Innovative Engine Integration Solutions for Transport Aircraft: Current Research and Future Challenges

EUCASS 2017, Milano, 6 July 2017

Gérald Carrier, ONERA, Aerodynamics, Aeroelasticity & Acoustics Dept.

With contributions of: O. Atinault, R. Grenon, L. Wiart, J.-L. Godard, M. Méheut, B. Ortun, J. Hermetz*

*Aeronautics Technical Directorate

ONERA
THE FRENCH AEROSPACE LAB
1. Introduction
 Context, why new engine integration concepts?

2. Boundary Layer Ingestion

3. Towards Distributed Hybrid Electric Propulsion

4. Conclusions
• Evolution of major transport aircraft products:

• No revolution in aircraft architecture!
• More a continous evolution through incremental improvements and optimisation of components with frozen architecture:
 • tube-and-wing architecture,
 • under-wing mounted engines (>100 pax),
 • from 4-engines to 2-engines

• Advantages of under-wing, podded engines architectures:
 • Engine ingesting unperturbed flow (better from the engine perspective)
 • Clear separation between engine and airframe:
 • Independent design & manufacturing
 • Clear industrial breakdown, responsibilities between engine and airframe manufacturers
• Overall A/C performance (Breguet-Leduc) formula:

\[
\text{Range} = c \cdot M \frac{L}{D} \frac{1}{s \cdot \text{TSFC}} \ln\left(\frac{W_{\text{empty}} + W_{\text{fuel}}}{W_{\text{empty}}}\right)
\]

• Major trends (from an aircraft architecture point of view):
 • Better aerodynamics (L/D): higher wing aspect ratio, winglet, …
 • Better engines (TSFC): higher bypass ratio (bigger engine), thermodynamic cycle,…
 • Lighter structures (\(W_{\text{TO}}/W_{\text{empty}}\))
Introduction (3)

Why investigating new engine integration solutions?

1. Limits of under-wing, podded engines architectures:
 - Current BPR of 10-12
 - Envisaged UHBR of 15-20 for N+1 A/C generation
 - Integrating such big engines under the wing raises intricate issues:
 - Longer landing gear needed
 - Stronger engine-airframe aerodynamics coupling
 - Nacelle weight/drag

2. Maximising overall aero-propulsive efficiency of the aircraft+engine as a whole can push us away from podded engine architectures

\[
\text{Range} = c \cdot \frac{M}{D} \frac{1}{\text{TSFC}} \ln \left(\frac{W_{\text{empty}} + W_{\text{fuel}}}{W_{\text{empty}}} \right)
\]

(Drela, 2009)
1. **Introduction**
 Context; why new engine integration concepts?

2. **Boundary Layer Ingestion**

3. **Towards Distributed, Hybrid Electric Propulsion**

4. **Conclusions**
Basic principles/physics of Boundary Layer Ingestion gains

- How can we expect to gain with BLI:

 ![Image](source.png)

 (Source: A. Steiner et al., BHL)

 - For the **same net longitudinal force** («thrust=drag»)
 - **Less mechanical power** is required in the case of BLI to produce the same thrust (ΔV):
 - the fan accelerates a slower flow ($V_0^{BLI} < V_0^{non-BLI}$) and power scale as V_0^2
Experimental BLI investigation in ONERA-L1 WT

- **Objectives** of the RAPRO2 L1-WT tests:
 - to acquire accurate and detailed aerodynamic data for validation of CFD-based BLI evaluation methodology
 - to confirm BLI concept potential (Mach 0.2)
Experimental BLI investigation in ONERA-L1 WT

Analysis of the BLI efficiency:

\[PSC = \frac{P_{\text{non BLI}} - P_{\text{BLI}}}{P_{\text{non BLI}}} \]

as a function of net axial force

Aero/propulsive efficiency improvement through BLI is confirmed experimentally @ M 0.2 : ~ 20% (D_w/D_a = 1)
Validation of numerical methods for BLI investigations

- Importance of CFD-based simulation for the design of efficient BLI aircraft
- Require careful validations of the capability of CFD-based process to capture all the flow physics involved by BLI:
 - BL development and wake advection
 - Fan/BL interaction

Use of overset and Cartesian grids techniques (elsA)

CFD simulation of the powered nacelle using Actuator Disk (elsA)
Development of NOVA Aircraft Configurations for Large Engine Integration Studies

L. Wiart, O. Atinault, D. Hue, R. Grenon
Aerospace Engineer, Applied Aerodynamics Department, Civil Aircraft Unit

B. Paluch
Aerospace Engineer, Aeroelasticity and Structural Dynamics Department
NOVA
Targeted architectures for UHBR

- **Baseline**
 - UHBR engine
 - Wide lifting fuselage
 - High AR wing
 - Downward oriented winglets

- **Gull wing**
 - Increased inner wing dihedral to limit landing gear length

- **Podded**
 - Engines mounted on aft fuselage side

- **BLI**
 - Engine inlet ingesting the fuselage boundary layer
By embedding the engine into the fuselage, savings in fuel (due to reduced wetted area and jet/wake losses) and mass are expected.

Deliberately «aggressive» design:
- Engine ~40% buried
- Short inlet (inlet length/fan diameter ratio ~1)

When ingesting the fuselage boundary layer, the engines tend to minimize the aircraft footprint in the surrounding airflow, indicating better thrust-drag balance.
NOVA
Power saving VS stream-wise force

\[PSC = \frac{P_{Podded} - P_{BLI}}{P_{Podded}} \]

5.2%
1. Introduction
 Context; why new engine integration concepts?

2. Boundary Layer Ingestion

3. Towards Distributed, Hybrid Electric Propulsion

4. Conclusions
BLI ➔ Distributed propulsion ➔ Electric propulsion

• Links between BLI and Distributed Propulsion:
 • Efficiency ↑ with fraction of BL ingested (D_w/D_A)
 • Many architectures can be envisaged:

 ![Distributed propulsion architectures](Source: A. Steiner et al., BHL, ICASE2012)

• Distributed propulsion has additional advantages:
 • Redundancy/reconfiguration (safety)
 • Use differential thrust for control

• Links between Distributed Propulsion and (Hybrid) Electric:
 • Electric ducted fan is an enabling technology for multifan and “massively” Distributed Propulsion architectures
 • Distributed propulsion calls for separation of thrust and power production functions, making the use of hybrid energy source more natural.
Distributed Electric Propulsion studies
in the AMPERE Project
Objective: Increase maturity of DEP technology
- Aerodynamics of Electric Ducted Fan (EDF) integration
- A/C Control/command through EDF and conventional moving surfaces (considering potential resizing)

Means: Numerical and experimental approaches
- Aerodynamic design of EDF integration
- Wind tunnel experiments
 - L2 very low speed WT (Lille, France)
 - Powered 1:5 scale Mock-up with on the shelf components
- Control Law definition using both control surfaces and EDF
- 6DoF Simulation tool using aerodynamic model and Control law for robustness analysis and demonstration
AMPERE
Aircraft Pre-design

Estimated MTOW ~2400 kg

Example of arrangement of electrical propulsion architecture

Estimated weight of advanced power architecture (Propulsion) ~890 kg
Numerical investigation of DEP with blowing effect (2D)

Preliminary investigations

Clark Y

\[h/c = 10\% \quad (=\text{EDF with 40mm diameter}) \]
\[h/c = 12.5\% \quad (=\text{EDF with 50mm diameter}) \]
\[h/c = 4\% \quad (=\text{reference from previous study}) \]

NACA 23012

Actuator disk \(\rightarrow \)

Imposed pressure variation

Engine location sensitivity analysis

Selection criteria upon \(C_{z\text{max}} \), stall behavior (stability and progressivity)

CFD RANS 2D

© ONERA 2017
Numerical investigation of DEP with blowing effect (3D)

- CFD 3D computations, viscous, stationnary (RANS), on a wing section with 1 EDF (which models a wing with an infinity of EDF)
- Fan modelled by an actuator disk (pressure gap)
- Guide vanes integrated into computations
- 3D effects integrated to handle «squaring the circle» issue (to go from a circle section to an square one)

C_z^{max} in 3D close to 4.7 instead of 5.7 with 2D CFD assessment
Tests were ended early 2017
Analysis on going
Outline

1. **Introduction**
 - Context; why new engine integration concepts?

2. **Boundary Layer Ingestion**

3. **Towards Distributed, Hybrid Electric Propulsion**

4. **Conclusions:**
 - Future challenges of BLI and DEP
Conclusions:
Main challenges of BLI

- Experimental proof of benefits in transonic conditions
- Design fan/OGV tolerant to distortion
- Aero-elastic behaviour of the fan with distortion
- Design air inlet suitable for all operating conditions (Active Flow Control)
- Impact of BLI engine integration architecture on structure and mass
- Aero-acoustic characterisation of BLI configuration
Conclusions: Main challenges of Distributed Propulsion

✓ Performance in transonic conditions

✓ Experimental proof of benefits at Low-Speed (Take-off and Landing)

✓ Impact of DP architecture on structure and mass

✓ Engine integration issues
 ✓ Thermal aspects for large passenger Aircraft
 ✓ Electromagnetic compatibility
Thanks for your attention. Any questions?
Far-field exergy based breakdown

Rationale

✓ Context

· Design tool: post-processing code

(Drela, 2009)
Far-field exergy based breakdown
Application to BLI

Exergy = Stagnation enthalpy – $T_{ambient} \times$ Entropy

- Energy convertible in mechanical work
- Energy provided to the system (Engine)
- Dissipations (viscosity + thermal losses + shock waves)

-10% of required energy
Less losses in wake (jet)
Less required exergy
Same axial force

Energy provided to the system (Engine)
Dissipations (viscosity + thermal losses + shock waves)