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Abstract

Trajectory optimization is one of the crucial aspects of launch vehicle design which determines the economical feasibility
and the safety assurance of the mission. Epistemic and aleatoric uncertainty quantification and propagation represent
a critical technology to reduce the overall required computational time, increase the robustness against design
constraints and minimize the risk of mission failure. In the current literature of robust trajectory optimization, this
comes with a price of either using nested optimization loops with heuristic algorithms or re-formulating the trajectory
optimization as a robust optimal control problem where states and uncertain variables are rewritten in terms of
polynomial expansions via sparse-grid based non-intrusive Polynomial Chaos Expansion methods. Subsequently, their
outputs can be used to form a meta-model [1] for Uncertainty Quantification in uncertainty-based Multidisciplinary
Optimization studies [2-4].

However, primary drawbacks of the former [5-6] approach include the excessive computational time and no guarantee
of local optima. Latter utilize nonlinear programming [7-11] with high dimensional state spaces which are, if not
impossible, quite difficult to converge for low-dimensional uncertainties. In response to that, recently proposed
methods are based on convex optimization [12] which requires either a re-formulation of the original constraints as
convex constraints or successively linearizing both the dynamics and the constraints, leading to a reduced optimality of
the solution for long flight durations. Additionally, all of the aforementioned methodologies generate open-loop
trajectories with a common fixed flight duration for each phase of the flight vehicle including the orbital insertion which
results in very conservative results since most of the launch vehicles adapt closed-loop guidance algorithms based on
Iterative Guidance Method (IGM) or Powered Explicit Guidance (PEG).

To include the closed-loop guidance phase in the exoatmospheric flight inside of trajectory design and also reduce the
adversary impact of the dispersed states at the end of open-loop guidance phase, a novel computational framework is
developed that can optimize both guidance modes, resulting in a hybrid guidance architecture. A benchmark multi-
phase launch vehicle optimization problem is rewritten as a robust uncertainty-aware trajectory optimization problem
with a novel hybrid guidance architecture which consists of open and closed-loop phases in a single nonlinear
programming algorithm to maximize the expected payload mass. A robust open-loop reference trajectory is generated
for the endo-atmospheric phase while the closed-loop guidance phase is optimized independently for each ensembled
trajectory. The problem is solved by utilizing the recently developed Sparse Grid based Ensemble Pseudospectral
Optimal Control Software (SG-EPOCS) for uncertainties in thrust, aerodynamic coefficients and the dry mass by sampling
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from uncertainty space according to the quadrature rule generated according to the Conjugate Unscented
Transformation (CUT) and reformulating the robust trajectory optimization problem in a vectorized formed. This in turn
greatly reduces the computational time requirement and robustly converges by scaling the variables and the objective
function according to the number of the ensembles. This approach requires less number of cubature nodes while
preserving the nonlinearity of the dynamics in propagating the uncertainties. Resulting ensemble trajectories are then
solved by implementing the mesh generated via the Legendre-Gauss-Radau collocation method in the time domain and
open-source interior-point solver IPOPT. Optimality conditions are derived and the resulting Hamiltonian is shown to
prove the optimality of the results.

This architecture has the advantages of fast optimal trajectory optimization which increase the safety of the flight by
minimizing risks against a variety of uncertainties, reduce the overall burden on the control system and reduce the state
dispersions at the end of open-loop guidance phase and as a result increase the expected value of deliverable payload
by incorporating the closed-loop phase.

An example is given in the Figure 1.
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Figure 1. Robust Hybrid Guidance Architecture for Launch Vehicles
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