

ERC Session

European Conference for Aerospace Sciences Lille, France, June 2022

Sébastien Merkel

Université de Lille, France

CV

- 1999 2002: PhD in Lyon / Washington DC
- 2002 2006: Post-docs in Japan and the United States
- 2006 2010: CNRS Research Scientist
- 2010 now: Full Professor at Univ Lille
- 2014 2019: Junior Member, Institut Universitaire de France
- 2022: ERC Advanced Grant Recipient (PE10 Earth System Science)

Research topics

- High pressure / high temperature experiments
- Mineral physics / materials plasticity
- Deep Earth Geophysics
- Interior of the Earth and other Earth's like planets

My History with ERC Applications

- ~ 2011: first application to ERC Consolidator Grant
 - Admitted to phase 2 for interview in Brussels
 - Proposal not funded
- ~ 2012: second application
 - Admitted to phase 2 for interview in Brussels
 - Proposal not funded

..... Low tide

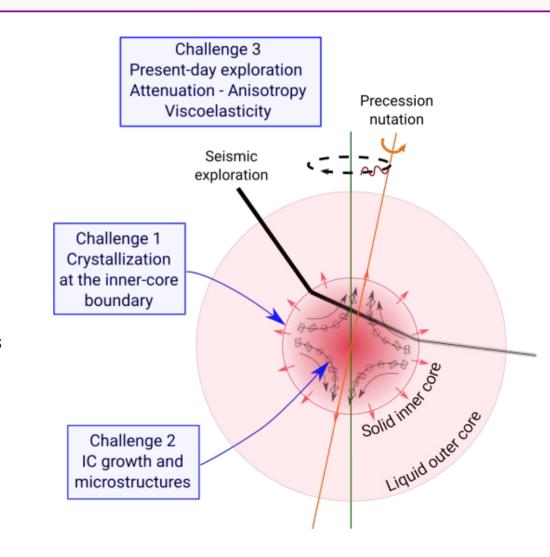
2014 - 2019: Junior Member, Institut Universitaire de France

2018 – 2022: French German ANR – DFG Grant

••••

2021: application for ERC Advanced Grant

- Admitted to phase 2 for online interview
- Proposal funded in April 2022


"HotCores" project

Broader impact

- Thermal history of the Earth
- Earth magnetic field
- Cores of Earth-like planets

"HotCores"

- Integrated experiments on metals at high T
- Groundbreaking data for
 - Multi-scale models of inner core structure
 - Interpretation of geophysical observations
- Elucidate past and future growth of the inner-core

Team

PI (28 p.m), CNRS researcher (7 p.m.) engineer (20 p.m.) 5 years post-doc, 3 PhD students paid by ERC 590 k€ of equipment

Among others...

- 5 years guaranteed funding for a large scale project
- Timing was right
 - ANR-DFG grant was finishing
 - I had time to think about what I wanted to do
 - I had preliminary data
 - I was 100% available to commit to a new project
 - I was ready to fail and go through 1 or 2 years with no funding. I did not care.

Things I should not say

- Prestige
- I had to (political pressure, university pressure, peer pressure)

- N. 1: a good research project
- N. 2: a good research project
- N. 3: a good research project
- N. 4: time
- N. 5: **time**

N. 6: a good track record (Advanced Grant)

- Publications. Not especially high profile, but recognized publications in the field (I had some Science papers many years ago, but not recently)
- Recognition. Recognition of your international stature (for me: elected as a council member for the American Geophysical Union, review panels for European Synchrotron Sources).
- Experience. Demonstrated experience in running a large project (ex: ANR-DFG)
- Impact on others. Training of or interactions with of new leaders in the field. Former students endeavor (not especially in academia).

Things to Keep in Mind

ERC project should be

- Focused on *1 person*, the PI, not a group
- Hypothesis driven: 1 key question, research hypotheses, means to assess them
- High risk / high gain: disruptive, ambitious, unique, impact beyond your field
- Open-ended: opening a research field rather that closing a research question
- Non-incremental: new questions, new hypotheses, new methods
- Non-fragmented: 1 question, a several hypotheses to address the question

ERC projects are not

- A collection of smaller projects
- An opportunity to fund your lab and collaborators
- A large ANR project

Several years of maturation

- Writing down ideas, anytime, at home, at work, at conferences
- Recording relevant publications
- Listing out projects I could do
- Preparing for potential collaborations: contacting people, inviting them for seminars, launch small projects, exchange students, etc

2 years prior to deadline

- ERC generator funding from I-SITE ULNE: some funding, reduction of teaching load, travel for ideas and collaborations (but it was 2020...)
- Start combining all ideas and small projects into 1 single major question

6 months prior to deadline

- Get in touch with support office at the University
- Said "No" "No" to everything else
- Hide from any form of local responsibilities

Written Project: My Own Timing

My deadline was August 31st

March: got in touch with University support service. Set up regular meetings to keep the pace

April – May: wrote a first draft for B1: extended synopsis (5 pages) and PI track record

June: sent B1 draft to 5 key people

- 2 experts from the field
- 1 former panel member
- 1 science-aware non-researcher (program manager in Denmark)
- 1 scientist outside of my own field

Mid-June – mid August: wrote B2 based on comments on B1 (this was way too short!)

Mid-August: completely rewrote B1

No time for proofreading. 1 single person read B2. I was very short on time...

Experts

- Some technical issues
- Good advice for improvement and how to be more convincing

Non-experts

- Found it too technical and fragmented
- Could not see the main question nor the potential for breakthrough
- Asked for clarification at many points

Former panel member

- Technical issues with the science project
- Identified missing items:
 - Synopsis is 5 pages, but references are not limited! You should prove that you know the field, perfectly. My last version for B1 had 95 references.
 - I was missing a "risk assessment" section → very important
 - Missing or unclear elements in the way I presented my track record: bibliometric information, supervision, impact on the field

No time to really proofread my B2 → big mistake

But

- I had been thinking of the project for years
- I had preliminary data
- I had preliminary publications
- I cited 163 references
- I tried to be as clear, as sharp, and as efficient as possible
- The document was clear, with spaces, figures, and easy on the eye

Other elements

- I did not use external consultants
- I focused on the science
- I had some budgeting elements but not described in the finest details
- I had some timing elements but not described in the finest details
- I worked hard on the "risk assessment" section
- I did not forget the "broader impact" section

Got notified end of November

Early December:

- Interview end of February: 3 min presentation + 20 minutes questions
- Had no time
- Was afraid of questions from my previous experiences → sought help from professional consultants, ~1500€ each

January – February

- Every Monday afternoon dedicated to interview preparation
- Sometimes Wednesday as well
- 4 support groups (each was called 2 or 3 times)
 - University support team
 - 5 or 6 lab members, not all from the field
 - 5 or 6 external members, who I knew and trusted, with various expertise
 - 2 professional consultants

Some Elements for Oral Interview

Remote presentation

- Need to test the software (webex)
- Prepare a dedicated workspace: standing up (do not sit), lights, simple background, large screen to see the panel members and their names
- No information on panel (apart from chair): as webex starts, you have 15 faces in front of you, and you need to figure out who they can be

Questions

- All science questions
- Many from experts who evaluated the project
- Many from various panel members

Panel is diverse

 Important to train on how to answer questions efficiently, with simple words, but keeping the scientific content

erc HOT RES

External Consultants?

Writing

- Goods
 - Consultants are good to push you out of your zone of comfort
 - Regular meetings with consultants will force you to keep a timeline
 - If your written English is poor, they can help
- Bads
 - ERC is 100% science based → be careful with their advises
 - Stick to the science: you are the one who knows

Oral interview

- Excellent input from one, ok input from the other
- Helped me prepare to answer tough questions, efficiently
 - Could you tell us a little bit about yourself?
 - Isn't this project incremental?
 - What is the innovative nature of the project?
- Training for general questions, in front of non scientist, helped training on answering technical questions and be understood by the full panel

Timing is key

- Allow time to think about a good project (could be several years)
- Allow time to write up → 50% of your time for 8 months
- Say no to everything else
- You need to be available, with yourself, with your time, with you head

Relax and protect yourself

- Avoid peer (and administrative) pressure
 - Very few people knew I was writing this up
 - Very few people knew I was taking an interview
- Be ready to fail
 - I had data from previous projects
 - I was willing to go through a couple of dry years, I did not care

Have a good project

- Do not send a the last minute draft thinking you will improve it later
- You won't. Writing an ERC takes time and you will get tired of it
- Very difficult to improve a written project
- Timing can very short between rejection and resubmission → no time to improve

Things that helped me

Being a council member for the American Geophysical Union for 4 years

- Met leaders in the broader field
- Had a bird-eye view on the research field
- Gained experience with discussions of strategy, thinking outside of your comfort zone

Time

- I took several years to prepare my ideas before writing
- I dedicated ~6 months to writing
- I allocated significant amount of time for the interview preparation

Experience

- I failed 10 years and knew my weaknesses (fragmented project, not trying to answer a single question, did not allocate enough time to prepare)
- I spoke with many people who had an ERC to have a clue on how they prepared and organized their projects