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Abstract 
We show that 2D and 3D inviscid continuous and discrete drag and lift adjoint solutions past sharp 

trailing edges are generically strongly mesh dependent at and near the wall and do not converge as the 

mesh is refined. Lift-based adjoint solutions are affected for any flow condition, while drag-based adjoint 

solutions are affected for transonic lifting flows. This anomalous behavior appears to be linked to the 

adjoint singularity at the trailing edge. 

1. Introduction 

Over the past three decades, the adjoint equation approach [1, 2] has been developed to cover a wide variety of CFD-

based applications including shape design [3], flow control [4], uncertainty quantification [5] and mesh adaptation [6]. 

The analysis of the analytic properties of adjoint solutions [7, 8] has uncovered several key features such as the presence 

of singularities along stagnation streamlines [7] and sharp trailing edges [9]. Both are believed to be singularities of 

the analytic adjoint solution, but they also feature prominently in numerical solutions, and particularly in adjoint-based 

mesh adaptation applications [10], as nodes in adjoint-adapted meshes tend to significantly cluster around those areas.  

In this paper, we describe a related problem first observed in [11] when comparing drag-based adjoint values computed 

with the Tau code and Nektar++ for transonic, inviscid, steady flow past a NACA0012 airfoil with 0.8M   and 

1.25º  . The same problem was simultaneously found in [12] when performing a mesh convergence study of the 

same case. The problem is illustrated in Figure 1, where a clear mesh divergence of the adjoint values on the airfoil 

surface can be observed. This lack of mesh convergence hampers the interpretation of numerical results, making it 

difficult to compare results obtained with different codes and/or meshes, and can become an issue for mesh adaptation, 

as the growing size of wall adjoint variables may result in excessive refinement towards the wall (see for example Fig. 

7 in [13]). We will show that the problem is not limited to two-dimensional transonic cases or to the drag functional 

but it is rather a generic problem for inviscid solutions past bodies with sharp trailing edges, which is likely caused by 

the adjoint singularity at the trailing edge. Likewise, the problem appears in solutions computed with both continuous 

and discrete adjoint solvers and is, thus, different from other numerical artifacts reported in the literature that plague 

adjoint solutions (usually from discrete adjoint approaches) due to the lack of dual consistency in the numerical scheme 

[14, 15, 16]. This distinction is important, as it directly affects what one should expect to see upon refining the mesh. 

If the adjoint discretization is a consistent approximation to the dual problem (and continuous adjoint discretizations 

usually are), the method is expected to converge towards the solution of the adjoint PDE with mesh refinement except, 

of course, at singularities of the adjoint equations. Known singularities include sharp trailing edges and stagnation 

streamlines and, for transonic flows, the supersonic characteristic that impinges on the root of the shock [13, 17], 

contact lines [18] such as slip lines/surfaces emanating from sharp trailing edges and the root of the sonic line in 

transonic solutions (see e.g. Fig. 4 of [7]). Generic points on shocks (barring non-uniqueness problems [19, 20, 21]) 

and sonic lines [7], on the other hand, seem to be fine, at least for generic cost functions.  
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2. Statement of the problem 

2.1 The Adjoint Equations 

We begin by recalling a few facts regarding the inviscid adjoint equations. We will focus, for definiteness, on steady, 

two-dimensional, inviscid flow on a domain   with far-field boundary S  and wall boundary S (typically an airfoil 

profile). The flow is governed by the Euler equations 0F  , where ˆ ˆ( , , , )T

x yF v vv px vv py vH       is the 

flux vector and , , , ,v p E H  the fluid’s density, velocity, pressure, total energy and enthalpy, respectively. The adjoint 

equations are defined with respect to a functional of the flow variables, or cost function, that we take to be the force 

exerted by the fluid on the boundary S measured along a direction d  

   

( ) ( )S
S

I S p n d dS              (1) 

 

(where 
Sn  is the outward-pointing normal vector to the solid surface). With appropriate choices of d , eq. (1) can 

represent the drag or lift on the airfoil.  

The corresponding adjoint state 1 2 3 4( , , , )T     obeys the (adjoint) equation 

 

0 in T

UF                                                                         (2) 

 

with the following wall and far-field boundary conditions 

 

on 

( ) 0 on 

S S

T

U S

n n d S

F n U S



 



  

 
                                                             (3) 

 

where 2 3( , )    is the adjoint velocity vector. If the flow solution contains a shock, the above equations need to be 

modified to account for the appropriate adjoint shock conditions [22, 12]. The adjoint equations (2)-(3) can be 

discretized for numerical computation (continuous adjoint approach); alternatively, the adjoint system can be derived 

directly from the discretized flow equations (discrete adjoint approach).  

2.2 The singularity at the trailing edge 

In [9, 23], Giles and Pierce constructed via conformal mapping a 2D potential adjoint solution that exhibited a 

singularity at the sharp (cusped) trailing edge of a symmetric Joukowski airfoil, but was otherwise perfectly smooth 

along the remainder of the wall. A similar solution, with a different cost function, has been explicitly constructed in 

[24]. The adjoint singularity at the trailing edge has been also observed in solutions computed with the Euler equations 

[7, 10]. Figure 1 and  Figure 2 plot the drag and lift density adjoint variables, respectively, on the surface of a 

NACA0012 airfoil for inviscid transonic flow with 0.8M   and 1.25   on a set of 6 sequentially refined 

triangular meshes with up to 3 million nodes. Each mesh is obtained by uniform refinement of the previous one by 

splitting in half every mesh edge. When edges are split on the airfoil’s surface, the position of the new points is adjusted 

using cubic splines interpolation such that the new discrete surface follows the original geometry. The computations 

have been carried out with DLR’s discrete adjoint Tau solver [25]. 
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Figure 1: Mesh convergence study of the drag adjoint density solution on a NACA0012 profile (flow conditions 

0.8M   and 1.25o  ) 

 

At the specified conditions, the flow solution has a shock at / 0.63x c   on the suction side of the airfoil (with the 

maximum local Mach number reaching approximately 1.4 on the supersonic side of the shock), and a weaker one on 

the pressure side. In this case, the actual value of the numerical adjoint solution at the trailing edge is close to zero, but 

the singularity manifests itself in the large values of the adjoint variable near the trailing edge, which grow continually 

when the mesh around the trailing edge is refined (Figure 1 and  Figure 2 (right)). This mesh dependence should 

be expected if there is a singularity at the trailing edge: when the mesh is refined, nodes get closer to the singularity 

and larger and larger values are obtained.  

 

 
 Figure 2: Lift adjoint, NACA0012 ( 0.8M  , 1.25o  )  

 

On the other hand, flow conditions have an effect on the singularity, but this depends on the cost function. Drag adjoint 

variables are not singular for subcritical flow or zero angle of attack, while lift adjoint variables are singular at any 

angle of attack and Mach number, as will be shown in the following section. Interestingly enough, the adjoint 

singularity at the incoming stagnation streamline follows the exact same pattern, although the consequences of this 

fact for the problem addressed in this paper have not been fully explored.  

All of the above is well-known, and simply reflects the sensitivity of the Kutta condition to changes in the geometry 

of the trailing edge [9]. What is not so well known, and is apparent in Figure 1 and  Figure 2, is the very clear 
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mesh divergence of the adjoint solution across the whole airfoil profile, with values growing continually as the mesh 

is refined. However, adjoint-based sensitivity derivatives are quite accurate [26] and do not reflect a comparable level 

of mesh dependence.  

The observed behavior is not exclusive to the chosen code or numerical settings. Similar trends are observed with 

Tau’s continuous adjoint solver, on different sets of meshes, with different schemes (a second-order central 

discretization with JST scalar dissipation [27] has been used for Figure 1 and  Figure 2, although results with Roe’s 

upwind solver [28] show similar trends). Likewise, the same behavior has been observed with Stanford University’s 

SU2 finite-volume, unstructured continuous adjoint solver [29]. Similarly, [11] reports an offset in absolute value with 

respect to Tau values of surface drag adjoint values for the transonic NACA case computed with the high-order 

spectral/hp element solver Nektar++.1  

In the next section, it will be shown that the issue is strongly related to the trailing edge singularity.  

3. Further numerical experiments 

We have seen above that, for the NACA0012 airfoil at 0.8M   and 1.25 ,   the adjoint variables on the airfoil 

profile do not converge as the mesh is refined. Barring bugs or implementation issues, this behavior must have a 

numerical origin (as argued above, it does not seem to be possible to explain it from the viewpoint of the adjoint p.d.e.) 

and it is important to know if it is related to the trailing edge singularity and whether it is specific to the flow conditions 

and cost function chosen. In order to characterize the problem, several test cases have been analyzed with different 

flow conditions, trailing edge geometries and numerical settings. A 3D case will also be investigated, as well as a 2D 

viscous (laminar) case.  

3.1 2D inviscid flows 

A. Symmetric (non-lifting) case 

Figure 1 and  Figure 2 correspond to a non-symmetric (lifting) transonic case. In a symmetric case, and for the 

drag-based adjoint, both the singularity and the continuous mesh variation disappear, as can be seen in Figure 3, which 

shows the drag adjoint solution on a NACA0012 airfoil with 0.8M   and 0º   on 6 sequentially finer meshes. The 

solution depicted in Figure 3 does still show a mesh divergence at around / 0.08x c   that actually corresponds to the 

root of the sonic line of the primal flow, which appears to be a singularity of the adjoint solution that can also be spotted 

in Figure 1, Figure 10 and Figure 14, for example. 

 
Figure 3: Drag adjoint. NACA0012 ( 0.8M  , 0  ).  

 

The lift-based adjoint solution, on the other hand, is singular at the trailing edge (and mesh divergent across the entire 

airfoil profile), as can be seen in Figure 4. 

                                                           
1 The computed values also show a continuous variation with mesh refinement or order increase (D. Ekelschot, private 

communication). 
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Figure 4: Lift adjoint. NACA0012 ( 0.8M  , 0  ). 

 

B. Subcritical flow 

In a subcritical case, both the trailing edge singularity and the mesh divergence disappear altogether from the drag 

adjoint solution, even in the lifting case, as can be seen in Figure 5. The lift adjoint solution, on the other hand, is 

singular at the trailing edge (and mesh divergent) for both symmetric and non-symmetric cases (Figure 6 and Figure 

7).  

  
Figure 5: Drag adjoint. NACA0012. Left: 0.5M  , 2º  . Right: 0.5M  , 0º  .  
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Figure 6: Lift adjoint. NACA0012 ( 0.5M  , 0º  ).  

 

 
Figure 7: Lift adjoint. NACA0012 ( 0.5M  , 2º  ).  

 

C. Modified trailing edge geometry 

Several modified NACA0012 airfoils with wedge angles 10.68º and 3.24º (the initial geometry has a wedge angle of 

about 20.22º), as well as a symmetric Joukowski airfoil and a NACA0012 airfoil with a blunt trailing edge of 0.252% 

chord are considered. Flow conditions are 0.8M   and 1.25º  , and the results of the computations are presented 

in Figure 8–Figure 11. In all cases, the adjoint singularity is still present, along with a significant level of mesh 

dependence of the adjoint solutions throughout the airfoil profiles.  
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Figure 8: NACA0012 airfoil, wedge angle 10.68º, 0.8M   and 1.25  . Left: drag adjoint. Right: Lift adjoint. 

 

 
Figure 9: NACA0012 airfoil, wedge angle 3.24º, 0.8M   and 1.25  . Left: drag adjoint. Right: Lift adjoint. 
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Figure 10: Symmetric Joukowski airfoil, 0.8M   and 1.25  . Left: drag. Right: Lift adjoint. 

 

 
Figure 11: NACA0012 airfoil with blunt trailing edge. 0.8M   and 1.25  . Left: drag. Right: Lift. 

 

D. Increased dissipation level 

Unicity problems of adjoint solutions at primal shocks can be alleviated if the dissipation is increased as the mesh is 

refined [19]. This can be done easily in schemes such as JST where the dissipation is scaled independently, and we do 

so in such a way that discontinuities such as shocks are increasingly resolved. Unfortunately, while the overall levels 

of the adjoint solution on the airfoil are reduced, the trailing edge singularity and the continuous variation with mesh 

density persist (Figure 12).  
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Figure 12: NACA0012 airfoil with 0.8M   and 0  . JST scheme with dissipation increasing with mesh density. 

Left: Drag adjoint solution. Right: Lift adjoint solution 

 

Alternatively, we can activate the second dissipation (for both the primal and adjoint solvers) throughout the whole 

computational domain. This reduces the accuracy of the solution and does not prevent the mesh dependence of the 

adjoint solution, as can be seen in Figure 13, where results with everywhere active second-order dissipation, both 

constant and increasing with the mesh density, are shown. 

 

 
Figure 13: NACA0012 airfoil ( 0.8M  , 0  ). Drag adjoint solution. JST scheme with 2nd order dissipation 

throughout. Left: constant 2 . Right: 2  increasing with mesh density. 
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on four sequentially refined tetrahedral meshes of sizes ranging from 205000 (coarsest) to 105 million elements 
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Figure 14 shows the drag-based density adjoint distribution at the half-span wing section. We clearly see that, again, 

in the lifting case the adjoint is singular at the trailing edge, with the accompanying mesh dependence across the entire 

section, while both the singularity and mesh dependence are absent in the non-lifting case. In the latter case, there is a 

mesh divergence near the leading edge that actually corresponds to the suction peak and sonic line of the primal flow.  

 

 
Figure 14: Drag adjoint solution for an ONERA M6 wing with 0.8395M   and 0º   (left) and 3.06º  (right). 

 

On the other hand, the lift adjoint solution (Figure 15) is singular at the trailing edge (and not mesh convergent across 

the whole section) for both flow conditions, as in 2D cases.  

 

 
Figure 15: Lift adjoint solution for an ONERA M6 wing with 0.8395M   and 0º   (left) and 3.06º  (right). 

3.3 Laminar NACA0012 ( M = 0.5 , α=2º , Re = 5000) 

We do not expect to see the above phenomena in viscous flows, as the no-slip condition eliminates the trailing edge 

singularity. To confirm this idea, we compute the viscous flow past a NACA 0012 airfoil with 0.5M  , 2º   and 

Re = 5000. It is well known that at viscous walls discrete adjoint solutions are typically non-smooth and oscillatory 

[15] (unless the discretization is dual consistent) and can even have completely arbitrary values decoupled from the 

interior adjoint [31]. This can interfere with the problem at hand, so we will compute the numerical adjoint solution 
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with Tau’s viscous continuous adjoint solver, which was validated (by means of boundary sensitivity derivatives) in 

[32].  

The computations have been performed on a set of sequentially refined hybrid unstructured meshes combining 30 

structured layers of quadrilaterals in the boundary layer embedded within a triangular mesh. Wall spacing is 
4

min 1.35 10y     in chord units, and it is kept fixed throughout the experiment, although computations on a mesh 

with wall spacing half of the above have also been included for completeness. The far-field boundary is approximately 

100 chord-lengths away from the airfoil. Adaptation in the structured layer proceeds by edge bisection in the 

streamwise direction only. Figure 16 shows the results of the computations. Even though there is some degree of mesh 

dependence, the solutions seem to slowly approach a grid converged solution.    

 

 
Figure 16: NACA0012 (Re = 5000, 0.5M  , 2o  ). Continuous drag (left) and lift (right) adjoint solutions on the 

airfoil surface.  

3.4 Discussion 

The above numerical tests make it clear that the adjoint mesh convergence problem is real and appears to affect inviscid 

solutions only. While this is of no immediate practical relevance, as adjoint applications focus now on viscous 

applications, it is still important, from a fundamental viewpoint, to fully understand the behavior of inviscid adjoint 

solutions for both validation of numerical solvers and a deeper understanding of the adjoint equations. We thus need 

to find the source of the problem, which has been found to be clearly related to the adjoint singularity at the trailing 

edge and to affect different cost functions in different ways. Lift adjoint solutions are affected for any flow condition, 

while drag adjoint solutions seem to be affected only in those cases where the flow conditions result in the formation 

of a slip line emanating from the trailing edge. There are several possible explanations for this behavior one can come 

up with.  

(1) Singularity of the adjoint p.d.e. or of the solution at solid walls. This seems to be ruled out by the example of the 

adjoint potential solution, as well as the analysis of the structure of the solutions using the Green function approach 

[7]. Hence, the origin of the observed behavior must be numerical. 

(2) Dual inconsistency of the numerical scheme. I believe that this possibility is ruled out by the fact that the problem 

is observed in both continuous and discrete adjoint schemes, and in different solvers and with different numerical 

schemes. 

(3) Non-unicity associated to a primal discontinuity. Transonic flow solutions contain singularities such as shocks and, 

in the lifting case, slip lines/surfaces [33]. At primal shocks, the adjoint equation requires an internal boundary 

condition which is not enforced numerically and that may lead to wrong adjoint solutions unless sufficient dissipation 

is applied across the shock [19]. Failing to do so leads to incorrect adjoint values in the shock region that also depend 

strongly on the mesh density (see chapter 3 in [34], for example). However, the problem we are dealing with also 

occurs in adjoint solutions for non-shocked flows, and there are shocked (non-lifting) solutions that do not show the 
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problem. Likewise, adding more dissipation does not cure the mesh dependence, so even though the presence of the 

shock may contribute to the problem, it is certainly not the sole reason.  

Regarding the slip line, lift adjoint solutions are singular even without slip lines, so, again, these cannot be the only 

reason. Furthermore, we have found no trace of singular behavior of the adjoint solutions at the slip line (not even for 

the drag adjoint in transonic rotational flows). Finally, characteristic curves are parallel to contact discontinuities and 

slip lines rather than impinging on them, so no adjoint b.c. needs to be imposed, thus closing the door to a possible 

non-uniqueness mechanism.  

(4) Numerical effect triggered by the trailing edge singularity. What all the analyzed cases have in common is the 

trailing edge adjoint singularity. When the trailing edge is not singular, the adjoint values converge with mesh 

refinement except at certain singular points. The two phenomena are thus clearly correlated. The issue is whether the 

established correlation actually implies causation. Adjoint solutions with singularities are well-known, such as in quasi-

1D flows, which however do not lead to a comparable level of mesh dependence of the solutions. Two and three-

dimensional cases are significantly more complex, and in absence of another plausible mechanism, we are led to believe 

that the trailing edge singularity (which is already present in the analytic solution) may be responsible for the mesh 

dependence of adjoint values at the wall. When the mesh is refined, new nodes are placed closer and closer to the 

trailing edge, resulting in increasingly larger values of the adjoint state. In turn, these large values contaminate the 

adjoint state across the profile and near wall regions, as only the normal value of the adjoint velocity 2 3( , )    is 

fixed by the adjoint wall boundary condition (3), triggering the observed mesh divergence. 

4. Conclusions 
 

In this paper, we have reported on a problem observed in inviscid adjoint solutions for flows past sharp trailing edges: 

the lack of mesh convergence of wall and near-wall adjoint values across the entire wall boundary. This lack of mesh 

convergence properties appears to be a problem of the numerical solution whose details depend on the cost function 

and the flow conditions. Lift-based adjoint variables are affected at any flow condition, while drag-based adjoint 

variables are only affected in transonic lifting cases.  

This problem is not inconsequential: it makes it difficult to interpret and validate numerical results and it can pose a 

problem in mesh adaptation, as the growing size of wall adjoint variables may result in excessive refinement towards 

the wall. On the other hand, sensitivity derivatives computed with the singular adjoint solutions are actually quite 

accurate and do not reflect a comparable level of mesh dependence. This observation may explain why this issue had 

been largely unnoticed.  

What is perhaps more relevant is the fact that the mesh divergence is always associated to a singular behavior at the 

trailing edge. In those cases where the adjoint is not singular at the trailing edge, the mesh divergence problem is also 

absent, so the both issues are clearly related. Since the singularity at the trailing edge is inherent in the analytic adjoint 

solution, we conjecture that the trailing edge singularity is actually causing the mesh divergence. 
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