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Introduction (1)

- Evolution of major transport aircraft products:

No revolution in aircraft architecture!

More a continous evolution through incremental improvements and optimisation of
components with frozen architecture:

* tube-and-wing architecture,

 under-wing mounted engines (>100 pax),

« from 4-engines to 2-engines

- Advantages of under-wing, podded engines architectures:
Engine ingesting unperturbed flow (better from the engine perspective)
Clear separation between engine and airframe:
 Independent design & manufacturing
 Clear industrial breakdown, responsibilities between engine and airframe manufacturers
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Introduction (2)

- Overall A/C performance (Breguet-Leduc) formula :

E ------ : vkl W ------- + W -----
Range = c:M L 1 nl —empty fuel .
N pH ESIT o B WéHr;t.);.""":

- Major trends (from an aircraft architecture point of view) :
Better aerodynamics (L/D): higher wing aspect ratio, winglet, ...
Better engines (TSFC): higher bypass ratio (bigger engine), thermodynamic cycle,...
Lighter structures (W+o/Wempy)
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Introduction (3)

Why investigating new engine integration solutions?
1. Limits of under-wing, podded engines architectures:

Current BPR of 10-12 20 T Evolution of engines BPR
Envisaged UHBR of 15-20 for N+1 A/C 18 -
generation 12
Integrating such big engines under the wing
raises intricate issues: 10 ‘_‘—

« Longer landing gear needed 8 ®

« Stronger engine-airframe aerodynamics coupling ° ® "

| .  Existing Engi
« Nacelle weight/drag
0
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2. Maximising overall aero-propulsive efficiency of the aircraft+engine as
a whole can push us away from podded engine architectures

(Drela, 2009)
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Basic principles/physics of Boundary

Ingestion gains

- How can we expect to gain with BLI :

Non-BLI BLI

&
{I"T"r'ﬂ

(Source: A. Steiner et al., BHL)

For the same net longitudinal force («thrust=drag»)

Less mechanical power is required in the case of BLI to produce the
same thrust (AV) :

« the fan accelerates a slower flow (V,

BLI  y, mon=BLIy and power scale as V,?
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Experimental BLI investigation in ONERA-L1 V

 QObjectives of the RAPRO2 L1-WT tests:

- to acquire accurate and detailed aerodynamic data for validation
of CFD-based BLI evaluation methodology

- to confirm BLI concept potential (Mach 0.2)

Electric powered nacelle
(Schibeler EDF)




Experimental BLI investigation in

. . P — P .
Analysis of the BLI efficiency: PSC = 228U a5 a function of net

i P
axial force non BLI

0.3

Aero/propulsive efficiency improvement

no BLI
= Q= BLI AX=200mm

TS Bl axcz00mm, az=61mm through BLI is confirmed

BLI AX=200mm, AZ=110mm

experimentally @ M 0.2 : ~ 20% (D,,/D, =1)
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Validation
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* Importance of CFD-based simulation for the design
of efficient BLI aircraft

* Require careful validations of the capability of CFD-
based process to capture all the flow physics
involved by BLI:

CFD simulation of the powered « BL development and wake advection
nacelle using _ _
Actuator Disk (elsA) « Fan/BL interaction
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Development of NOVA Aircraft
Configurations for Large Engine
Integration Studies
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Targeted architectures for UHBR

vBaseline

v UHBR engine
v Wide lifting fuselage

v High AR wing
v Downward oriented .
. v Gull wing
winglets
v Increased inner wing
dihedral to limit landing
gear length
vPodded

v Engines mounted on
aft fuselage side

vBLI

v Engine inlet ingesting the
fuselage boundary layer
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BLI configuration

v By embedding the engine into the fuselage, savings
in fuel (due to reduced wetted area and jet/wake
losses) and mass are expected

v Deliberately « agressive » design:
v engine~40% burried
v short inlet (inlet length/fan diameter ratio~1)

When ingesting the fuselage boundary layer, the engines tend to minimize the
aircraft footprint in the surrounding airflow, indicating better thrust-drag balance
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Power saving VS stream-wise force
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BLI =»Distributed propulsion =»Electric

- Links between BLI and Distributed Propulsion :
Efficiency A with fraction of BL ingested (D,,/D,)

Many architectures can be envisaged:

I

\ (Source: A. Steiner et al., BHL,
. %EE E% U ICASE2012)

Distributed propulsion has additional advantages:
« Redundancy/reconfiguration (safety)

» Use differential thrust for control

- Links between Distributed Propulsion and (Hybrid) Electric:

Electric ducted fan is a enabling technology for multifan and “massively”
Distributed Propulsion architectures

Distributed propulsion calls for separation of thrust and power production
functions, making the use of hybrid energy source more natural.
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Distributed Electric Propulsion studies

In the AMPERE Project
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Technologies and

Key technologies

High power EDF
Distributed propulsion
High automation

Med power motors
Distributed Propulsion
Hybrid energy

High automation

Low power EDF
Distributed Propulsion
Energy using H, FC
High to full automation

Low power EDF
Conv. configuration
Trad energy

Conv. Elec. engine
Conv. configuration
Traditional energy

Cri-

®
CRISTALINE
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all Air Transport
le pilot operations)

APBEA
Easy to fly »

..(Airbus Group) TRLS- 2014

Regional Aircraft
100 seat & +

Commercial
aviation

TRL6/7- 2025 ?

OdM

PPlane « Fully automated »

eFan 2.0 (Airbus Group)

Leisure & Training

TRLS- 2011
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Overview w .

vObjective: Increase maturity of DEP technology
v Aerodynamics of Electric Ducted Fan (EDF) integration

v A/C Control/command through EDF and conventional moving surfaces
(considering potential resizing)

vMeans: Numerical and experimental approache

v Aerodynamic design of EDF integration Wil

v Wind tunnel experiments

v'L2 very low speed WT (Lille, France)

v'Powered 1:5 scale Mock-up with on the shelf
components

v Control Law definition using both control surfaces and EDF

v 6DoF Simulation tool using aerodynamic model and Control law for
robustness analysis and demonstration
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Lo recherche

O

Aircraft Pre-design T

Example of arrangement of electrical propulsion
architecture

T

{
|
Battery packs Hydrogen
15% Tanks
Palyét;ad EDF . o 2%
> Propulsion 9% :
system
36%
_ Inverters
Avionics and v 11%

others equipts
23% Fuel Cells

29%

Airframe
24%

Estimated weight of advanced power architecture
Estimated MTOW ~2400 kg (Propulsion) ~890 kg
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La recherche
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blowing effect (2D) N

Numerical investigation of DEP with

pour les entreprises

Preliminary investigations  Engine location sensitivity analysis

Selection criteria upon Cz,,,,, stall behavior (stability and
progressivit

Clark Y
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Numerical investigation of DEP with

blowing effect (3D)

-

 CFD 3D computations, viscos, stationnary
(RANS), on a wing section with 1 EDF (which
models a wing with an infinity of EDF)

* Fan modelled by an actuator disk (pressure
gap)

« Guide vanes integrated into computations

« 3D effects integrated to handle «squaring the
circle» issue (to go from a circle section to an
sguare one)

» Cz,.« In 3D close to 4.7 instead of 5.7
with 2D CFD assessment

ONERA




Testing in ONERA L2 WT

v’ Tests were ended early 2017
v Analysis on going
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Conclusions:

Main challenges of BLI

v Experimental proof of benefits in NASA 856 Transoni Wind Tune

transonic conditions \

v Aero-elastic behaviour of the fan with
distortion

Universal Propulsion
Simulator Drive Rig

Fast-Acting, Calibrated,
Variable Area Nozzle

Distortion-Tolerant Fan Stage
+ Rotating AIP Rake Amay

istortion-Tolerant Fan Stage
ing Fan Exit Rake Amay

v Design air inlet suitable for all operating
conditions (Active Flow Control)

v Impact of BLI engine integration
architecture on structure and mass

Flow separation
with short inlet

v Aero-acoustic characterisation of BLI
configuration




Conclusions:

Main challenges of Distributed Propulsi:

vPerformance in transonic conditions

vEXxperimental proof of benefits at Low-Speed (Take-off and

Landing)

vImpact of DP architecture on structure and mass

vEngine integration issues

v Thermal aspects for large passenger Aircraft

v Electromagnetic compatibility
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Thanks for your attention.
Any questions?
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Rationale

v Context

> ffx > Analysis
ONERA User
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Application to BLI

CEu

Exergy

= Stagnation enthalpy — T piant X ENtropy

I
Energy provided to the Dissipations (viscosity + thermal

system (Engine)

losses + shock waves)
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