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Abstract
This study attempts to derive numerically the shell Knockdown factors of isogrid-stiffened cylinders 
under axial compressive loads. Various shell thickness ratios are considered for the isogrid-stiffened 
cylinders. Two different modeling techniques such as the detailed modeling with numerous stiffeners 
and the equivalent modeling without modeling of stiffeners are applied for the present work. The single 
perturbation load approach (SPLA) is used to represent the geometrical initial imperfection of a cylinder. 
Postbuckling analyses with the displacement control method are conducted to derive numerically the 
shell Knockdown factors of isogrid-stiffened cylinders. The global buckling loads and shell Knockdown 
factors using the equivalent model are excellently compared with the results with the detailed model 
although the computation time using the equivalent model is 13 to 16% of that with the detailed model. 
The present Knockdown factor function in terms of the shell thickness ratio for the isogrid-stiffened 
cylinder is much higher than NASA’s Knockdown factor function; therefore, it is believed that the 
present Knockdown factor function can facilitate in developing lightweight launch vehicle structures 
using the isogrid-stiffened cylinder.

1. Introduction

The thin cylindrical structure is the most important structural element for space launch vehicles. However it is very 
vulnerable to various loads, particularly axial compressive loads, on the launch pad and during the flight. Therefore, 
thin cylinders usually use many stiffeners in both the axial and circumferential directions of a cylinder to improve the 
stiffness and strength. The stiffeners are generally used in a grid form such as the orthogrid and isogrid-stiffened
systems (Figure 1). The isogrid-stiffened system uses a lattice of intersecting ribs forming an array of equilateral 
triangles as given in Figure 1(b), and it provides the isotropic behaviors of a stiffened structure while improving the 
buckling load of a cylindrical structure, therefore, the isogrid-stiffened cylinder is frequently used for the propellant 
tanks and inter-tanks of a space launch vehicle.    

                  
(a) Orthogid system                               (b) Isogrid system

Figure 1: Grid-stiffened systems.

The buckling load is an essential factor in the structural design of the launch vehicle. However, the measured buckling 
load is usually lower than the calculated value from the linear buckling analysis. Among various reasons for this 
discrepancy between the linear buckling analysis and test, the geometrical initial imperfection of a thin shell structure 
is considered as the most important reason. The buckling Knockdown factor is introduced to reduce appropriately the 
predicted buckling load using a linear analysis. The Knockdown factor is defined as a ratio between the global buckling 
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loads of a thin shell structure with and without the initial imperfection. NASA provided the lower bound of Knockdown 
factors of the cylindrical structure (Figure 2, [1]) using the measured data through the buckling tests from 1930s to 
1960s. 

Figure 2: NASA’s lower bound of Knockdown factors [1].

Therefore, this buckling design criteria (NASA’s the lower bound of Knockdown factors) cannot consider the modern 
manufacturing technologies and advanced materials for launch vehicle structures, as a result, the launch vehicle 
structure is conservatively designed, that is, over-weight designed. Thus, two recent research projects, NASA’s SBKF 
(Shell Buckling Knockdown Factor) project [2] and EU’s DESICOS (New Robust DESign Guideline for Imperfection 
Sensitive Composite Launcher Structure) project [3] derived newly the Knockdown factor using extensive numerical 
analyses along with bucking tests for design of the lightweight launch vehicle structures. In the SBKF project, the
metallic orthogrid-stiffened cylinders were considered and the shell Knockdown factors were derived numerically from 
the postbuckling analyses [4-6]. The SBKF project showed that the advanced numerical analysis can provide accurately 
the Knockdown factor of the orthogrid-stiffened cylinder and the derived shell Knockdown factor can give the 
lightweight design the space launch vehicle structures [4-6]. For the DESICOS project, composite cylinders without 
stiffeners were considered to derive the Knockdown factor numerically, and the numerical studies [7-9] showed that 
the derived Knockdown factors are higher than NASA’s buckling design criteria. Along with these works [4-9], the 
extensive postbuckling numerical analyses [10] were conducted for various cylinders such as unstiffened 
isotropic/composite cylinders and orthogrid-stiffened cylinders, and the obtained results were compared with the 
previous Knockdown factors. In addition, the nonlinear postbuckling analyses were conducted in depth for the 
traditional orthogrid-stiffened and hybrid-grid stiffened cylinders, and the Knockdown factors were numerically 
derived using the calculated buckling loads with and without the geometrical initial imperfection [11]. In the work, the 
numerical analysis based buckling design provided higher Knockdown factors as compared to the NASA’s Knockdown 
factors [1], and the hybrid-grid stiffened cylinder is more efficient than the traditional orthogrid-stiffened cylinder from 
the from the perspective of buckling design along with considering the structural weight.

As previously described, the thin shell structure with the isogrid-stiffened system shows an isotropic behavior 
structurally, thus the isogrid-stiffened cylinder can be modeled using the equivalent model without the detailed 
modeling of numerous stiffeners [12-14]. This equivalent model for the isogrid-stiffened structure provides efficient 
and appropriately precise computations for the overall structural behaviors such as the global buckling. Although the 
isogrid-stiffened cylindrical structures are widely used for the space launch vehicles, there have been limited works 
for the postbuckling analyses and numerical derivation of shell Knockdown factors considering various shell thickness 
ratios (ratio of radius to thickness). However the Knockdown factors of the isogrid-stiffened cylinder considering 
different shell thickness ratios are required for buckling design of space launch vehicles with various dimensions (from 
a small launch vehicle to a large one).   

Therefore this study aims to derive numerically the Knockdown factors of isogrid-stiffened cylinders considering 
various shell thickness ratios (R/teff=100, 200, 300, and 441). For the finite element model of isogrid-stiffened cylinders, 
the detailed model considering numerous stiffeners and the equivalent model without the modeling of stiffeners both
are used. A commercial nonlinear finite element analysis program, ABAQUS (version 6.16), is used for the present 
postbuckling analyses of isogrid-stiffened cylinders with and without the initial imperfection. The geometrical initial 
imperfection of a cylinder is modeled using the SPLA (Single Perturbation Load Approach [15-18]) which represents 
the best realistic and worst initial imperfection of shell structures. In this study, the slightly modified modeling 
technique for the SPLA [19, 20] to the original modeling technique [21] is used. The postbuckling analyses and 
Knockdown factors of isogrid-stiffened cylinders using the detailed and equivalent models are compared to each other 
for various shell thickness ratios to validate the equivalent modeling techniques for the isogrid-stiffened cylinder. 
Finally, the Knockdown factor function in terms of the shell thickness ratio is expressed using the numerically derived 
Knockdown factors. The derived Knockdown factor function for the isogrid-stiffened cylinder is compared to the 
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NASA’s Knockdown factor function in order to investigate that the present buckling design criteria can provide lighter 
weight design of space launch vehicles.

2. Analytical method

2.1 Equivalent modeling

Since the isogrid-stiffened system shows the unique characteristics of isotropic behaviors, the isogrid-stiffened 
structure can be modeled as an equivalent and simple model without detailed modeling of numerous stiffeners. The 
following equations (1) to (6) derive the equivalent elastic modulus (E*) and equivalent thickness (t*) of the equivalent 
and simple cylinder model to the isogrid-stiffened cylinder [12]. 

Figure 3: Schematic diagram of isogrid-stiffened system.

The height ( h ) of a triangular unit cell given in Figure 3 for the isogrid-stiffened system is defined using Eq. (1) as

( 3 / 2)h a= (1)

where a is the length of a triangular unit cell. In addition, a is defined as

/bd tha = (2)

where b and d are the thickness and length of a stiffener, respectively. Furthermore, the skin thickness of the isogrid-

stiffened cylinder is denoted as t . Eq. (3) shows the relation between d and t as

/d td = (3)

Using a and d , Equation (4) can be defined as

2 2 1/2[3 (1 ) (1 )(1 )]b a d a ad= + + + + (4)

Finally, the equivalent elastic modulus (E*) is calculated using a and b .

* 2
0 ((1 ) / )E E a b= + (5)

* ( /1 )t t b a= + (6)

where E0 is the elastic modulus of a detailed model. When the equivalent elastic modulus (E*) and thickness (t*) are 
used for modeling, the equivalent model for an isogrid-stiffened cylinder can be obtained without modeling of 
numerous stiffeners. The equivalent thickness (t*) defined in Eq. (6) is equal to the effective thickness (teff) of the 
isogrid-stiffened cylinder. The equivalent model can save computation time and effort of finite element modeling 
appropriately as compared to the detailed model with modeling of stiffeners.
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2.2 Modeling of isogrid-stiffened cylinders with various shell thickness ratios

There are a lot of cases to change the shell thickness ratio (R/teff) of the isogrid-stiffened cylinder. Therefore, in this 
work, the radius (R) of a cylinder is changed but the effective thickness of a cylinder (teff) is maintained as the value 
of the baseline isogrid-stiffened cylinder model summarized in Table 1 and Figure 3 to reduce the number of cases to 
vary the shell thickness ratio. 

Table 1: Properties of the baseline stiffened cylinder (R/teff=441, [22]).

Property Value
Thickness ratio, R/teff 441
Radius, R 2.250 m
Length, L 2.200 m
Length of resin ring, Lr 0.083 m
Length of a triangular unit cell, a 0.415 m
Height of a triangular unit cell, h 0.360 m
Thickness of stiffener, b 0.004 m
Thickness of skin, t 0.004 m
Depth of stiffener, d 0.008 m
Angle of stiffener, θ 60°
Elastic modulus, E0 73.1 GPa
Poisson’s ratio, ν 0.33

When the value of d given in Eq. (3) is fixed as the baseline value, the effective thickness (teff) can be also fixed. In 
addition, the values of R/L, L/a, and b/h are maintained as their baseline values, respectively. The modeling procedure 
for the geometric properties of isogrid-stiffened cylinders with various shell thickness ratios is described as follows. 
First, the value of d is fixed as the baseline value in Table 1 as given in Eq. (7).

baseline baseline( / )d td = (7)

Second, using the given shell thickness ratio (R/teff)present and the baseline value of the effective thickness (teff) in Table 
1, the radius (Rpresent) of a cylinder can be determined as

present eff eff baseline( / )R t R t= (8)

Third, since the slenderness ratio (R/L) has a significant influence on the buckling characteristics of a cylinder, the 
value of R/L is maintained as the baseline value in Table 1. Therefore, along with the radius of a cylinder previously 
determined in Eq. (8), Rpresent, the length of a cylinder is designed as

present present baseline( / )L R R L= (9)

Fourth, the length of a triangular unit cell is determined using Eq. (10) in order to maintain the value of (L/a) as the 
baseline value as

present present baseline( / )a L L a= (10)

Fifth, for the given shell thickness ratio, the height of a triangular unit cell (in Figure 3) is obtained using   previously 
given in Eq. (10) as

present present( 3 / 2)h a= (11)

where Eq. (11) is the same as Eq. (1).

Finally, the thickness of a stiffener for the given shell thickness ratio can be designed to maintain the baseline value in 
Table 1 as
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present present baseline( / )b h b h= (12)

After the design of a detailed model described above is completed for the given shell thickness ratio, the equivalent 
elastic modulus and thickness can be determined using Eqs. (5) and (6) to obtain the equivalent model of an isogrid-
stiffened cylinder. In addition, the radius and length of an equivalent model are the same as those of the detailed model 
(Rpresent and Lpresent, respectively).

2.3 Isogrid-stiffened cylinder models

The baseline model of an isogrid-stiffened cylinder (the shell thickness ratio of R/teff=441) is given in the previous 
Table 1 and Figure 4 [22]. The material properties (2024 Aluminum alloy) are the elastic modulus (E0) of 73.1 GPa

and Poisson’s ratio of 0.33. The cylinder consists of four stiffened panels and unstiffened straps (weld lands) between 

panels shown in Figure 4. For the boundary conditions of a cylinder, all the degree of freedoms at the bottom edge are 
constrained, but all the degree of freedoms except the translational degree of freedom in the z-direction are constrained 
at the top edge in Figure 4. Because of the lack of detailed modeling information given in Ref. [22], the thickness of a 
strap is assumed appropriately in the present detailed model. It is noteworthy that the equivalent modeling technique 
is applied only to the grid stiffened panel, not to the straps. Thus, the thickness of the strap for the equivalent model is 
equal to the thickness of the strap for the detailed model. When the modeling technique considering for various shell 
thickness ratios described in the previous section is applied, the detailed properties of isogrid-stiffened cylinders using 
the detailed and equivalent models are summarized in Tables 2 and 3.

Figure 4: Schematic diagram of the isogrid-stiffened cylinder.

Table 2: Properties of the detailed models for isogrid-stiffened cylinders with various shell thickness ratios.

Thickness ratio, R/teff 100 200 300 441
Radius, R 0.510 m 1.020 m 1.530 m 2.250 m
Length, L 0.500 m 1.000 m 1.500 m 2.200 m
Length of resin ring, Lr 0.019 m 0.038 m 0.056 m 0.083 m
Length of a triangular unit cell, a 0.094 m 0.188 m 0.282 m 0.415 m
Height of a triangular unit cell, h 0.082 m 0.136 m 0.244 m 0.360 m
Thickness of stiffener, b 0.0009 m 0.0018 m 0.0027 m 0.0040 m
Thickness of skin, t 0.004 m
Depth of stiffener, d 0.008 m
Angle of stiffener, θ 60°
Elastic modulus, E0 73.1 GPa
Poisson’s ratio, ν 0.33

Table 3: Properties of the equivalent models for isogrid-stiffened cylinders with various shell thickness ratios.

Thickness ratio, R/teff 100 200 300 441
Radius, R 0.510 m 1.020 m 1.530 m 2.250 m
Length, L 0.500 m 1.000 m 1.500 m 2.200 m
Length of resin ring, Lr 0.019 m 0.038 m 0.056 m 0.083 m
Equivalent thickness, t* 0.0051 m
Equivalent elastic modulus, E* 58.35 GPa
Poisson’s ratio, ν 0.33
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2.4 Techniques for finite element modelling and analyses of isogrid-stiffened cylinders

A nonlinear finite element analysis program, ABAQUS, is used for the present postbuckling analyses of isogrid-
stiffened cylinders under axial compressive loads. For the detailed modeling (Figure 5(a)), the skin structures for the 
grid-stiffened region are modeled using 3-node shell elements, however the stiffener and straps are modeled with 4-
node shell elements; however, 4-node shell elements only are used for the equivalent modeling of the isogrid-stiffened 
cylinder (Figure 5(b)). The number of finite elements for the equivalent model is determined by the convergence test
for the global buckling load, Table 4 shows the number of finite elements for the present modeling of isogrid-stiffened 
cylinders considering various shell thickness ratios. As seen in the table, the equivalent model use much less finite 
elements for finite element modeling than the detailed model, since the equivalent model does not model the stiffeners 
and represents the isogrid-stiffened cylinder as a simple cylinders without stiffeners.

                     
(a) Detailed model                                     (b) Equivalent model

Figure 5: ABAQUS finite element models for the isogrid-stiffened cylinder.

Table 4: Number of finite elements of the isogrid-stiffened cylinders with various shell thickness ratios.

Thickness ratio, R/teff 100 200 300 441
Detailed model 33,228 33,288 33,128 33,128
Equivalent model 17,064

2.5 Analysis techniques

The SPLA is considered as the best method to represent the geometrical initial imperfection of thin shell structures 
since it may represent the realistic and worst geometric imperfection of cylindrical structures [15-18]. Therefore, the 
SPLA is used to represent the geometrical initial imperfection of both the detailed and equivalent models for the present 
isogrid-stiffened cylinders. The SPLA is represented using the following three-step process [19] that is slightly 
different from the original modelling [21] as follows. First, an assumed perturbation load (Q) in the radial direction is 
applied to the middle of an isogrid-stiffened cylinder (Figure 6(a)). For the detailed model of an isogrid-stiffened 
cylinder, the radial perturbation load is applied to the point of an intersection between the axial stiffener of a grid panel
and middle line of a cylinder as shown in Figure 6(b); however, the application point of a radial perturbation load for 
the equivalent model is considered as the same point for the detailed model. 

                 

(a) Single perturbation load approach                 (b) Application point of a lateral load

Figure 6: Single perturbation load approach (SPLA).
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A nonlinear static analysis using ABAQUS is conducted for the isogrid-stiffened cylinder under the prescribed radial 
perturbation load in this step. Second, the deformed configuration of a cylinder is imposed to the perfect cylinder by 
modifying the nodal coordinates of the cylinder’s finite element model. This modeling can represent a cylinder with a 
geometrical initial imperfection in a stress-free state, which is a realistic modeling of the initial imperfection of thin 
shell structures [15-18]. Finally, the axial displacement instead of the axial compressive force is applied at the edges 
of the isogrid-stiffened cylinder considering the geometrical initial imperfection for the postbuckling analysis since 
Newton-Raphson method with the displacement control method is applied with an artificial damping [23] for the 
present postbuckling analysis. The artificial damping with the value of 5% is used to stabilize nonlinear analysis with 
local instabilities such as snapthrough, local buckling, and wrinkling because it dissipates the released strain energy 
when a local instability occurs. In addition, all the nodes at each resin ring region of the cylinder, all the modes are 
coupled with a control node using rigid links (Figure 7) for a uniform displacement condition. The axial displacement 
instead of the axial force is applied to a control node for the displacement control method. 

Figure 7: Rigid rinks and control nodes.

In this step, the relationship between the axial force and displacement of a cylinder under axial compressive forces is 
obtained along with the predicted global and local buckling loads. The process above is repeated as the single 
perturbation load is increased until the global buckling load converges. As shown in Figure 8, as the radial perturbation 
load increases, the global buckling load of a cylinder with the geometrical initial imperfection decreases as compared 
with that of a perfect cylinder without the initial imperfection. In the SPLA, when the perturbation load exceeds a 
certain perturbation load (Q1 in Figure 8) the global buckling load of a cylinder with the initial imperfection does not 
decrease but is almost constant although the single perturbation load increases further. The corresponding buckling 
load is defined as the design load (N1) of the cylinder for the postbuckling analysis.

Figure 8: Global buckling load in terms of a perturbation load.

Using the calculated global buckling loads with and without the initial imperfection, the shell Knockdown factor, γ, is 
derived as

cr imperfect

cr perfect

(N )
γ

(N )
= (13)

where (Ncr)imperfect and (Ncr)perfect are the global buckling loads of a cylinder with and without the initial imperfection, 
respectively.
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3. Numerical result

3.1 Shell thickness ratio of R/teff=441 (baseline model)

Prior to the postbuckling analyses and derivation of the Knockdown factors of the isogrid-stiffened cylinders 
considering various shell thickness ratios, the postbuckling analyses using both the detailed and equivalent models are 
conducted for the baseline model (R/teff=441, [22]) as given in Figure 4 and Table 1 and the Knockdown factors are 
derived using the calculated global buckling loads in this section. Figure 9 exhibits the postbuckling analyses for the 
baseline isogrid-stiffened cylinder model. For the perfect cylinder without the initial imperfection, the detailed and 
equivalent models predict the global buckling loads of 5,450 and 5,320 kN, respectively. As the perturbation load 
increases, the global buckling loads converge for both the detailed and equivalent models. When the initial imperfection 
is considered, the global buckling loads (B) are calculated as 3,290 and 3,250 kN, respectively, for the detailed and 
equivalent models. As given in the figure, the global buckling loads using the detailed and equivalent models are very 
close to each other for the isogrid-stiffened cylinders without and with the initial imperfection, since the relative errors
are -2.39 and -1.22%, respectively, for global buckling loads without and with the initial imperfection. However, the 
predicted global buckling loads of the present both models considering the initial imperfection are different from the 
measured value [22] by 3.14 to 4.41%. It is believed that this discrepancy is due to the lack of detailed modeling 
information in Ref. [22]; however, the error is not significant, but relatively small. Figure 10 compares the deformed 
shapes of the baseline cylinder using the detailed and equivalent models. As seen in the figure, two models show quite 
similar deformed configurations of the baseline cylinder in the local buckling (A), global buckling (B), and 
postbuckling states (C). Using the calculated global buckling loads of the baseline model with and without the initial 
imperfection, the Knockdown factors are derived as 0.604 and 0.611, respectively, for the detailed and equivalent 
models, and they are compared well to each other. The results for postbuckling analysis and derivation of Knockdown 
factor for the baseline model are summarized in Table 5. As shown in Figures 9, 10, and Table 5, therefore, the present 
equivalent model for the isogrid-stiffened cylinder provides reasonably accurate predictions for the global buckling 
loads with and without the initial imperfection and the Knockdown factors in spite of using 16% of the computation 
time of the postbuckling analysis using the detailed model.

Figure 9: Postbuckling analysis results of the isogrid-stiffened cylinder (R/teff=441).

Figure 10: Deformed shapes of the isogrid-stiffened cylinder (R/teff=441).
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Table 5: Postbuckling analysis results of isogrid-stiffened cylinders with 
various shell thickness ratios (R/teff=100, 200, 300, and 441).

Shell thickness ratio, R/teff 100 200 300 441
Global buckling load of perfect model

Detailed model, kN 5,620 5,400 5,530 5,450
Equivalent model, kN 5,550 5,420 5,340 5,320
Error, % -1.25 0.37 -3.44 -2.39

Global buckling load of imperfect model
Detailed model, kN 3,920 3,740 3,720 3,290
Equivalent model, kN 3,940 3,760 3,660 3,250
Error, % 0.51 0.53 -1.61 -1.22

Knockdown factor
Detailed model 0.698 0.693 0.673 0.604
Equivalent model 0.710 0.694 0.685 0.611
Error, % 1.72 0.14 1.78 1.16

Computation time
Detailed model, min 172 176 204 207
Equivalent model, min 23 28 28 33
Equi. model / Detailed model, (%) 13.4 15.9 13.7 15.9

3.2 Shell thickness ratio of R/teff=300

Using the modeling technique described in Section 2.2, the shell thickness ratio of the isogrid-stiffened cylinder is 
changed from the baseline value but its slenderness ratio is maintained as the baseline value. The postbuckling analysis 
results using the detailed and equivalent models are given in Figure 11 for the isogrid-stiffened cylinder with the shell 
thickness ratio of 300. For the perfect cylinder without the initial imperfection, the global buckling loads are calculated 
as 5,530 and 5,340 kN, respectively, using the detailed and equivalent models. These are higher than the results for the 
previous baseline case with R/teff = 441.When the geometrical initial imperfection is considered, the global buckling 
loads (B) of the isogrid-stiffened cylinder are converged to 3,720 and 3,660 kN, respectively, for the detailed and 
equivalent models. These global buckling loads with the initial imperfection are also higher than those of the baseline 
model considering the initial imperfection. The Knockdown factors are derived using Eq. (13) as 0.673 and 0.685, 
respectively, for the detailed and equivalent models, as given in Table 5. These Knockdown factors with R/teff = 300 
are higher than the results using the baseline model. As summarized in Table 5, the global buckling load and 
Knockdown factor predicted using the equivalent model are compared nicely well with those using the detailed model 
although the computation time with the equivalent model is about 14% of calculation time using the detailed model. 
The deformed shapes of the isogrid-stiffened cylinder in the local buckling, global buckling, and postbuckling states 
are plotted in Figure 12. As seen in the figure, two models give similar deformed configurations in the local buckling 
(A) and global buckling states (B); however, the postbuckled shapes of the cylinder (C) using the detailed and 
equivalent models are moderately different from each other.

Figure 11: Postbuckling analysis results of the isogrid-stiffened (R/teff=300).
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Figure 12: Deformed shapes of the isogrid-stiffened cylinder (R/teff=300).

3.3 Shell thickness ratio of R/teff=200

Figure 13 gives the relationship between the axial load and axial displacement in postbuckling analyses for the isogrid-
stiffened cylinder with the shell thickness ratio of 200. The global buckling loads are predicted as 5,400 and 5,420 kN, 
respectively when the geometrical initial imperfection is not considered for the detailed and equivalent models. Two 
results are quite similar to each other with the relative error of 0.37%. The converged global buckling loads using the 
detailed and equivalent models are 3,740 and 3,760 kN, respectively, when the geometrical initial imperfection is 
considered. These loads are higher than the results in the previous case with R/teff = 300, and the relative error between 
two results using the detailed and equivalent models is 0.53% as given in Table 5. The Knockdown factors for the 
isogrid-stiffened cylinder with R/teff = 200 are derived as 0.693 and 0.694, respectively, for the detailed and equivalent 
models in Table 5, thus the relative error between two results is very small (0.14%). These Knockdown factors are 
higher than those with R/teff = 300. As similar to the previous example, the computation time using the equivalent 
model is approximately 16% of that with the detailed model. Figure 14 shows the deformed shapes of the isogrid-
stiffened cylinder with the shell thickness ratio of 200. As given in the figure, the deformed configurations of the 
cylinder in the local buckling (A), global buckling (B), and postbuckling states (C) predicted by the equivalent model 
are quite similar to those using the detailed model.

Figure 13: Postbuckling analysis results of the isogrid-stiffened cylinder (R/teff=200).
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Figure 14: Deformed shapes of the isogrid-stiffened cylinder (R/teff=200).

3.4 Shell thickness ratio of R/teff=100

Figure 15 shows the postbuckling analyses using the detailed and equivalent models for the isogrid-stiffened cylinder 
with the shell thickness ratio of 100. For the perfect cylinder without the initial imperfection, the global buckling loads 
are calculated as 5,620 and 5,550 kN, respectively, using the detailed and equivalent models. For the cylinder 
considering the initial imperfection, the global buckling loads predicted by the detailed and equivalent models both are 
converged well as the perturbation load increases. The detailed and equivalent models predict the global buckling loads 
(B) as 3,920 and 3,940 kN, respectively for the isogrid-stiffened cylinder with the initial imperfection. The relative 
errors for the cylinder without and with the initial imperfection are given as -1.25 and 0.51%, respectively, as 
summarized in Table 5. In addition, the global buckling loads of the isogrid-stiffened cylinder with R/teff=100 are 
higher than those with R/teff=200 in the previous example. Using the calculated global buckling loads with and without 
the initial imperfection, the Knockdown factors are derived as 0.698 and 0.710, respectively, for the detailed and 
equivalent models. As similar to the previous case, the derived Knockdown factors using two models are similar to
each other and they are higher than the Knockdown factors with R/teff=200. As given in Table 5, the calculation time 
using the equivalent model is about 13% of that with the detailed model although the global buckling load and 
Knockdown factor predicted using the equivalent model are compared nicely with those using the detailed model. The 
deformed shapes of the isogrid-stiffened cylinder with R/teff=100 are plotted in Figure 16. In the local buckling (A), 
global buckling (B), and postbuckling states (C), the detailed and equivalent models show the similar deformed 
configurations to each other.

Figure 15: Postbuckling analysis results of the isogrid-stiffened cylinder (R/teff=100).
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Figure 16: Deformed shapes of the isogrid-stiffened cylinder (R/teff=100).

3.5 Knockdown factor function in terms of shell thickness ratio

The Knockdown factor should be expressed in terms of the shell thickness ratio for lightweight design of isogrid-
stiffened cylinders considering various dimensions. Similarly to the NASA’s Knockdown factor function [1] given by 
Eq. (14), the Knockdown factor function for the isogrid-stiffened cylinder is derived using the calculated Knockdown 
factors in the previous sections. Using the curve fitting, the present Knockdown factor function is derived based on the 
form of NASA’s Knockdown factor function shown in Eq. (14). The curve-fitting tool with the exponential model in 
MATLAB [24] is used for the curve fitting in this study. Equations (15) and (16) represent the Knockdown factor 
functions of the isogrid-stiffened cylinder using the detailed and equivalent models, respectively.

eff

1

16
γ 1 0.902(1 )

R

t
e
-

= - - (14)

Using the detailed model,

eff

1

16
γ 1 0.5386(1 )

R

t
e
-

= - - (15)

Using the equivalent model,

eff

1

16
γ 1 0.5256(1 )

R

t
e
-

= - - (16)

Figure 17 compares the Knockdown factor functions for the isogrid-stiffened cylinder derived in this work with the 
NASA’s Knockdown factor function. As shown in this figure, the calculated Knockdown factors using the detailed 
and equivalent models are quite similar to each other when the shell thickness ratios are 100, 200, 300, and 441. In 
addition, the present Knockdown factor values using the detailed and equivalent models both are compared excellently 
with the value given in the reference [22] when the shell thickness ratio is 441. Thus, the Knockdown factors derived 
using two models are validated successfully in this paper. When the present Knockdown factor functions using the 
detailed and equivalent models (Eqs. (15) and (16)) are nearly identical when the shell thickness ratio is up to 500. 
Furthermore, the Knockdown factor functions in the present work are much higher than NASA’s Knockdown factor 
function; therefore, the buckling design of isogrid-stiffened cylinders using the present Knockdown factor function can 
facilitate in developing lightweight launch vehicle structures as compared with the design using the previous buckling 
design criteria [1].
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Figure 17: Knockdown factor function for the isogrid-stiffened cylinder in terms of the shell thickness ratio.

4. Conclusion

This study derived numerically the buckling Knockdown factors of isogrid-stiffened cylinders under axial compressive 
loads when various shell thickness ratios were considered. The isogrid-stiffened cylinders with shell thickness ratios 
of 100, 200, 300, and 441 were used. The detailed model considering numerous stiffeners and the equivalent model 
without modeling of stiffeners were used for the finite element modeling of isogrid-stiffened cylinders. Postbuckling 
analyses using ABAQUS were conducted for the isogrid-stiffened cylinders represented by the detailed and equivalent 
models to derive the Knockdown factors. The geometrical initial imperfection of a cylinder was modeled using the 
SPLA and Newton-Raphson method with the displacement control method was applied for the nonlinear static 
postbuckling analyses. For all the shell thickness ratios considered in this study, the global buckling loads using the 
equivalent model were quite similar to the results with the detailed model since the relative errors were within 5% for 
the cylinders with and without the initial imperfection. In addition, the derived Knockdown factors with the equivalent 
model were compared excellently with the values using the detailed model because the relative errors were less than 
2%. In addition to these accurate prediction capability of the equivalent model for isogrid-stiffened cylinders, since the 
computation time with the equivalent model was 13 to 16% of that using the detailed model, the equivalent modeling
technique was very efficient for the finite element modeling and postbuckling analysis of isogrid-stiffened cylinders 
under compressive axial forces. Using the calculated Knockdown factors, the Knockdown factor functions for isogrid-
stiffened cylinders were expressed in terms of the shell thickness ratio. Knockdown factor functions using the detailed 
and equivalent models were quite similar to each other. Furthermore, the present Knockdown factor function for the 
isogrid-stiffened cylinder was much higher than NASA’s Knockdown factor function when the shell thickness ratio of 
up to 500 was considered; therefore, it was concluded that the present Knockdown factor function can facilitate in 
developing lightweight launch vehicle structures using the isogrid-stiffened cylinder.
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