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Baseline 
 UHBR engine 

 Wide lifting fuselage 

 High AR wing 

 Downward oriented 
winglets 

 

 

 

 NOVA 
Targeted architectures for UHBR 
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Gull wing 
 Increased inner wing 

dihedral to limit landing 
gear length 

 

 
Podded 

 Engines mounted on 
aft fuselage side 

 

 BLI 
 Engine inlet ingesting the 

fuselage boundary layer 

 

 



 NOVA 
BLI configuration 
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 By embedding the engine into the fuselage, savings 
in fuel (due to reduced wetted area and jet/wake 
losses) and mass are expected 

 Deliberately « agressive » design: 

 engine~40% burried 

 short inlet (inlet length/fan diameter ratio~1) 

When ingesting the fuselage boundary layer, the engines tend to minimize the 
aircraft footprint in the surrounding airflow, indicating better thrust-drag balance 



 NOVA 
Power saving VS stream-wise force 
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𝑃𝑆𝐶 =

𝑃𝑃𝑜𝑑𝑑𝑒𝑑 − 𝑃𝐵𝐿𝐼
𝑃𝑃𝑜𝑑𝑑𝑒𝑑

 
5.2% 

Podded 

BLI 



 

1. Introduction 
Context; why new engine integration concepts? 

 
2. Boundary Layer Ingestion 

 
3. Towards Distributed, Hybrid Electric 

Propulsion
 

4. Conclusions 

 Outline 
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BLI Distributed propulsion Electric propulsion 

• Links between BLI and Distributed Propulsion : 

• Efficiency  with fraction of BL ingested (Dw/DA) 

• Many architectures can be envisaged: 

 
 

 
 

• Distributed propulsion has additional advantages: 

• Redundancy/reconfiguration (safety) 

• Use differential thrust for control 

 

• Links between Distributed Propulsion and (Hybrid) Electric: 
• Electric ducted fan is a enabling technology for multifan and “massively” 

Distributed Propulsion architectures  

• Distributed propulsion calls for separation of thrust and power production 
functions, making the use of hybrid energy source more natural.  
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(Source: A. Steiner et al., BHL,  
ICASE2012)  



Distributed Electric Propulsion studies 
  

in the AMPERE Project 



Leisure & Training 

Time 

Conv. Elec. engine 

Conv. configuration 

Traditional energy 

Low power EDF 

Conv. configuration 

Trad energy eFan 

(Airbus Group) 

TRL8- 2011 

TRL8- 2014 

eFan 2.0 (Airbus Group) 

Cri-Cri E - Cristaline 

TRL6/7- 2020 

Low power EDF 

Distributed Propulsion 

Energy using H2 FC 

High to full automation 
PPlane « Fully automated » OdM 

Key technologies 

APBEA 

« Easy to fly » 

? 
High power EDF 

Distributed propulsion 

High automation 
Regional Aircraft  

100 seat & + 

Small Air Transport 

(Single pilot operations) 

TRL6/7- 2025 ? 

Med power motors 

Distributed Propulsion 

Hybrid energy  

High automation 

Commercial 
aviation 

Technologies and associated A/C concepts roadmap  
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Objective: Increase maturity of DEP technology 

Aerodynamics of Electric Ducted Fan (EDF) integration 

A/C Control/command through EDF and conventional moving surfaces 

(considering potential resizing) 

 

Means: Numerical and experimental approaches 

Aerodynamic design of EDF integration 

Wind tunnel experiments 

L2 very low speed WT (Lille, France) 

Powered 1:5 scale Mock-up with on the shelf  

components 

Control Law definition using both control surfaces and EDF 

6DoF Simulation tool using aerodynamic model and Control law for

robustness analysis and demonstration 

AMPERE  
Overview 
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AMPERE 
Aircraft Pre-design 

Estimated MTOW ~2400 kg 

Estimated weight of advanced power architecture 
(Propulsion) ~890 kg  

14,5 m 

10,8 m 

2
,9
3
 m

 

Example of arrangement of electrical propulsion 
architecture 

20 



Numerical investigation of DEP with  
blowing effect (2D) 

h 
c 

h/c = 10%    (≈EDF with 40mm diameter) 

h/c = 12,5% (≈ EDF with 50mm diameter) 

Compared to  

h/c = 4% (≈reference from previous study) 

Clark Y 

NACA 23012 

Actuator disk  

Imposed pressure variation 
CFD RANS 2D 

Selection criteria upon Czmax, stall behavior (stability and 
progressivity) 

Engine location sensitivity analysis Preliminary investigations 
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• CFD 3D computations, viscous, stationnary 
(RANS), on a wing section with 1 EDF (which 
models a wing with an infinity of EDF) 

 

 

 

 

 

• Fan modelled by an actuator disk (pressure 
gap) 

• Guide vanes integrated into computations 

• 3D effects integrated to handle «squaring the 
circle» issue (to go from a circle section to an 
square one) 

 

 Czmax in 3D close to 4.7 instead of 5.7 
 with 2D CFD assessment  

Numerical investigation of DEP with  
blowing effect  (3D) 

Czmax = 1,2 

Czmax = 2.9 

Czmax = 4.7 
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AMPERE  
Testing in ONERA L2 WT 
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 Tests were  ended early 2017  
 Analysis on going 



 

1. Introduction 
Context; why new engine integration concepts? 

 

2. Boundary Layer Ingestion 

 

3. Towards Distributed, Hybrid Electric Propulsion 

 

4. Conclusions: 

Future challenges of BLI and DEP 

 Outline 
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Experimental proof of benefits in 
transonic conditions 
 

Design fan/OGV tolerant to distortion 
 

Aero-elastic behaviour of the fan with 
distortion 
 

Design air inlet suitable for all operating 
conditions (Active Flow Control) 

 

 Impact of BLI engine integration 
architecture on structure and mass 

 

Aero-acoustic characterisation of BLI 
configuration 
 

Conclusions: 
Main challenges of BLI  
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Flow separation 
with short inlet 



Performance in transonic conditions 

Experimental proof of benefits at Low-Speed (Take-off and 

Landing) 

Impact of DP architecture on structure and mass 

 

 

Engine integration issues 

Thermal aspects for large passenger Aircraft 

Electromagnetic compatibility 

 

Conclusions: 
Main challenges of Distributed Propulsion 
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Thanks for your attention. 
Any questions? 


