

Development of NOVA Aircraft Configurations for Large Engine Integration Studies

L. Wiart, O. Atinault, D. Hue, R. Grenon

Aerospace Engineer, Applied Aerodynamics Department, Civil Aircraft Unit

B. Paluch Aerospace Engineer, Aeroelasticity and Structural Dynamics Department

THE FRENCH AEROSPACE LAB

return on innovation

NOVA Targeted architectures for UHBR

NOVA BLI configuration

ONERA

- By embedding the engine into the fuselage, savings in fuel (due to reduced wetted area and jet/wake losses) and mass are expected
- ✓ Deliberately « agressive » design:
 - ✓ engine~40% burried
 - ✓ short inlet (inlet length/fan diameter ratio~1)

When ingesting the fuselage boundary layer, the engines tend to minimize the aircraft footprint in the surrounding airflow, indicating better thrust-drag balance

NOVA Power saving VS stream-wise force

1. Introduction

Context; why new engine integration concepts?

- 2. Boundary Layer Ingestion
- 3. Towards Distributed, Hybrid Electric Propulsion
- 4. Conclusions

BLI → Distributed propulsion → Electric propulsion

- Links between BLI and Distributed Propulsion :
 - Efficiency \uparrow with fraction of BL ingested (D_w/D_A)
 - Many architectures can be envisaged:

(Source: A. Steiner et al., BHL, ICASE2012)

- Distributed propulsion has additional advantages:
 - Redundancy/reconfiguration (safety)
 - · Use differential thrust for control
- Links between Distributed Propulsion and (Hybrid) Electric:
 - Electric ducted fan is a enabling technology for multifan and "massively"
 Distributed Propulsion architectures
 - Distributed propulsion calls for <u>separation of thrust and power production</u> <u>functions</u>, making the use of hybrid energy source more natural.

Distributed Electric Propulsion studies

in the AMPERE Project

Technologies and associated A/C concepts roadmap

AMPERE Overview

ONERA

✓ Objective: Increase maturity of DEP technology

- Aerodynamics of Electric Ducted Fan (EDF) integration
- A/C Control/command through EDF and conventional moving surfaces (considering potential resizing)

Means: Numerical and experimental approaches

- Aerodynamic design of EDF integration
- Wind tunnel experiments
 - ✓L2 very low speed WT (Lille, France)
 - ✓ Powered 1:5 scale Mock-up with on the shelf components

- \checkmark Control Law definition using both control surfaces and EDF
- GDoF Simulation tool using aerodynamic model and Control law for
 robustness analysis and demonstration

AMPERE **Aircraft Pre-design**

test variable additionant (As

20

Numerical investigation of DEP with blowing effect (2D)

Preliminary investigations

Clark Y

С

h

Compared to

Selection criteria upon Cz_{max}, stall behavior (stability and progressivity)

21

Numerical investigation of DEP with blowing effect (3D)

٠

CFD 3D computations, viscous, stationnary (RANS), on a wing section with 1 EDF (which models a wing with an infinity of EDF)

- Fan modelled by an actuator disk (pressure gap)
- Guide vanes integrated into computations
- 3D effects integrated to handle «squaring the circle» issue (to go from a circle section to an square one)

Cz_{max} in 3D close to 4.7 instead of 5.7 with 2D CFD assessment

AMPERE Testing in ONERA L2 WT

- ✓ Tests were ended early 2017
- ✓ Analysis on going

1. Introduction

Context; why new engine integration concepts?

- 2. Boundary Layer Ingestion
- 3. Towards Distributed, Hybrid Electric Propulsion
- 4. Conclusions: Future challenges of BLI and DEP

Conclusions: Main challenges of BLI

- Experimental proof of benefits in transonic conditions
- ✓ Design fan/OGV tolerant to distortion
- ✓ Aero-elastic behaviour of the fan with distortion
- ✓ Design air inlet suitable for all operating conditions (Active Flow Control)
- ✓ Impact of BLI engine integration architecture on structure and mass

ONERA

configuration

Conclusions: Main challenges of Distributed Propulsion

Performance in transonic conditions

 Experimental proof of benefits at Low-Speed (Take-off and Landing)

Impact of DP architecture on structure and mass

Engine integration issues

Thermal aspects for large passenger Aircraft

✓ Electromagnetic compatibility

Thanks for your attention. Any questions?

