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Abstract
To provide a significant speedup in modeling rarefied gas flows, the collision operator in the Boltzmann
equation is approximated by a Fokker-Planck operator in velocity space. A polyatomic extension of the
diatomic direct modeling approach in the Fokker-Planck framework is presented in this paper. The model
extension is verified by a code to code comparison, using DSMC data of the SPARTA code and PICLas
code. The relaxation of the temperature for different timestep size and runtime efficiency for small Knud-
sen numbers are investigated. The diatomar relaxation process of the temperature using N2 show very
good agreement with the reference data, including the expectation of a larger noise. The polyatomic re-
laxation process of the temperature are investigated using CO2 and CH4. In both cases our model predicts
the equilibrium temperature correctly, whereas deviations in the temporal relaxations are observed. The
comparisons with larger timestep sizes show only small deviations and the advantage in runtime of the
direct Fokker-Planck modeling compared to DSMC for small Knudsen number is shown.

1. Introduction

The modeling of gas flows around re-entry vehicles or jet plume expansion into vacuum faces a large range of the
Knudsen number.10 The Knudsen number Kn characterizes rarefaction of a gas by the ratio of the mean free path λ of
a particle to the characteristic length scale l by Kn ≡ λ/l. For small Knudsen numbers, many particle collisions occur
and the velocities of the particles are in near thermal equilibrium and the gas can be modeled as a continuum using the
Navier-Stokes equations. Large Knudsen numbers lead to non-equilibrium and the evolution of the particles velocity
distribution needs to be modeled.
Rarefied flows can be described by the Boltzmann equation that determines the dynamics of the system by the evolution
of a probability density function in phase space. With Birds DSMC method,3 the Boltzmann equation can be solved
accurately. However, the computational expenses become too large for small Knudsen numbers due to the complexity
of the Boltzmann collision operator which leads to the necessity to model a large number of collisions. A coupling
of a solver combining the modeling of the Boltzmann equation by DSMC and the Navier-Stokes equation is generally
a difficult task, because of the fluctuating boundary conditions for the Navier-Stokes solver, caused by the stochastic
behaviour of the DSMC method.8 Therefore, the complex collision operator in the Boltzmann equation is approximated
by a Fokker-Planck (FP) operator in velocity space to reduce computation cost for small Knudsen numbers while
maintaining the particle approach.8 DSMC models pairwise collisions, whereas the FP operator models the collisions
by local drift and diffusion coefficients, that are matched to reproduce the production terms of the Boltzmann collision
operator in the continuum limit.7 Both methods use computational particles. This way, a hybrid modeling approach
can be set up where FP can be used in regions of high densities and small Knudsen numbers, while DSMC is used for
rarefied flow regions and large Knudsen numbers.5 DSMC requires to resolve the mean free path, which can become
difficult for small Knudsen numbers. Besides the aim of an improvement in run time, the FP modeling also looses this
spatial restriction. The goal of the FP modeling is the hybrid coupling with DSMC to switch between the different
collision models within a simulation to increase the run time efficiency and use less strict grid resolution criteria.
In contrast to monatomic gas flows, polyatomic molecules can take up a significant amount of energy in internal modes
like rotation and vibration, which have a large influence on the entire flow field.9 The different energy modes also
generally show very different relaxation times and may be modeled on continuous or discrete energy scales.9 An
extension of the FP operator to a diatomic modeling has been proposed in the literature, e.g by the Master-equation
ansatz,9 a direct modeling approach4 or by Mathiaud et. al.12
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An extension of the direct modeling approach4 to polyatomic gas is carried out in this paper. Following the theoretical
setup, three test cases are investigated to validate the accuracy of the new model and its efficiency for small Knudsen
numbers.

2. Methods

2.1 Cubic Fokker-Planck

The idea of the kinetic Fokker-Planck ansatz is to approximate the collision term in the Boltzmann equation by a
Fokker-Planck equation in velocity space.11 For our analysis we use the cubic model7 which has been proposed to
recover a stable solution with correct Prandtl number. The Boltzmann equation describes the dynamic of the system
state by the evolution of the velocity distribution function. Using Einstein’s index summation notation, it reads

∂ f
∂t
+ vi
∂ f
∂xi
+ Fi
∂ f
∂vi
=

(
∂ f
∂t

)
coll︸   ︷︷   ︸

S coll( f )

, (1)

where Fi is an external acceleration that is assumed to be independent of the velocity. Finding an accurate and rea-
sonable description of the particle collision term on the right hand side is the challenge of modeling the dynamics. A
precise term for binary interactions is given by the Boltzmann collision operator.5 The aim of the Fokker-Planck ansatz
is to provide an approximation of the collision operator.
Collisions can be considered as the change of velocities of particles. Intuitively, this happens by transferring momen-
tum of one body to another, such as with point-like particles. A more precise look into the differential cross section
in the Boltzmann collision term reveals that a modeling of intermolecular potential has to be formulated. Considering
that, such a pairwise collision is just the effect of a particles surrounding potential field acting on the other particle
changing each others momentum. Instead of modeling only pairwise interaction, where one particle only acts on one
other particle, the interaction effect caused by all particles in a local ensemble on all other particles can be collected in
a total local field. This effectively can be expressed by a local drift and diffusion field acting to change local velocities
and thus model the collisions of particles in a local ensemble. Therefore, the collision term can be approximated by
the Fokker-Planck collision term by11(

∂ f
∂t

)
coll
≈

(
∂ f
∂t

)
FP
= −

∂

∂vi
Ai f +

1
2
∂2

∂vi∂v j
Di j f , (2)

with the drift coefficient Ai and diffusion coefficient Di j. To determine these coefficients, the cubic Fokker-Planck
model has been derived7 to match continuum limits. Also, restrictions due to the physical formulation like resolving
collisional scales can be formulated less strict, which again reduces the computational cost of the modeling.
Having determined these coefficients, the DSMC particle method can be used to represent the stochastic particle mo-
tion, using Ito’s integration scheme5

dxi

dt
= vi, (3)

dvi

dt
= Ai + Di j

dW j

dt
+ Fi, (4)

where dW j denotes a Wiener process with zero mean and ⟨dWidW j⟩ = δi j with the Kronecker delta δi j. Particles
moving according to equations (3) and (4) represent the evolution of the distribution function in the Boltzmann equation
(1) using the Fokker-Planck collision term approximation. Their movement is determined all by the same drift and
diffusion coefficient within the same simulation cell but with an inbuilt added stochastic noise, to recover the statistical
deviations. The expression for the drift contains coefficients that are made up of moments including all the particle
velocities within the cell. Therefore, instead of modeling pairwise collisions between two particles in a cell by the
Boltzmann collision operator to determine their velocities, all the particles in a local ensemble get assigned velocities
by the Fokker-Planck collision operator.
To set up a model that determines the new velocities by the Fokker-Planck collision operator, the drift and diffusion
coefficients need to be chosen. For the drift coefficient, a polynomial approach of the fluctuating vector is proposed
in the literature7 while the diffusion coefficient is build up from monatomic gases at first and generalized in further
sections. In theory, higher order polynomials can approximate the Boltzmann collision operator arbitrarily close.6

Once the model is set up, the drift coefficient are chosen to fulfill transport coefficient in continuum limit by lower
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order Boltzmann production terms.8 With a polynomial approximation of only linear order for the drift coefficient, a
wrong Prandtl number of Pr = 3/2 is obtained while a quadratic model can lead to an unstable solution.7 Therefore, a
cubic ansatz is chosen which recovers the correct Prandtl number from the kinetic Gas theory of PrBoltz = 2/3 which
in terms of the linear system in equation (3) and (4) reads:7

Ai = −
1
τ

v′i + ci jv′j + γi(v′jv
′
j − u′ju

′
j) + Λ(v′iv

′
jv
′
j − u′iu

′
ju
′
j), i ∈ {1, 2, 3}, (5)

where τ = 2µ/p is a relaxation time with the dynamic viscosity µ and pressure p, the thermal velocity v′ = V − U
fluctuating around the bulk velocity U and u′ is a realization from sample space v′ defined as Q(u′) =

∫
R3 Q(v′) f dv′.7

ci j and γi are the model parameters that are determined by the system of equations set up to fulfill production terms in
the continuum limit.7 Λ ensures stability and is given by:7

Λ = −
1
αρ3 | det(πi j)| (6)

with the determinant det(·) of the stress tensor πi j, the scaling factor α = τ(u′iu
′
i)

4 and the mass density ρ. The
model for the drift coefficient is not restricted to monatomic gases. The diffusion coefficient is generally given by7

D =
√

4es/(3τ) with the mass specific energy es = E/m and the relaxation time τ. For monatomic gases, E can be
determined to E = 3kBT/2 directly.

2.2 Direct modeling approach

2.2.1 Generalized kinetic model

In polyatomic flows, internal excitation energies like rotation and vibration need to be considered. These internal
excitations can take up a large amount of energy which on its own has an individual relaxation behaviour that needs
to be modeled. The relaxation of the vibrational energy modes are slow compared to translational energy relaxation,
so the vibration is generally not in thermal equilibrium with the translational energy.9 To model the internal energies,
the distribution function and the phase space have to be extended containing rotational “velocities" Ω and vibrational
“velocities” Ξ:

f (v, x, t)→ f (v,Ω,Ξ, x, t), define: Ψ ≡ (v,Ω,Ξ) ∈ H , (7)

which still has to fulfill
∫
H

f dΨ = 1. The Boltzmann equation with Fokker-Planck collision approximation generalizes
to:

∂ f
∂t
+ vi
∂ f
∂xi
+ Fi
∂ f
∂vi
= −

∂

∂Ψi
Ai f +

1
2
∂2

∂Ψi∂Ψ j
Di j f . (8)

The relaxation of the internal energies is assumed to fulfill the Landau-Teller relaxation:

dEint

dt
=

Eeq
int − Eint

τint
(9)

where the total internal energy Eint relaxes towards the total internal equilibrium energy Eeq
int with relaxation time

τint = Zint/νcoll, mean collision frequency νcoll and relaxation number Zint, which is a species dependent number of col-
lisions needed to reach equilibrium.9 Generally, there are also other models for the energy relaxation in the literature
such as Larsen-Borgnakke used by Hepp. et. al.,9 which for example recover detailed balance but is computationally
more demanding. The amount of energy in the internal states varies significantly with the change in temperature.

The numerical scheme of determining the new velocities as in (3) and (4) are generalized to also calculate the change in
rotational and vibrational velocities. In the direct modeling approach, the states of internal energies directly influence
the translational velocity change. An extension of the intergration scheme is gained from using the same integration
scheme as in equation (3) and (4) with the cubic FP model for the translational drift coefficient Atr and the choice of
the drift and the resulting diffusion coefficient for the internal states:

dvi = −
1
τ

v′i + ci jv′j + γi(v′jv
′
j − u′ju

′
j) + Λ(v′iv

′
jv
′
j − u′iu

′
ju
′
j) + DtrdWi, i ∈ {1, 2, 3} (10)

dωi = −
1

2τrot,i
ωidt + Drot,idWi, i ∈ {1, ..., drot} (11)

dξi = −
1

2τvib,i
ξidt + Dvib,idWi, i ∈ {1, ..., J}, (12)
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which models the change of translatinal velocities dvi, rotational “velocities” dωi and vibrational “velocities” dξi. The
change of position remains an Euler-step dxi = vidt.

2.2.2 Diatomic drift and diffusion coefficients

As described in section 2.1 of the cubic FP model, the coefficients ci j and γi in equation (10) are gained from matching
the production terms of the Boltzmann- and FP-collision operators. Matching these terms is done using the 17-moment
approximation,13 which covers internal energy states by internal heat capacities at constant volume cint = (∂⟨Eint⟩/∂T )V ,
as shown in the appendix of Gorji et. al.4 The internal states arise from the production terms and thus do not have to
be enforced explicitly in the drift coefficient.4 Therefore, ci j and γi directly contain the influence of the internal states
by cint. Also, the translational diffusion coefficient Dtr explicitly contains the influence of internal energy states by Erot
and Evib as in equation (25).
The diffusion coefficient is generally given by7 D =

√
4es/(3τ) but the mass specific energy es = E/m and its weighting

with correct relaxation times has to be determined to cover translational and internal energy states.

The assumptions for the diffusion coefficient by Gorji et. al.4 for diatomic modeling is used. Following their ap-
proach, the relaxation of each degree of freedom is modeled directly. The diffusion coefficient is assumed to be a
diagonal matrix D = δi jDi j of the size d × d, where d is the sum of translational and rotational degrees of freedom and
vibrational modes. On the diagonal, the first three entries are the translational diffusion coefficients for each spatial di-
mension, which are assumed to be isotropic D11 = D22 = D33 ≡ D2

tr. The following diagonal entries are rotational and
vibrational diffusion coefficients, which other than in the diatomic model are assumed to be generally not equal. Gorji
et. al. assume equal rotational diffusion coefficients for both two rotational degrees of freedom in their diatomic model,
which is reasonable for equivalent moments of inertia in both rotational modes. In a general polyatomic molecule, this
can not be assumed anymore. The set of diagonal entries results to be (D2

tr,D
2
tr,D

2
tr,D

2
rot,1,D

2
rot,2,D

2
rot,3,D

2
vib,1, ...,D

2
vib,J).

The translational and internal energies with corresponding choice of drift coefficients are assumed as4

Etr =
1
2

mv′iv
′
i , Atr,i = −

1
τtr

v′i , (13)

Erot =
1
2

IΩ∗iΩ
∗
i , Arot,i = −

1
2τrot,i

Ωi, (14)

Evib =
1
2
Ξ∗iΞ

∗
i , Avib,i = −

1
2τvib,i

Ξi, (15)

with the molecules moment of inertia I. The relaxation times are given by4

τtr =
2µ
p
, (16)

τint = Zintτcoll, (17)

with the species dependent collision number Zint and the mean collision time4

τcoll =
π

4
µ

p
. (18)

The translational and rotational relaxation times are assumed to be equal for each of the modes, i.e. τtr = τtr,i and
τrot = τrot,i, whereas the vibrational relaxation times τvib,i will be modeled for each mode with individual collision
numbers Zvib,i.
For the diatomic case, Gorji et. al.4 derived an expression for the internal diffusion coefficients. Multiplying the FP
equation (2.2.1) with an internal energy, Erot and Evib respectively, an expression for the energy change in time can
be gained. Comparing the result with the Landau-Teller relaxation in equation (9), the internal diffusion coefficients

Drot =

√
2Eeq

rot/(Iτrot) and Dvib =

√
2Eeq

vib/(τvib) are derived. A translational diffusion coefficient Dtr has been proposed

by Gorji et. al.4 by

Dtr =

√
2

3m
(αtrEtr + αrotErot + αvibEvib), (19)

with the weights αtr = 2/τtr − 2/(3τrot) − 2Z/(3τvib), αrot = 1/τrot, αvib = Z/τvib withZ = Eeq
vib/(kBT ).
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2.3 Extension of the direct modeling approach to polyatomic gas

2.3.1 Translational, rotational and vibrational energy assumptions

In the presented model, the internal energies of a molecule are treated differently depending on whether or not the en-
ergies are modeled continuous or discrete. Translational and rotational energy levels are assumed to be distributed on
a continuous scale and are defined as in equation (13) and (14). The rotational energy is given by Erot =

1
2 Iω2 with its

rotation frequency ω and the molecular shape dependent moment of inertia I.1 Vibrational energy states on the other
hand are considered on a discrete scale and are assumed to follow the dynamics of a quantum harmonic oscillator.
Thus, the spacing of the energy levels is equidistant1 and the discrete vibrational energy states can be evaluated by
using Eint,n = nkBθint, measured from the zero point energy,1 with the characteristic vibrational temperature θvib used
to calculate the n’th vibrational energy state.
This assumption of a harmonic potential should show deviations in theoretical prediction to experimental measure-
ments. However, the advantage of using a harmonic potential is that the sum in the partition function can be evaluated
analytically and therefore allows for efficient calculation. The total energy e is defined as the sum of the transla-
tional energy etr and internal energies eint, where internal energies will be determined by rotation and vibration of the
molecules only:

e = etr + eint = etr + erot + evib, (20)

hence we will neglect electron excitement energies. Electron excitement energies may change not only by collisions
but generally spontaneously. Therefore a different model approach is necessary and not covered within the approach
presented in this work.

2.3.2 Polyatomic internal energy

Considering a specific energy on a continuous scale that depends on d of the total number of dtot degrees of freedom,
the dependencies read E = E(x1, ..., xd), where the xi are arbitrary variables whose change contribute to a change of
E. We further assume that each degree of freedom contributes independently of all other degrees of freedom to the
total energy and the energy can be written as the sum of the individual energies Ei = Ei(xi) as E =

∑d
i=1 Ei(xi). If we

can further assume that the energy scales quadratically with xi (assume Ei ∼ cx2
i ), such as for the rotational energy

Erot ∼ ω
2, the average energy ⟨E⟩i per degree of freedom can be determined2 to ⟨E⟩i = kBT/2. Determining the correct

degrees of rotational freedom drot give rise to the rotational energy:

⟨Erot⟩ =
drot

2
kBT. (21)

The result is independent of the moment of inertia and thus of the molecular construction. For the vibrational energy, the
considered equidistant discrete energy levels have multiple vibrational modes in a polyatomic molecule simultaneously.
For a molecule of N atoms, the number of vibrational modes1 are J̃ = 3N − 5 for linear molecules and J̃ = 3N − 6
for non-linear molecules. For degenerate modes, fewer number of modes J can be modeled when covering its multiple
occurrence by the degeneracy factor g j. Assuming that each vibrational mode is independent and therefore contributes
to the overall vibrational energy independently, the partition function is the product of each individual partition function
of mode j, while raising to the power of degeneracy g j of the j’th mode.1 Therefore the average internal vibrational
energy results in

⟨Evib⟩ = kB

J∑
j=1

g j · θvib, j

exp(θvib, j/T ) − 1
. (22)

2.3.3 Polyatomic drift and diffusion of internal and translational energy

The drift introduced with the generalized kinetic model in section 2.2.1 already contains the influence of polyatomic
energies in the system of equations arising from the production terms. However, the diatomic expression for the
diffusion coefficient by Gorji et. al.4 has to be generalized. This is done with the assumptions of independent modes
and the total energy as the sum of all individual energies. This decoupling of the internal modes lead to a Landau-Teller
relaxation of each mode in the total sum, resulting in a diffusion coefficient for each degree of freedom. The thermal
equilibrium energy of rotational energy on a continuous scale is given by the equipartition theorem and determines
kBT/2 per rotational degree of freedom. The thermal equilibrium energy of each vibrational mode on a discrete energy
scale is given by equation (22) for J = 1. Keeping in mind the different continuous and discrete energy assumptions
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Table 1: VHS parameters of N2, CO2 and CH4 as given by SPARTA15 and Pfeiffer et. al.14

vibrational temperature θvib/ K (degeneracy) ωVHS Tref/ K dref/ m
N2 3371.0 0.74 273 4.07 × 10−10

CO2 1918.6, 3382.0, 959.7(2) 0.8 273 5.62 × 10−10

CH4 4194.9, 2206.0(2), 4341.6(3), 1878.1(3) 0.7 298 3.64 × 10−10

from section 2.3.1 when determining the equilibrium energy for the Landau-Teller comparison, the internal diffusion
coefficients generalize to

Drot,i =

√
kBT
Iiτrot
, i ∈ {1, ..., drot}, (23)

Dvib,i =

√
kBT/2
τvib,i

2θvib,i/Tvib,i

(exp(θvib,i/Tvib,i) − 1)
, i ∈ {1, ..., J}, (24)

where Ii are the three generally different moments of inertia of the molecule around its three rotation axes and θvib,i is
the vibrational temperature of the i’th vibrational mode. The vibrational relaxation times might be modeled with equal
values for equal atomic bonds.

A translational diffusion coefficient Dtr has been proposed by Gorji et. al.4 and will be extended to cover the
influence of multiple vibrational modes by substituting αvibEvib →

∑J
i αvib,iEvib,i:

Dtr =

√√√
2

3m
(αtrEtr + αrotErot +

J∑
i=1

αvib,iEvib,i), (25)

with the generalized weights αtr = 2/τtr − drot/(3τrot) −
∑J

i Zvib,i/(3τvib,i), αrot = 1/τrot, αvib,i = Zvib,i/(dvibτvib,i)
withZvib,i = giE

eq
vib,i/(kBT/2). Here, drot is the number of rotational degrees of freedom and dvib is defined as the num-

ber of vibrational degrees of freedom by dvib = Evib/(kBT/2), which might be a floating point number for a discrete
vibrational energy scale.

3. Verification

This section focuses on the validation of the new polyatomic model. To do so, the relaxation process of particles in
a 3D box is simulated with different initial temperatures for translational, rotational and vibrational energies. Further,
the relaxation for larger timestep sizes than the DSMC criteria of 0.3τcoll are investigated. Finally, the efficiency of the
FP model compared to DSMC for small Knudsen-numbers are validated.
The new model has been implemented in SPARTA, which is an open source DSMC solver.15 To have a visible com-
parison of the fluctuation of DSMC and the direct model approach, the diatomic simulations using N2 are performed
with 10 000 simulation particles and compared with the the DSMC results of the SPARTA15 code. The polyatomic
simulations using CO2 and CH4 are compared with the results of Pfeiffer et. al.14 that uses the PICLas code of the
University of Stuttgart and therefore also are performed with 200 000 simulation particles as in the reference.
The simulation are performed in a 3D box with a volume of V = (4.6×10−4)3m3 consisting of one single grid cell with
reflecting boundaries.
For all diatomic tests using N2, the DSMC solution generated with SPARTA is used as reference. Particle densities of
n = 1020 m−3 are simulated initialized with temperatures of Ttr = 9000 K, Trot = 3000 K, Tvib = 4000 K. For simplicity,
the relaxation numbers are chosen to be Zrot = 5 and Zvib = 10. To resolve the mean collision time τcoll, a timestep size
of ∆t = 10−6 s is used. The characteristic vibrational temperatures and parameters of the VHS model for N2 are listed
in table 1.
The polyatomic tests using CO2 and CH4 compare to the reference data of Pfeiffer et. al.14 at a particle density of
n = 2 × 1022 m−3. The temperatures are initialized with Ttr = 10000 K, Trot = 7500 K, Tvib = 5000 K at relaxation
numbers of Zrot = 10 and Zvib = 50. The characteristic vibrational temperatures and parameters of the VHS model for
CO2 and CH4 are listed in table 1.

3.1 Relaxation of energy and temperature

The relaxation of the translational and internal energies and temperatures by the FP model with corresponding reference
solutions as described in the previous section are shown for the diatomic and polyatomic gases in figures 1 to 4. The FP
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model generally shows larger fluctuation than the DSMC solution. The equilibrium energy and temperature values for
N2, CO2 and CH4 are predicted very well. The temporal relaxation of the energies and temperatures are well predicted
for N2 as well, whereas the temperatures of CO2 and CH4 relax a little bit slower than the reference data. The deviations
may come from different formulations of the mean collision time and translational relaxation time by Pfeiffer et. al.14
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Figure 1: Relaxation of translational, rotational and vibra-
tional energy initialized at non-equilibrium temperature
for N2.
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Figure 2: Relaxation of translational, rotational and vibra-
tional temperature initialized at non-equilibrium tempera-
ture for N2.
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Figure 3: Relaxation of translational, rotational and vibra-
tional temperature initialized at non-equilibrium tempera-
ture for CO2.
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Figure 4: Relaxation of translational, rotational and vibra-
tional temperature initialized at non-equilibrium tempera-
ture for CH4.
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3.2 Timestep efficiency

This section takes a look at the results of the temporal relaxation of translational and internal energies with varying the
timestep size to larger values than the mean collision time. Generally, DSMC requires to resolve the mean collision
time,9 which is not necessarily required by the FP model. Therefore, the relaxation of the energies to timestep sizes
of ∆t = 0.3τcoll, 1τcoll, 2τcoll for N2 and CO2 are investigated. The results are shown in figures 5 and 6 and show that
a larger timestep size generally shows only small deviations. Energies tend to be overestimated when using too large
timesteps, whereas the temporal relaxation appears to be not effected in a significant amount.
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Figure 5: Relaxation of translational, rotational and vibra-
tional energy initialized at non-equilibrium temperature
for different timestep sizes ∆t for N2.
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Figure 6: Relaxation of translational, rotational and vibra-
tional energy initialized at non-equilibrium temperature
for different timestep sizes ∆t for CO2.

3.3 Run time efficiency

The last tests show the run time of the FP model in comparison to DSMC for varying Knudsen numbers. At a constant
number of simulation particles, smaller Knudsen numbers increase the number of pairwise collisions for DSMC and
the computational effort increases dramatically. The FP model needs the same number of computations for varying
Knudsen numbers, because it assigns new velocities to each particle in every time step no matter what densities are
present.
To compare the efficiency of the FP and DSMC model, the length of the simulation box of l = 1 m is used as the
characteristic length of the Knudsen number Kn = λ/l. The weighting factor and number density parameter in each
simulation are adjusted such that a constant number of 5000 simulation particles is maintained. The simulation particles
are initialized with a temperature of 300 K. The results of the run time comparison averaged over 50 runs for each
method for N2 and CO2 are shown in figures 7 and 8. They show the relative computation times trel for DSMC and
FP, that are normalized with the computation time of the FP simulation at Kn = 0.1. Note that this only compares the
computational differences in the collision modeling for the different particle number densities and resulting Knudsen
number, while the molecular scales are not resolved as would be required by DSMC. A comparison with sufficiently
adjusted resolutions would be complex to compare since these restrictions do not hold for FP.
As expected, the run time of the DSMC simulations increase vastly for decreasing Knudsen numbers and the run time
of the FP simulations remain roughly constant for all Knudsen numbers. The results show that the FP calculations
become more efficient for N2 for a Knudsen number of Kn < Kncrit ≈ 0.025 and more efficient for CO2 for a Knudsen
number of Kn < Kncrit ≈ 0.009. The fact that the FP model resolves the relaxation of each degree of freedom will
make it computationally more expensive the more degrees of freedom need to be modeled. The critical Knudsen
number depends a lot on the actual case and may change a lot, e.g. for different species or varying temperature due to
changing differential cross sections and collision frequencies and therefore changing number of collisions.
With choosing a reference Knudsen number of Kn = 0.1, all simulations for different Knudsen numbers are still
performed with a temporal resolution of the timestep size that resolves the collisional time scales at Kn = 0.1. The
timestep size is not adjusted for the different Knudsen numbers because these restrictions do not account for FP and
therefore would make it difficult to compare. A smaller timestep size would need more samples to perform the same
simulation time, which would be required by DSMC but not for FP, which could perform the simulations for smaller
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Knudsen numbers remaining the larger timestep size with fewer samples. Choosing a different reference timestep size
will shift the curves along the Knudsen number axis. So the results need to be considered carefully and may not be
used as a determination for the hybrid DSMC-FP switch criteria.
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Figure 7: Relative run time trel = tDSMC/tFP,Kn=0.1 using
the Boltzmann collision operator comparing to the Fokker-
Planck collision operator for varying the Knudsen number
for N2.
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Figure 8: Relative run time trel = tDSMC/tFP,Kn=0.1 using
the Boltzmann collision operator comparing to the Fokker-
Planck collision operator for varying the Knudsen number
for CO2.

4. Conclusion and Outlook

A polyatomic extensions of the diatomic model4 is presented in this work. The extension is implemented and tested in
the DSMC SPARTA code.15 The polyatomic model extents a Fokker-Planck approach to approximate the Boltzmann
collision operator by a Fokker-Planck equation in velocity space. Internal degrees of freedom are considered on con-
tinuous scales for the rotational energy and discrete scales for vibrational energy. Electron excitement energies are not
accounted for.
Three test cases for validation and efficiency of the Fokker-Planck model are performed and discussed. The test cases
simulate the relaxation of translational and internal energies of particles in a 3D box initialized with different tempera-
tures for the different energies.
The first test case validates the capability of the FP model to approximate the expected temporal relaxation into the
equilibrium values. The equilibrium temperatures are predicted in very good agreement with the reference cases by
Pfeiffer et. al.14 Deviations for the temporal relaxation of the vibrational energy for CO2 and CH4 are observed, which
may come from different formulation for the mean collision time and tranlational relaxation times.
The second test case shows the relaxation of the energies by the FP model for a larger timestep size than the mean col-
lision time. The results show small deviations in the equilibrium values but good agreement in remaining the temporal
behaviour.
The last test case shows a constant computation time of the FP model for a decreasing Knudsen number where the
computation time for DSMC increases drastically. For the diatomic N2 simulations as well as for the polyatomic CO2
simulations, the results show that the FP model becomes more efficient than the DSMC method when exceeding a
certain lower Knudsen number limit. The results are carefully discussed regarding the criteria of switching parameter
between the DSMC and FP method.
Further work on the new direct model will be done to improve the temporal resolution and the model will be compared
with the polyatomic modeling of the master equation ansatz by Hepp et. al.9
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