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Abstract
Model based algorithm and space software development only obtains partial benefits if the validation has
to be carried out on the target embedded-system. This especially applies to numerical computation algo-
rithms. Standards such as the IEEE-754 for floating-point arithmetic clarify the situation but numerical
reproducibility issues between systems used for development and embedded target systems impede an
early validation on the model. We analysed the numerical issues when using Simulink for algorithm de-
velopment on PCs and the implications of auto-code generation when running on host and target platforms.
This evaluation has been based on the use of the Mathematical Library for Flight Software as a solution
for numerical reproducibility. We produced guidelines which yield reproducible results on Model In the
Loop, Software In the Loop, and Processor In the Loop executions. This study has been performed in the
frame of the ESA technology program with Contract No. 4000122343/17/NL/FE/as.

1. Introduction

There is great interest in the space-software community for model based algorithm and software development but only
partial benefits are obtained if the verification and validation has to be carried out on the target embedded system, as the
development environment is not representative enough of it. This especially applies to the development of numerical
computation algorithms, such as the ones used for GNC/AOCS (Guidance Navigation and Control, Attitude and Orbit
Control System) systems as well as for scientific payload algorithms.

Numerical reproducibility issues among different hardware and software environments have accompanied the
development of numerical software since its historical beginnings and despite the advent of standards such as the IEEE-
754 for floating-point arithmetic and other standards like the ISO C99 and POSIX have greatly clarified the situation,
numerical reproducibility issues between the host systems used for development (normal PCs) and the embedded target
systems (on-board processors) impede a proper and early validation on host, as well as the investigation of problems
observed during AIT (Assembly, Integration, and Test) phases on target systems. These numerical reproducibility
issues affect the accuracy and the error signaling behaviour, including exceptions and special-value generation e.g.,
NaN (Not a Number) and INF (Infinity).

We analysed the numerical reproducibility issues when using Mathworks Simulink as a model based develop-
ment environment for algorithm development on PC platforms and the implications of auto-code generation when
running the results on host and target platforms. As host platforms we analysed the differences among the x86-64
processors and for the target side especially the SPARC V8 (Scalable Processor Architecture) LEON processor family
and their FPUs (Floating Point Unit).

This evaluation has been based on the use of the space qualified MLFS1 (Mathematical Library for Flight Soft-
ware) provided by ESA (European Space Agency) as a possible solution for numerical reproducibility of elementary
mathematical procedures and its test suite BLTS (Basic Library Test Suite) to assess the exceptions behaviour.

1Download at https://essr.esa.int/project/mlfs-mathematical-library-for-flight-software
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We have been able to produce guidelines which - when applied - yield reproducible numerical results (to the last
bit) on MIL (Model In the Loop - host), SIL (Software In the Loop - host), and PIL (Processor In the Loop - target)
executions of a non-linear system including elementary mathematical procedures as well as elementary arithmetical
operations. Although we cannot prove our guidelines as universally applicable, understanding and applying them can
imply a significant win in advancing on model based numerical algorithms development for the space industry.

1.1 Model Based Space On-Board Software Development

Figure 1 shows what we envision as a typical Model Based SW Engineering approach based on Matlab/Simulink
including MIL, SIL, and PIL simulation modes.

Figure 1: Model based space on-board software development

In this approach several different mathematical libraries are involved depending on the simulation mode. Matlab
internally uses an FDLIBM (Freely Distributable Mathematical Library) based mathematical library for elementary
mathematical computations (e.g., sin, cos, exp, log, sqrt, pow). This library was originally developed in the late
1980s. For SIL simulations on PCs the use of the glibc mathematical library is common when used together with the
GCC (GNU C Compiler) tool-chain. For algebraic operations (e.g., linear system solving) other mathematical libraries
such as BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra Package) are used when running
Simulink simulations on PC.

The different existing simulation modes described in Figure 1 and their relation to Matlab/Simulink can be
described as:

• MIL: Model In the Loop simulation. E.g., a native Simulink simulation, run in normal mode within the Simulink
environment, where our model is being computed by the Simulink engine. The mathematical library is based on
FDLIBM and BLAS/LAPACK are used for algebraic operations.

• SIL: Software In the Loop simulation. Here we mean a simulation where source code has been auto-generated
from our model, compiled with a compiler tool-chain available on the host PC to a standalone executable, and
run on that host PC without any Simulink dependency. The mathematical library used is a different one than the
Matlab internal one (e.g. the glibc mathematical library).

• PIL: Processor In the Loop execution. Here we mean a run, where source code has been auto-generated from
our model, cross-compiled for the embedded target processor, and run on that target.

2. Motivation and Problem Formulation

Algorithms developed for space-software and especially for GNC/AOCS systems base on numerical computations
including among others:
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• Elementary mathematical functions (trigonometric functions, logarithms, exponentials, &c)

• Other arithmetic/algebraic operations:

– Matrix multiplications (based on the dot product operation)

– Matrix inversions

– Linear system solving

– &c

To standardize such numerical computations and their error condition behaviour several international standards
have been defined over decades:

• the IEEE-754 Floating-point arithmetic standard (see [3]),

• the ISO C programming language standard(see [1]), and

• the POSIX (Portable Operating System Interface) standard (see [2])

But the numerical reproducibility problem throughout hardware/software development environments is still not
solved because of the common non-compliance to these standards and opacity of the simulation tools used. Common
non-compliances of these standards are, among others:

• the lack of subnormal floating-point support on several FPUs such as the GRFPU (Cobham Gaisler High Perfor-
mance FPU, see [4]) commonly used on LEON3/4 processors,

• the lack of FMA (Fused Multiply Add, f ma(x, y, z) = x× y + z) operation support (e.g., on SPARC V8 processor
architectures), and

• compiler and tool-chain library non-compliances e.g., non compliances in the tool-chain inherent mathemati-
cal library (for example fmax(0, -0) returns the false zero in certain libraries), non compliances in exception
behaviour and NaN propagation (for example when using relational operators)

The numerical differences in computations we analysed show absolute differences of 5 × 10−5 for 64 bit double-
precision computations between the model based development environment and the embedded target and even a single
dot product of dimension 3 vectors can show an absolute difference of 2.22 × 10−16 (see [8]).

2.1 Floating-Point Numbers as a Model for Real Numbers

The most widely used model for real numbers in computations is the floating-point number model defined in the
IEEE-754 standard. Figure 2 shows the complexity of the complete range of 32 bit (single-)precision floating-point
numbers.

-0 and +0-2-126-2-125-2-124-2128 -2-123

-INF (0xFF800000)

0xFFC00000
2-126 2-125 2-124 21282-123

INF (0x7F800000)

0x7FC00000
0x7FFFFFFF0xFFFFFFFF

Figure 2: Floating-point number range in 32 bit precision

This model of the real numbers presents many tricky behaviours that might not be expected by software engineers
(see [5] for what any software engineer should know about floating-point computations). For example the rational

number
1

10
= 0.1 has no exact representation in floating-point (not even in 64 bit double-precision).

32 b i t s s i n g l e : 0x3DCCCCCC 9.99999940395355224609375E−2
64 b i t s do ub l e : 0x3FB999999999999A 1.00000000000000005551115E−1
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Other curios non-intuitive phenomena that affect the computation with floating-point numbers, of which the soft-
ware programmer shall be aware of, include Rump’s example (see the original article [10] and how to reproduce it on
IEEE 754 arithmetic in [9]):

f = (333.75 − a2)b6 + a2(11a2b2 − 121b4 − 2) + 5.5b8 +
a

2b2 (1)

a = 77617
b = 33096
32 b i t s e v a l u a t i o n f = +1.172604
64 b i t s e v a l u a t i o n f = +1.1726039400531786
c o r r e c t v a l u e f = −0.82739605994682136814116509547982

Within this function a so called catastrophic cancellation phenomenon is hidden, which produces a loss of many
significant digits and leads to the erroneous result.

3. Methodology

Within our study we analysed the following aspects regarding numerical and error condition handling reproducibility:

• Implications of the use of Matlab/Simulink (normal, accelerator, rapid accelerator, and SIL modes) and auto-
code generation

• Implications of the use of elementary mathematical functions (those provided by math.h)

• Implications of the use of other arithmetic/algebraic operations (dot product, matrix multiplication, &c)

• Implications of the differences in FPU architectures (e.g., availability of FMA instructions, subnormal support)

• Implications of the use of parallel/multicore computing and the use of Graphics Processing Units (GPU) (in
examples given by Intel the same binary can give different results even on the same processor in successive runs,
see [12])

• Implications of the used compilers and different tool-chains (i.e., GCC, Clang, and Intel C compiler)

• Implications of exception generation and NaN handling

These aspects are studied on several example applications of numerical computations of which we present two
representative applications: an altered logistic map simulation model and the evaluation of polynomials.

3.1 The Altered Logistic Map Simulation Model

As an artificial simulation created for the specific purpose to test numerical reproducibility aspects within the work-
flow described above, we used the logistic map function to create an aperiodic sequence23 with an alteration introduced
in the feed-back loop to modify the generated sequence:

xn+1 = r · arcsin(sin(xn)) · (1 − arcsin(sin(xn))) (2)

This simulation model, once with standard Simulink blocks for the mathematical functions (see Figure 3) and
once with Matlab function blocks calling MLFS MEX (Matlab Executable) functions (see Figure 4), has been run as
described in the Appendix with an initial value of x = 0.5 and for 482 070 iterations in each case.

When comparing MIL simulations (normal, accelerator and rapid accelerator modes) with SIL simulations the
auto-code generation process and compilation may introduce the following alterations:

• differences in order of arithmetical operations (e.g., altered execution order due to parallelization with multi-
threading),

2The logistic map is in a chaotic regime for r = 3.9375 thus, it will produce an aperiodic sequence which will diverge in case of slight numerical
discrepancies (its Lyapunov exponent for these conditions is λ ≈ 0.531).

3https://www.wolframalpha.com/input/?i=logistic+map&assumption={"F",+"LogisticMap",+"r"}+->"3.9375"&assumption={"F",+"LogisticMap",+"x0"}+-
>"0.5"&assumption={"C",+"logistic+map"}+->+{"Formula"}
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Figure 3: Logistic map model in Simulink with alteration in feedback loop

• differences in the implementation of elementary mathematical functions by linking to a different mathematical
library, and

• differences in the executed machine instructions (e.g, presence or absence of FMA)

Figure 4: Logistic map model in Simulink with alteration in feedback loop and Matlab function blocks calling MLFS
MEX functions instead of Simulink base blocks

3.1.1 Impact on Polynomial Evaluation

Polynomial evaluation is needed in many numerical computations. For example the most convenient way to evalu-
ate several elementary mathematical functions are polynomial approximations (e.g., trigonometric functions). Fur-
thermore, one of the most widely used algorithms to evaluate polynomials is the Horner scheme (see [7]), where a
polynomial

p(x) = a0 + a1x + a2x2 + · · · + anxn (3)

can be rewritten as

p(x) = a0 + x(a1 + x(a2 + x(a3 + · · · + x(an−1 + anx)))) (4)

For this method of evaluation no power procedure is needed and the resulting code is more efficient than a naive
evaluation of the first version.
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The computations of this scheme will differ numerically in their results depending on the concrete implemen-
tation (e.g., canonical or compensated4 implementation of Horner scheme) and on the availability or not of an FMA
instruction (see [6]).

For our analysis we took5 a difficult to evaluate polynomial, a Wilkinson’s polynomial (see [11], §2.9):

w(x) =

20∏
i=1

(x − i) = (x − 1)(x − 2)(x − 3) · · · (x − 20) (5)

but truncated it to degree 12:

wtruncated(x) =

12∏
i=1

(x − i) = (x − 1)(x − 2)(x − 3) · · · (x − 12) (6)

which has the expanded form:

wtruncated(x) = x12 − 78x11 + 2 717x10 − 55 770x9 + 749 463x8 − 6 926 634x7 + 44 990 231x6

−206 070 150x5 + 657 206 836x4 − 1 414 014 888x3 + 1 931 559 552x2 − 1 486 442 880x + 479 001 600
(7)

We analysed the numerical impact and accuracy of different methods to evaluate this difficult polynomial for
x = 12.001.

4. Results

4.1 The Altered Logistic Map Simulation Model

Tests show no numerical differences between the three Simulink MIL modes, normal, accelerator and rapid accelerator,
since in all cases the same implementations of the mathematical functions are used.

Differences show in the numerical results with this model, when comparing MIL simulations (normal, accelerator
and rapid accelerator modes) with SIL and PIL simulations.

Figure 5 shows the numerical differences obtained when running the logistic map model described above in
different modes. The numerical experiments described in the Appendix produce three numerically different results,
grouped as follows (refer to the Appendix for the definition of the notation used for the identifiers of the experiments):

1. Simulink MIL simulations in normal, accelerator and rapid accelerator modes using the standard Simulink blocks
for mathematical functions.
Experiments: Host1(a), Host1(b), and Host1(c)

2. Simulink SIL simulations and running the Simulink auto-code generator result on a PC using the glibc imple-
mentations for the mathematical functions.
Experiments: Host1(d) and Host2(d)

3. Simulink MIL simulations in all modes, SIL simulation, and target PIL runs when using the MLFS library imple-
mentations for the mathematical functions.
Experiments: Host1(I), Host1(II), Host1(III), Host1(IV), and Target(V)

Figure 5 shows the differences between the groups mentioned above the following way:

• between 1. and 2. in grey,

• between 1. and 3. in blue, and

• between 2. and 3. in purple

The yellow line shows as an example that there are no differences between a Simulink MIL simulation in normal
mode and a PIL run on the target LEON2 processor when using the MLFS library for the mathematical functions.

The main feature shown is that the MLFS based MIL, SIL, and PIL executions provide exactly the same numerical
results.

4A compensated implementation means that the algorithm includes a separate running accumulation of small errors to compensate the final result.
5The example has been taken from the Python bug tracker issue 29 282 as it suits our needs.
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Figure 5: Numerical differences comparison over logistic map iterations

4.2 Impact on Polynomial Evaluation

Evaluating this polynomial with a canonical Horner scheme implementation, a canonical implementation with FMA,
and a compensated implementation with FMA produces the following different results for x = 12.001 when computed
with 64 bit floating-point numbers on an Intel Core i5-3360M without FMA support (the same result is obtained with
GCC 6.3.0, clang 3.8.1-24 and icc 18.0):

Horner ( s t a n d a r d ) : w_t ( 1 2 . 0 0 1 ) = 4.003752459198236465454E+04 0X1 . 3 8 CB0C9752P+15
Horner ( fma ) : w_t ( 1 2 . 0 0 1 ) = 4.003748821639767993474E+04 0X1 . 3 8 CAF9F77FEADP+15
Horner ( comp . ) : w_t ( 1 2 . 0 0 1 ) = 4.003749486325783072971E+04 0X1 . 3 8 CAFD5EB788CP+15

The numerical result obtained with Maple is:

4.0037494863280085072172915455671925066001 × 104 (8)

Which means that the canonical Horner scheme implementation is correct to 5 digits (relative error of 7.43 ×
10−7), the canonical version with FMA support to 6 digits (relative error of 1.66 × 10−7), and the compensated imple-
mentation with FMA support to 12 digits (relative error of 5.56 × 10−13).

Although this is just an example, it shows the potential of the availability of FMA instructions to obtain more
accurate results and how the presence or absence, together with different numerical implementations will produce
varying numerical results with relative errors differing in orders of magnitude.

5. Conclusions and Resulting Guidelines

5.1 Guidelines to Improve Reproducibility and Portability of Numerical Computations

1. Always use the same mathematical library (e.g., MLFS) on all systems (host and target) to assure that the starting
point of numerical and exception behaviour will be the same on all those platforms (the compilation and the
hardware itself will still have an impact though, which we will try to solve with the following guidelines).

2. Always compile using the -frounding-math -fsignaling-nans -fno-builtin compiler options to ob-
tain an IEEE-754 compliant floating-point arithmetic behavior when using GCC compilers6, or the -fp-model
strict -fp-model source options when using the Intel C compiler.

3. Configure the FSR register on SPARC V8 processors (see Figure 6) taking the following into account:

• Always use round to nearest tie to even rounding mode (bits 30 and 31, rd, set to 0).

6Clang does not provide the -frounding-math -fsignaling-nans flags as of version 3.8.1-24.
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• Configure the FPU to trap on the important exceptions (Invalid Op., Div. by 0, and Overflow) while devel-
oping the software. For LEON2, LEON3, and LEON4 processors see the FSR register bits below and set
the corresponding bits to 1 (nvm to 1, ofm to 1, and dzm to 1). The general trap enabling bit has also be set
to 1 (PSR bit 5 to 1).

• Set the nonstandard modus on processors using the GRFPU (bit 22, ns set to 1), since the processor will
otherwise trap on subnormal floating-point numbers. This modus will handle subnormals as 0, which is not
IEEE-754 compliant but will not trap (see [4]).

• Note: on x86 processors the MXCSR register will have to be configured accordingly.

0· · ·22232425262728293031

rd ... nvm ofm ufm dzm nxm ns ...

Figure 6: FSR register on SPARC V8 architecture processors

4. In case of using task preemption on RTEMS (Real-Time Executive for Multiprocessor Systems), make sure that
the current floating-point status is saved and restored during context switching by setting the the RTEMS_FLOATING_POINT
attribute flag when creating the RTEMS task with rtems_task_create().

5. In case of using a processor with an FPU without subnormal support such as the GRFPU, disable subnormal
support in Matlab and Simulink setting the DAZ (Denormals Are Zero) and FTZ (Flush To Zero) modes on.

6. Use the MEX function mechanism to use MLFS procedures within the Simulink MIL simulation7.

7. Limit the computational threads of Matlab and limit Matlab to use only one CPU core.

(a) Set the -singleCompThread command line option when starting Matlab to limit Matlab to a single com-
putational thread8.

(b) Specify a given set of CPUs (cores) that are available for use by the Matlab process by setting CPU affinity
provided by the operating system (This still allows Matlab to use more than one computational threads, that
is why the previous option is also necessary).
• GNU/Linux:

% t a s k s e t −c 0 m a t l a b −s ing leCompThread

• MS-Windows (a tool like https://docs.microsoft.com/en-us/sysinternals/downloads/pstoolsPsTools can
be used, otherwise this can be set in the Task Manager: Processes Select Image name rightclick

Set Affinity ):

> p s e xe c −a 0 %MATLAB%\ b i n \ win64 \MATLAB. exe −s ing leCompThread

where 0 is the number of the CPU (e.g., 0 for the CPU 0).

8. Always compile for SSE/AVX architecture on x86-64 platforms (e.g., using the flag -mavx2 with GCC or Clang
compilers, or -march=core-avx2with the Intel C compiler) to avoid x87 80bit precision intermediate registers9.
The use of the 80 bit x87 registers would produce a more accurate results, but the results will not be reproducible
on architectures not using an extended precision (e.g., the SPARC V8 architecture).

9. Always compile excluding FMA instructions using the -mno-fma compiler option (this is valid for the GCC and
Clang compilers, use -no-fma for the Intel C compiler) on x86-64 platforms to ensure no FMA instructions are
used when the target platform architecture does not support FMA either.

10. When using CUDA (Compute Unified Device Architecture) for GPU programming, the following compiler flags
shall be used:

• -ftz=false: use subnormal floating-point numbers (do not flush them to zero)

• -prec-div=true: compute division to the nearest floating-point number

7With the Simulink MIL mode we mean the regular normal mode simulation of a Simulink model.
8This can also be achieved from within Matlab running maxNumCompThreads(1).
9The flag -msse2 for GCC and Clang and -march=sse2 for the Intel C Compiler may also be used for the same purpose on older x86 processors

that do not have AVX2
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• -prec-sqrt=true: compute square root to the nearest floating-point number

• -fmad=false: do not merge multiply and add operations

• Note: If subnormal support is not desired, as when using a GRFPU, set -ftz=true to emulate this behavior
on the GPU.

5.2 Additional Recommendations Regarding Numerical Accuracy and Error Condition Handling

1. Check for subnormal floating-point numbers being generated by the numerical computation (e.g., by running the
software on a GRFPU configured to trap on subnormal floating-point numbers, see FSR configuration in Figure
6). This will point to computations where precision is being lost.

2. Set floating-point variables to sNaN on creation. This will raise an Invalid Operation exception when uninitial-
ized data is used.

3. Check for NaN results after numerical computation blocks. Be aware that using NaNs in relational operators
can produce perfectly valid results and not necessarily signal an Invalid Operation exception depending on the
compiler and its version (e.g., in the case of GCC this was solved in version 8.1).

6. Appendices

For the numerical experiments carried out the following computing platforms have been used:

• Host1:

– Processor: Intel Core i5-3360M

– Operating system: Debian GNU/Linux running within Oracle VirtualBox

– Compiler: GCC 6.3.0

– Note: This system has no hardware FMA support thus, the GCC software FMA implementation has been
used for test purposes in those cases where it is indicated so. For the rest of the tests, this platform shall e
regarded as having no FMA support.

• Host2:

– Processor: Intel Core i5-6400

– Operating system: Debian GNU/Linux running within WSL (Windows Subsystem for Linux)

– Compiler: GCC 6.3.0

– Note: This system does have hardware FMA support.

• Target

– Processor: Atmel AT697E LEON2 with MEIKO FPU

– Operating system: Edisoft RTEMS 4.8

– Compiler: GCC 4.2.1

Note that we only identify the relevant attributes with a version number (e.g., it does not really matter what Linux
kernel version we are using).

The altered logistic map Simulink model described in Section 3.1 and using the standard Simulink mathematical
functions has been executed in the following modes, running in each case 482 070 iterations:

(a) Simulink normal mode

(b) Simulink accelerator mode

(c) Simulink rapid accelerator mode

(d) Simulink SIL mode
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The altered logistic map Simulink model described in Section 3.1 and using the MLFS mathematical functions
has been executed in the following modes, running in each case 482 070 iterations:

(I) Simulink normal mode

(II) Simulink accelerator mode

(III) Simulink rapid accelerator mode

(IV) Simulink SIL mode

(V) PIL mode (on the target LEON2)

The auto-code generation has been configured to (the rest is configured in default modus for Intel x86-64 targets
on Linux):

• maximum parentheses level (specify precedence with parentheses) and

• preserve operand order in expression.

All compilations follow the guidelines described in Section 5 except for the cases where FMA support has been
included. In addition the -O2 optimization flag has been used in all cases.

In the text, we will reference these experiments as follows:

• Host1(c) means a rapid accelerator simulation in Simulink on Host1 (without FMA support) using standard
Simulink mathematical functions.

• Host1(IV) means a SIL simulation on Host1 using the MLFS mathematical functions.

• Target(V) means a PIL simulation on Target using the MLFS mathematical functions.

• Host2(d) means a SIL simulation on Host2 using the standard Simulink mathematical functions.
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