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Abstract 
In this work, we present the only starting procedure that allows space-based laser emitters to 

autonomously carry out accurate FSO transmissions to receivers in far distant trajectories by means of 

very narrow laser beams.  

1. Introduction

This work is a continuation of the work presented in the 3AF-OPTRO Conference held in Versailles, in June 2022 [1]. 

We introduce an updated starting procedure for autonomous laser tracking that can be used when the target, D, follows 

a trajectory that is far distant to the trajectory of the tracker, S, as in some FSO transmissions. (These scenarios are so 

frequent that from now on we will regard S as the emitter and D as the receiver.)  

We assume, as in [1], that S is capable of reaching D with very narrow laser beams, but also, unlike in [1], that there 

is no guarantee that S can accurately reach D with these beams due to the large distance between the trajectories of S 

and D. In these scenarios only a small number of emission directions can coincide with the LOS directions from S to 

D, which is the condition for S to autonomously carry out secure transmissions to D [2]. This is due to the difference 

of orbital speeds. Hence, from the operative standpoint autonomy can only be achieved if, after acquiring D by a wide 

laser beam, S is able to record the instants, if any, at which the observed transverse motion of D is zero (within a given 

tolerance.)  

We arrive at the conclusion that the confidence in long-distant transmissions can only rely on the quality of the clocks 

and pointing instruments on board the emitters (see e.g. [3,4].) In fact, these instruments must be accurate enough for 

S to account for the post-Newtonian (p-N) corrections to the relative motion of D with respect to S all along the 

transmission (this has already been suggested in other contexts, see e.g. [5-7].)  

The reason is that, together with the navigation systems, these instruments are essential parts of the systems with which 

the emission and reception instants are recorded by S, for it to compute the p-N corrections according to the structure 

suggested in [8]. These corrections are computed in real time, once the narrow laser beams initially emitted to D return 

from D, using the p-N tracking formula in [9], together with the relative p-N equations of D with respect to S introduced 

here. 

In this context, we stress that the p-N corrections derived here, both with these formulae and equations, show that 

including them in the considered scenarios is essential for S to accurately compute the point-ahead angles from the 

LOS directions in order to reach D. In fact, according to [10] both formulae and equations account for the gravitational 

gradient along the trajectories of the laser beams emitted from S to D, and vice versa. Furthermore, these new equations 

account for the different behavior of the clocks on board of S and D as in the usual procedures already implemented 

for accurate space navigation and geolocation. 

Finally, we note that these equations coincide with the equations in [1] in case the trajectories of S and D become close, 

so that the difference in the respective p-N corrections to the current Newtonian (N) predictions are of higher order. 
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Hence, the equations introduced here can be part of the general procedure presented in [2] in case of long distant 

actions. 

2. Previous considerations and results 

The purpose of this work is twofold: first, to determine the orbital characteristics of those LEO laser emitters, S, that 

can autonomously send information to a GEO satellite, D, by means of very narrow laser beams, and second, to 

determine the instants at which S can start the emissions.  

We now recapitulate previous results and considerations related to this work: 

1. Autonomous LEO space-based laser trackers, S, able to perform shooting actions on LEO targets, D, can be very 

useful to help throw D into the atmosphere by means of ablations [1]. 

2. In scenarios where the relative velocity of D with respect to S is large, as it is the case here, the LOS and pointing 

directions to D are usually not the same [11]. In fact, for actions carried out with very narrow laser beams, they have 

to be considered different. Hence, there is only one procedure for S to autonomously start tracking D in LEO-GEO 

FSO transmissions [1]. 

3. According to the N geometric structure of the space around the Earth, in order to autonomously track D, S has to 

start the transmissions when the transverse component of the velocity of D as measured by S is zero [1]. These instants, 

if any, have to be recorded by the standard clocks on board S. 

4. If the relative velocity of D with respect to S is large, each emission action requires the previous computation of  

the point-ahead angle to accurately determine the pointing direction to D [1]. This allows, in turn, to derive by laser 

tracking the range from S to D. Hence, the tracking procedures have to use the p-N formulae in [9].  

5. As a consequence, the only instant where the pointing direction doesn’t need be determined, is when the transverse 

velocity of D with respect to S is zero. In this case it would coincide with the LOS direction to D [2].  

6. Even with the most accurate pointing instruments available, the N tracking formula and the N relative equations of 

D with respect to S do not provide enough accuracy to prevent some undesirable effects, like spilling information 

around a distant D. This holds even after any standard perturbation has been included to model the motions of S and 

D. (An analysis of the issues related to FSO unmanned platform can be found in [12].) 

7. Due to computational limitations and the instruments on board S, the emission and reception events can only be 

accurately determined within small time intervals. Nonetheless, they depend on the implementation of sequences of 

the p-N corrections to the standard point-ahead angles corresponding to the p-N description of the relative motion of 

D with respect to S. 

8. Consequently, if these corrections are not taken into account all along the FSO transmissions it will eventually lead 

to significant errors according to the p-N formalism.  

3. Autonomy for long-distant trajectories. Application to FSO transmissions 

According to the p-N formalism, the tracking formula is universal [9], but the equations in [1] are not. In fact, the 

equations in [1] only yield accurate results when the trajectories of S and D are close, since in that case the recorded 

times can be assumed to be the same (see the first equation in (A1)). However, they are not suitable for S to reach 

receivers D in far-distant trajectories. That is why we adopt the equations in (2), see below.  

The technical reason is that for S to accurately describe distant trajectories, the relative equations of D with respect to 

S must account for the different behavior of the clocks on board S and D, as for space navigation and geolocation. 

(Note that the roles of S and D are interchangeable.) 

The p-N tracking formula reads: 

 

                                 𝑅𝑝𝑁 =
𝑠′ − 𝑠′′

2
    [1 −

𝑚

2
∫ (1 − 𝑢)2 (

3(𝑹𝑁 ∙ 𝒓𝑁(𝑢))
2

𝑟𝑁(𝑢)5
−

𝑹𝑁
2

𝑟𝑁(𝑢)3
) 𝑑𝑢

1

0

] ,                                      (1) 

 

where 𝑠´ and 𝑠´´ are the emission and reception instants at S of a ranging beam sent to D, 𝑹𝑁 is the Euclidean position 

of D with respect to S, and 𝑚 is the mass of the Earth. This formula accounts for the gravitational gradient along the 

trajectories 𝒓𝑁(𝑢) of the laser beams from S to D, and vice versa.  

In turn, the p-N relative equations are, see Appendix A, 
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𝑑2𝑋(𝛼)

𝑑𝑡2
= −𝑚 [𝑋(𝛽) ∫ (1 − 2𝑢 + 3𝑢2) (

3𝑥𝛼(𝑢)𝑥𝛽(𝑢)

𝑟(𝑢)5
−

𝛿𝛼𝛽

𝑟(𝑢)3
) 𝑑𝑢

1

0

+ 𝑋(𝛽)𝑋(𝛾) ∫ (1 − 𝑢)𝑢2
𝜕

𝜕𝑥𝛼
(

3𝑥𝛽(𝑢)𝑥𝛾(𝑢)

𝑟(𝑢)5
−

𝛿𝛽𝛾

𝑟(𝑢)3
) 𝑑𝑢,

1

0

] ∙ (1 −
2𝑚

𝑟𝐷

− 𝑣𝐷
2 )

+
2𝑚

𝑟𝑆
3 (1 +

2𝑚

𝑟𝑆

) (𝑥𝑆
𝛾 𝑑𝑥𝑆

𝛾

𝑑𝑡
)

𝑑𝑋(𝛼)

𝑑𝑡
,                                                                                                       (2) 

 

where 𝑋(𝛼) are the p-N relative coordinates of D with respect to S, so that (𝑥𝑆
𝛾
, 𝑟𝑆) and (𝑥𝐷

𝛾
, 𝑟𝐷) are the ECI Euclidean 

positions and distances of S and D. The integrals are calculated along the straight-line that joins S and D.  

We note that, like in LEO-LEO scenarios, these equations account for the gravitational gradient from S to D. Moreover, 

they cannot be used when the LOS from S to D is hidden by the Earth. In this case D obviously cannot be tracked by 

S. Due to this physical constraint the line integrals in (2) (also in (1)) become divergent when the line joining S and D 

theoretically passes through the center of the Earth. Therefore, the equations in (2) have to be substituted by the 

difference of the ECI equations of S and D, see [13],  

 

𝑑2𝑥𝛼

𝑑𝑡2
=

−𝑚𝑥𝛼

𝑟3
[1 −

2𝑚

𝑟
+ (2𝛿𝛽𝛾 −

3𝑥𝛽𝑥𝛾

𝑟2
−

2𝑚

𝑟

𝑥𝛽𝑥𝛾

𝑟2
)

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝛾

𝑑𝑡
]   +

2𝑚

𝑟3
(1 +

2𝑚

𝑟
) (𝑥𝛾

𝑑𝑥𝛾

𝑑𝑡
)

𝑑𝑥𝛼

𝑑𝑡
 .            (3)  

 

We also note, that while dealing with the integrals in (2), we have some freedom in choosing the instants to match the 

solutions of the equations (2) and (3). In fact, these instants depend on the orbital eccentricity of S and on the altitude 

of the atmosphere. Therefore, the way how equation (2) is replaced by equation (3) finally depends on the quality of 

the S-D transmissions.  

 

 

Figure 1: Relative orbit of D w.r.t. S (LOS-green, eclipse-black) and initial instants of autonomy (blue straight lines) 

Fig. 1 shows the relative motion of a GEO satellite, D, with respect to a slightly eccentric emitter, S (𝑒 = 0.01) in 

equatorial orbit during (almost) one day. The orbital data of S are rather common, since its altitude at perigee is 460 

km above the Earth surface, and the atmosphere is quite permeable. (The time span is 23 hours to facilitate the 

interpretation.) 

In this figure the green (resp., black) paths correspond to the time intervals in which D is (resp., is not) in the LOS of 

S, so that S can start autonomous transmissions with very narrow beams within the green path of each epicycle of D 

with respect to S. This means that S can only perform the transmissions until the next eclipse (black) phase, where the 

autonomy is lost, according to the discussion above. 

The blue straight lines correspond to the instants at which S can start autonomous transmissions. They are the first of 

the two tangents to the green arcs in each epicycle, and correspond to the instants at which the tangent to the green 

path of D is in the direction D-S (i.e., when D is approaching S), so that the transverse component of the relative 

velocity of D with respect to S is zero (see also the discussion for Figs.4-5 that corresponds to this fact). These lines 

are also represented in Fig.2, which would correspond to a theoretical exterior ECI observer, where the red orbit 

corresponds to S, and the blue one, to D (the black straight line corresponds to the final LOS.) 
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Figure 2: ECI orbits of S (red) and D (blue) and initial instants of autonomy (blue straight lines) 

 

Figure 3: Relative distance of D w.r.t. S and initial instants of autonomy (blue straight lines) 

 

Figure 4: Relative velocity of D w.r.t. S: total speed (LOS-green, eclipsed-black) and radial (blue/black) and 

transverse (red/black) components. Tolerance level for autonomy line (green) 
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Figure 5: Transverse component of the relative velocity of D w.r.t. S (LOS-red, eclipsed-black). Tolerance level for 

autonomy line (green) 

Fig. 3 shows the time evolution of the distance from S to D, with the same meaning for the green, black, and blue 

colors already given in Fig. 1. Note that the positions of the blue straight lines are in the descending green arcs.  

Fig. 4 shows the time evolution of the total speed (green), and the radial (blue) and transverse (red) components of the 

velocity of D with respect to S, and Fig. 5 again shows the transverse component in detail, with the same meaning for 

the black arcs. 

In latter two figures, the horizontal green lines represent the tolerance reflecting the limitations and potential 

inaccuracies of the instruments on board S. These lines are here enlarged. In practice, the tolerance must be small 

enough and previously fixed, taking into account the characteristics of the instruments on board. This implies that we 

must adopt the N magnitude of the time intervals that contain the starting autonomous instants. 

We point out, that in this example, there are as many initial instants for S to become autonomous as there are epicycles 

in the relative trajectory of D with respect to S. This always applies when the orbit of S is coplanar with the orbit of D. 

The number of epicycles depends on the altitude of S. The higher the altitude, the fewer epicycles are in a given time 

span.  

 

  

  

Figure 6: Sequence of relative orbits of D w.r.t. S and initial instants of autonomy 

As the inclination of S increases, no matter the distance from S to D, the number of autonomous instants decreases 

drastically. It turns out, that the inclination of a LEO emitter, S, must be smaller than pi/150 rad, or 1.2º, to find at least 

one instant allowing S to become autonomous during one day.  

Figs. 6-10 show the evolution of the number of instants as the inclination of S increases. The successive inclinations 

(from left to right) are 𝜋 500⁄  rad ≡0.36º; 𝜋 150⁄  rad ≡1.2º; 𝜋 4⁄  rad ≡45º and 𝜋 2⁄  rad ≡90º. 
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Figure 7: Sequence of ECI orbits of S and D and initial instants of autonomy 

  

  

Figure 8: Sequence of relative distances of D w.r.t. S and initial instants of autonomy 
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Figure 9: Sequence of relative velocities of D w.r.t. S: total speed and radial and transverse components with 

tolerance level for autonomy line 

  

  

Figure 10: Sequence of transverse components of the relative velocities of D w.r.t. S with tolerance level for 

autonomy line 

These sequences show the smooth evolution of the shape of the epicycles, and of the relative distances and velocities. 

In particular, they show how the transverse component of the relative velocity becomes too large in terms of permitted 

tolerances. (Note that the tolerance lines in Fig. 10 are also enlarged.) 

 

Figure 11: p-N corrections to the position of D w.r.t. S: total (LOS-green, eclipsed-black) and radial (blue/black) and 

transverse (red/black) components 
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Figure 12: Ratio (cm/km) p-N corrections / rel. distance S-D (LOS-green, eclipsed-black) 

In the case of 𝜋 150⁄  rad ≡1.2º, the p-N corrections to the relative motion of D with respect to S should be considered 

all along the transmission to achieve secure emissions, especially during long time spans. Thus, for this slightly 

eccentric equatorial LEO emitter, altitude ≈ 460𝑘𝑚, the following p-N corrections and the ratio of these corrections 

to the distance S-D during one day can be found in Figs. 11 and 12, respectively. 

Conclusion  

The aim of this work is rather different than in [5], [6] and [7], where the goal was to increase shooting accuracy. Here 

the aim was to derive reasonable time intervals for S to autonomously start long-distance emissions. This means in 

practice, to find time intervals for which the transverse component of the velocity of D with respect to S is reasonably 

small, i.e., negligible. This implies that the relativistic corrections aimed at synchronizing the clocks of different LEO 

emitters are only to be taken into account to compute the p-N corrections derived from the equations in (2) (see e.g. 

[14].) 

The main conclusion is that a time interval for any LEO emitter, to initiate autonomous FSO transmission to a GEO 

satellite, cannot always be found. In fact, for those emitters which can autonomously perform transmissions, the orbital 

inclination has to be as close to zero as possible, that is to say, in practice, not larger than 𝜋 150⁄  rad ≡1.2º. 

Appendix A 

The procedure to arrive at the equations in (2) is a bit more general than the one in [6]. We start with the simplest, i.e., 

the current description of the components of the INS on board of S, 𝜆(𝛼)
𝑖 , and with the local metric, 𝑔𝑖𝑗, around S, 

namely (Latin indices run from 1 to 4, and Greek, from 1 to 3), 

 

𝜆(4)
4 (𝑥𝑆

𝑖 ) = (𝑑𝑠𝑆/𝑑𝑡)−1 = 1 +
𝑚

𝑟𝑆

+
1

2
(𝑣𝑆)2 + 𝑂(𝜀4), 

𝜆(4)
𝛼 (𝑥𝑆

𝑖 ) = 𝜆(𝛼)
4 = 𝑣𝑆

𝛼 + 𝑂(𝜀3), 

𝜆(𝛼)
𝛽

(𝑥𝑆
𝑖 ) = 𝛿𝛼

𝛽
−

𝑚

𝑟𝑆

𝑥𝛼𝑥𝛽

𝑟𝑆
2 +

1

2
𝑣𝑆

𝛼𝑣𝑆
𝛽

+ 𝑂(𝜀3),                                                                                                                        (𝐴1) 

and  

𝑔(𝛼𝛽)(𝑥𝐷
𝑖 ) = 𝛿𝛼𝛽 + 3𝜎−3𝑋(𝜇)𝑋(𝜈) ∫ (𝜎 − 𝑢)𝑢

𝜎

0

𝑆(𝛼𝛽𝜇𝜈)𝑑𝑢 + 𝑂(𝜀3), 

𝑔(𝛼4)(𝑥𝐷
𝑖 ) = 𝑂(𝜀3), 

𝑔(44)(𝑥𝐷
𝑖 ) = −1 + 3𝜎−3𝑋(𝜇)𝑋(𝜈) ∫ 𝜎(𝜎 − 𝑢)

𝜎

0

𝑆(44𝜇𝜈)𝑑𝑢 + 𝑂(𝜀3),                                                                                  (𝐴2) 
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where 𝑋(𝜇) are the local coordinates of D with respect to S, 𝑆(𝑎𝑏𝑐𝑑) is the projection of the symmetrized Riemann tensor 

about S on 𝜆(𝑎)
𝑖 , and 𝜀2 = 𝑂(𝑚 𝑟⁄ ). Therefore,  

 

𝑆(𝑎𝑏𝑐𝑑) = 𝑆𝑖𝑗𝑘𝑙𝜆(𝑎)
𝑖 𝜆(𝑏)

𝑗
𝜆(𝑐)

𝑘 𝜆(𝑑)
𝑙 , 

 

so that  

 

𝑅(𝑎𝑏𝑐𝑑) ≡ −(𝑆(𝑎𝑐𝑏𝑑) − 𝑆(𝑎𝑑𝑏𝑐)), 

 

with 

 

𝑅(𝛼4𝛾4) = −𝑚 (
3𝑥𝛼𝑥𝛾

𝑟5
−

𝛿𝛼𝛾

𝑟3
),                                                                     (𝐴3) 

 

where m is the mass of the Earth (measured in seconds), 𝑟2 = 𝑥𝛼𝑥𝛼 and 𝑥𝛼 are ECI coordinates. 

In terms of the world-function that joins two arbitrary events 𝑃𝑆 and 𝑃𝐷 of S and D,  

 

𝛺(𝑃𝑆 , 𝑃𝐷) =
1

2
∫ 𝑔𝑖𝑗

𝑑𝑥𝑖

𝑑𝑢

𝑑𝑥𝑗

𝑑𝑢

𝑃𝐷

𝑃𝑆

, 

 

the equations for the relative motion of D with respect to S, when 𝑃𝑆 and 𝑃𝐷 are simultaneous with respect to S, read: 

 

𝑑2𝑋(𝛼)

𝑑𝑠𝑆
2 = −𝛺(𝛼44) − 2𝛺(𝛼44′)

𝑑𝑠𝐷

𝑑𝑠𝑆

− 𝛺(𝛼4′4′) (
𝑑𝑠𝐷

𝑑𝑠𝑆

)
2

,                                                 (𝐴4) 

 

where  

 

𝛺(𝛼44) = −𝑋𝐷
𝛾

∫ (1 − 𝑢)2
1

0

𝑅(𝛼4𝛾4)𝑑𝑢, 

𝛺(𝛼44′) = 𝑋𝐷
𝛾

∫ (1 − 𝑢)2
1

0

𝑅(𝛼4𝛾4)𝑑𝑢, 

𝛺(𝛼4′4′) = 2𝑋𝐷
𝛾

∫ 𝑢2
1

0

𝑅(𝛼4𝛾4)𝑑𝑢 − 𝑋𝐷
𝜇

𝑋𝐷
𝜈 ∫ (1 − 𝑢)𝑢2

1

0

𝜕𝑅(𝜇4𝜈4)

𝜕𝑥𝛼
𝑑𝑢 

 

and  

 
𝑑𝑠𝐷

𝑑𝑠𝑆

= 1 +
𝑚

𝑟𝑆

−
𝑚

𝑟𝐷

+
1

2
𝑣𝑆

2 −
1

2
𝑣𝐷

2 .                                                                 (𝐴5) 

 

Then, from the first equations in (A1), (A3), (A4), and (A5), we finally arrive at the equations in (2). 
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