal directions is also studied. The former is not shown in this paper, as all simulations exhibit
trends similar to those presented in figure 4 (right). The latter is shown in figure 7. In this case, we can observe again
the benefits provided by σ − LES and S 3QR in comparison to S MG.

Conclusions

This work shows how both techinques, ∆lsq and D2D
sgs (ū), which were initially developed in a LES context, are capable of

mitigating the GA numerical issue. In particular, the use of ∆lsq provides substantial benefits in the free shear layer area
respect to the rest of SLS strategies. Moreover, the influence of those Dsgs (ū) sensitive to 2D is also noticed. Especially
in combination with those ∆ which are too sensitive to the stream-wise meshing (such as ∆̃ω). Apparently, the use of
such differential operators, D2D

sgs (ū), clearly improves the mesh resiliance capabilities of DDES in 2D LES flow regions.
The fact that ∆ does not only influence the νsgs, but also defines the RANS/LES regions, explains the significant better
results observed by ∆lsq in comparison to the other strategies. Finally, the assessment of the differential operators also
show the similarity between the ∆S LA and those Dsgs (ū) sensitive to 2D flow regions. While further work is required
to investigate whether these observations hold in other flow configurations, these initial results indicate how both ∆lsq

and D2D
sgs (ū) are promising strategies for naturally mitigating the RANS to LES numerical delay.
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Figure 6: Resolved Reynolds stresses, urms
1 , along the recirculation region downstream the step edge (top) and its

evolution in the stream-wise direction (bottom). Reference solid line has been obtained from Pont-Vílchez et al.5
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strategies sensitive to 2D flow regions. Where Uo refers to the inflow bulk velocity.
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