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Abstract 
Causes leading to loss of Separation (LOS) in serious and major incidents are considered as potential 

precursors for Mid-Air Collision (MAC) accident. This paper attempts to model the likelihood of these 

precursors combining Bayesian Networks (BN), which are based on expert-built, and Information 

Theory (IT). BN provides the analysis of LOS contributing factors and the multi-dependent 

relationship of causal factors identified from real Air Traffic Management (ATM) incident reports, 

while IT contributes to the identification of LOS precursors providing the most information. The 

combination of these two techniques allows us using data on causes and precursors of LOS to define 

warning scenarios. These precursors could forecast a serious LOS with severity A and B, and 

consequently the likelihood of a MAC. The methodology is illustrated with a case study that 

encompasses the analysis of LOS severity A and B that have been notified within the Spanish airspace 

during a period of four years. 

 

Keywords:  
aviation safety; ATM; loss of separation; mid-air collision; Bayesian network approach; information 

theory; entropy 

1. Introduction 

During the last decade, the rate of Mid-Air Collision (MAC) between large commercial aircraft presents a meaning 

reduction. However, the safe separation between aircraft being one of the key safety challenges in aviation, 

especially for development of the new generation of Air Traffic Management (ATM) System (SESAR and 

NextGen). Traditionally, this topic was included on the safety risk list – ‘Significant 7, which was derived from 

worldwide fatal accidents and high-risk occurrences analysis. From 2017 EASA declared airborne collision as the 

top safety priority [1]. 

In spite of the importance, MAC rarely occurs and its relevant data are scarce. Due to the high-consequence nature, 

but low-frequency occurrence, MAC is not well captured and represented by conventional statistical models. Under 

the situation that the accident data lack the sufficient sources for modelling, risk analysis methods based on 

precursors are considered an efficient, therefore, a promising tool for this purpose [2]. 

An accident precursor is an event without catastrophic or severe consequences but that could have developed into an 

accident if additional safety barriers had failed [3] [4] [5] [6] [7]. This precursor concept has been explored in several 

safety-critical industrial sector for analysis of accidents, such sector as gas and oil accidents [8], nuclear power 

accidents [9] [10], space shuttle explosions [6], transport accidents [11] [12], etc.  
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Frequently, accidents are preceded by a series of precursors. Gaining insight into MAC’s main precursors offers an 

opportunity to decrease the risk of MAC. These precursors are known as events of LOS or ‘loss of separation’, which 

occur more often in airspace without necessarily having adverse or catastrophic consequences. 

According to ICAO (International Civil Aviation Organisation) standards, when the safety separation minima 

prescribed in a controlled airspace by ATS (Air Traffic Services) authorities is not observed, then a LOS between in-

flight aircraft would surely happen. Different categories of severity are established based on the seriousness of the 

consequences impacted by the LOS. And the severity of a LOS is defined by the risk of collision (risk of becoming 

in a MAC), according to the achieved separation minima between the involved aircraft and their rate of proximity. In 

Europe, Eurocontrol has defined five categories of severity [13], depending on the severity range they are divided 

into:  

A. ‘Serious incident’, a high risk of collision; 

B. ‘Major incident’; 

C. ‘Significant incident’; 

D. ‘Not determined’; 

E. ‘No safety effect’. 

Recently, the increasing number of reports related to losses of the in-flight separation minima between commercial 

aircraft worries of all interested parties to share the outcomes of investigations so that they can improve mitigations. 

According to the Airborne Conflict Safety Forum, approximately 150 LOS per million flights have occurred in 

European-controlled airspace [14]. Historical data shows that each flight receive 15 instructions on average from air 

traffic controller while flying en-route, meaning one LOS per 100,000 instructions of air traffic controller.  

Even the number of LOS is small compared to the volume of traffic. Due to the potential consequences of LOS, it is 

considered the main proxy and a precursor to a potential MAC. Consequently, the analysis of influential factors and 

the multi-dependent relationship between causal factors of LOS incidents provides an effective support to mitigate 

LOS and to prevent MAC from happening. 

EASA has published a document related to industry best practices identifying relevant LOS precursors to be 

monitored through FDM (Flight Data Monitoring) programs [15]. This program presents a limitation, which it only 

focuses on precursors that can be monitored from the data recorded on board. From an ATC (Air Traffic Control) 

perspective, LOS occurrence investigation and their precursors are not ingrained due to, from one side, the inherent 

complexity of such incidents and, from other side, lack of available information for their detailed analysis. For this 

partial approach compensation, the official reports of LOS investigations are taken as this research source. Such 

reports have already been published by the official States Incident Investigation Authorities. 

This paper attempts to model the probability of severe LOS near accidents combining the Bayesian Networks (BN) 

and Information Theory (IT). As the starting step, The BN model is used to detect LOS contributing factors and 

establish the multi-dependent relationship between them. This technique is widely used for risk analysis [16] [17] 

and decision-making [18] [19] in complex systems, i.e. the ATM system. The uncertainty contained in LOS 

scenarios makes the BN model as preferred candidate for this case study. As the next step of this study, the IT is 

applied to identify the information provided by LOS precursors. The combination of both techniques allows the use 

of LOS precursors to portray perceptive warning scenarios, which might forecast a near accident and anticipate a 

MAC accident.  

This research work aims to exploring BN and IT for precursor-based risk analysis of major accidents known as MAC 

in aviation sector. This proposed method combines principles from Quantitative Risk Analysis, Bayesian Network 

modelling and Information Theory, to infer the likelihood of catastrophic accidents using a set of LOS data collected 

during a period of four consecutive years in Spanish airspace. 

2. Methodology 

Figure 1 presents the proposed methodology following the indicated main phases and steps. The methodology is 

applied with causal-effect analysis for serious and major LOS incidents as the starting point. In this first phase, from 

the analysis related to the notification of occurrences and investigation reports, it aims to detect all precursors leading 

to serious and major LOS incidents. During this phase, following a determined analysis procedure, data collected 

from serious and major incident reports are identified into events and factors, which are interpreted as precursors to 

accidents that might occur in the future. For accomplishment of this objective, standardised analysis methodologies 

and taxonomies are applied in this process.  

During the second phase, a BN model is developed and validated using the correlation between events and factors as 

the basis. This model provides a quantitative cause‒effect map that recreate serious and major LOS scenarios. The 

model also contains the estimated likelihood based on the number of reports investigated, the new relationships that 

are established as the target of this model and the known relationships that were detected by previous researchers. 

In the third phase, the concept of entropy and the principle of Information Theory are used to assess the precursor 

which are most correlated to when a serious or major LOS incident occurs. In the last phase, this information is 
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applied to define predictive scenarios. Additionally, ROC (Receiver Operating Characteristic) curve is used to 

evaluate the most effective predictive scenario. 

In the following sections, the preceding steps are described in more detail. 

 

Figure 1: Methodology steps. 

2.1. Causal-effect analysis for serious & major LOS incidents 

This first phase consists of four steps: 1) selection of LOS incident reports, 2) LOS incident analysis, 3) LOS 

precursor identification and, 4) precursor storage as mathematical parameter in incident database.  

In step 1, the evaluating of occurrences and their reporting present prime importance in safety analysis, as well as 

investigations after the fact. They provide relevant information for detecting safety-related trends and foreseeing 

safety risks [20].  

According to European Regulation (EU) No 376/2014 [21], air traffic controllers, pilots, aviation maintenance 

technicians, aircraft ground handlers and airport managers are required to report occurrences to the competent 

authorities. Considering ICAO Annex 11 [22] as basis, every state that in its airspace an air traffic LOS is occurred 

should provide the appropriate investigation. In Spain, air traffic incidents are reported to a State Investigation 

Office, which analyses and compiles the incident data for publication in reports [23]. In this research, the data 

collected from LOS investigation reports are the main source containing information related to the LOS occurrence 

severity, contextual and factual data, and the results of investigation as required by aviation regulations. The incident 

reports can be divided in three basic blocks: i) incident scenario data, ii) the testimonies of involved agents and, iii) 

recommendations provided by the investigating office. In this study, a period of four years of occurrences and reports 

has been considered. 

Step 2 consists of the analysis of LOS incident reports and the identification of their precursors. In this process, 

standardised methodologies and taxonomies are applied to incident report analysis, and therefore, precursor 

identification. 

In the analysis process, the combined method of fishbone sequential diagram [24] with SOAM approach [25] is 

employed for incident report analysis. The factual data are processed with criteria defined in EAM 2/GUI 8 [26] to 

identify influential factors and adverse events, which are extracted and encoded by applying ADREP taxonomy [27].  

The adverse events present a direct correspondence as events in ADREP taxonomy [28] as events, while the 

influential factors extracted from reports depending on their ontology can be identified as DFs (Descriptive Factors) 

or EFs (Explanatory Factors). Events are interpreted as stages or effects that set in motion the incident, meanwhile, 

both DFs and EFs are causes of failures in this cause‒effect relationship. Furthermore, these three components: 

‘events, DFs and EFs’ are identified as ‘precursors’ in step 3. 

As a result of this process, incident reports are transformed from texts to simple sets of data formed by events and 

factors (precursors), which could be stored as mathematical parameters in an incident database (Step 4). 

One incident database that contains events and their associated factors presents advantages such as the generation of 

groups based on different criteria. Then, a map of the correlation between these groups can be depicted to simplify 

the causal model construction, which could provide predictive features to determine precursors in future ATM 

incidents. 
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With this procedure, incident scenarios can be presented by a chronological vision and separated by events and 

factors. Hence, the traceability between report and analysis is preserved. 

2.2. Development and validation of BN model 

The aim of this second phase is developing a model that would have a predictive feature to determine the adverse 

events and associated causes in future ATM incidents (step 5). In a similar situation, researchers Wilson & 

Huzurbazar [29] and Khakzad [30] suggested that conventional safety models such as the FT (Fault Tree) model, 

compared to BN model, lack capacity to capture the specific features in a complex system. 

A BN is a probabilistic graphic approach used to provide a mathematical method of reasoning for the detection of 

uncertain variables. The BN model consists of a DAG (Directed Acyclic Graph), which reflects the relationship 

between a set of stochastic variables using nodes and arcs. The nodes are variables and the arcs represent 

probabilistic or functional influence linking two nodes [31]. The strength of the connections between both nodes is 

measured and presented through the CPT (Conditional Probabilistic Table) [32]. 

In mathematical concept, the BN represents a joint probabilistic distribution P(U) of variables U = {A1, A2, A3, …, 

An}. Such distribution could be discrete or continued, based on the conditional independency and chain rule [33] 

included in the network as: 

P(U) = ∏ P ((Ai|Pa(Ai)))n
i=1  (1) 

where Pa(Ai) is the parent set of Ai and P(U) is the joint probabilistic distribution in BN. 

In BN model for LOS incident analysis, depending on the levels in consideration [30], the Bayes Theorem is applied 

to update the prior occurrence probability of events or factors. Thus, providing new inputs called evidence E to yield 

the posterior consequence probability by applying the following equation: 

P(U|E) =
P(U,E)

P(E)
=

P(U,E)

∑ P(U,E)U
 (2) 

Equation (2) shows either probability updating or probability prediction. In updating the analysis, the P(factor | 

event) is evaluated, showing the occurrence of a particular factor when the occurrence of a specific event is known 

[34]. In predictive analysis, conditional probabilities of P(event | factor) are calculated, specifying the probability of a 

particular event when the occurrence of a specific factor is known. Indeed, the values of P(event | factor) can be 

estimated with GeNIe software [35]; on the contrary, the values of P(factor | event) are calculated directly and 

collected in a CPT.  

In a CPT, each event can be associate with one or more factors. This evidence assumes that there are one or more 

supporting causes behind a LOS incident. Moreover, in this BN model, all events and factors are defined in two 

states: present and absent. 

2.3. Information theory application 

Common causes or influential factors are presented in MAC accidents and LOS incidents in the form of initiating 

events and factors. The occurrence of a serious or major LOS and its causes would contain information related to the 

final accident. This relation between causes can be quantified using the concept of mutual information. Among the 

LOS causes, which with the highest mutual information are more informative, i.e. if one cause presents itself, it 

reduces the uncertainty related to the potential occurrences leading to an accident (step 6). 

If a LOS is considered as a random variable with mass function P(z), the amount of uncertainty associated with this 

value ‘z’ can be measured by the entropy H(Z) applying the next equation: 

𝐻(𝑍) = − ∑ 𝑃(𝑧)𝑙𝑜𝑔𝑃(𝑧)𝑧∈𝑍  (3) 

The conditional entropy of Z known the probability of the cause Y is another random variable defined as: 

𝐻(𝑍|𝑌) = − ∑ 𝑃(𝑧)𝑙𝑜𝑔
𝑃(𝑧,𝑦)

𝑃(𝑦)𝑧,𝑦  (4) 

The mutual information of Z and Y, I(Z, Y), can be defined in the uncertainty of Z given the observation of Y: 

𝐼(𝑍, 𝑌) = 𝐻(𝑍) − 𝐻(𝑍|𝑌) = ∑ 𝑃(𝑧, 𝑦)𝑙𝑜𝑔
𝑃(𝑧,𝑦)

𝑃(𝑧)𝑃(𝑦)
=𝑧,𝑦 ∑ 𝑃(𝑦)𝑃(𝑧|𝑦)𝑙𝑜𝑔

𝑃(𝑧|𝑦)

𝑃(𝑧)𝑧,𝑦  (5) 

The calculation of conditional probabilities is accessible from the corresponding BN, which allows a quick and easy 

update of the mutual information when a new set of data become available. 

DOI: 10.13009/EUCASS2019-165



8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) 

     

 5 

2.4. Development and evaluation of predictive scenarios 

The identification of influential factors (events and factors) that contain the most relevant information can be used to 

establish the probability of an accident. The most informative influential factors could be interpreted as a binary 

classifier. 

Different predictive scenarios could be developed using these influential factors (step 7) and their performances are 

assessed by a ROC curve (step 8), which is a graphical tool to evaluate the performance of a model—specially a 

binary classifier, based on the threshold of discrimination. However, the most effective predictive scenario is 

required to identify for performing this analysis (step 9). 

In Figure 2, a ROC curve presents the True Positive Rate (TPR) versus the False Positive Rate (FPR), with FPR on 

the horizontal axis and TPR on the vertical axis. The diagonal line, also called line of no-discrimination, divides the 

space into three areas: the space above the no-discrimination line that represents good predictions; the space below 

the no-discrimination line that represents poor predictions; and the points along the line of no-discrimination that 

represent a random result. 

For a determined threshold, TPR is the ratio of actual positives that are correctly identified as indicated in Equation 

(6). FPR is the ratio of actual false positives that are correctly identified as indicted in Equation (7). 

𝑇𝑅𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (7) 

TP is true positives, FP is false positives, FN is false negatives and TN is true negatives.  

Finally, the accuracy of the classifier can be defined as follows: 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝐹𝑇+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (8) 

 

Figure 2: ROC curve for a binary classifier. 

3. Case study: assessment of 4 years of LOS in Spanish Airspace 

As sample of the proposed methodology application, a set data of LOS occurrences during four consecutive years is 

considered in this case study. According to the procedure illustrated in Figure 1, the application implies three basic 

phases and nine detailed steps in total. 

For the purpose of clarity, this chapter is divided in three main sections, which detail all steps followed in each 

phase: 

 Phase 1: Causal-effect analysis for serious & major LOS incidents 

 Phase 2: Development and validation of BN model 

 Phase 3: Information theory application 
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3.1. Case study phase 1: Causal-effect analysis for serious & major LOS incidents (steps 1 thru 4) 

Firstly, historical data and LOS reports are selected for this analysis (step 1). In Spain, air traffic occurrences are 

notified and reported to the authorities for analysis. If an occurrence is critical, then one investigation is opened and 

the results are published [23]. These reports involve all ATM incidents scenarios, collecting the testimonies of 

implicated individuals, and the conclusions and recommendations provided by the investigation agency. In summary, 

all incidents reported in period of four years {𝑈} for analysis are classified by five categories and counted as 

illustrated in Figure 3.  

Previous to precede the incident analysis, incident reports are selected following next criteria: 

 Selection by incident severity: serious (severity A) or major (severity B) incident; 

 Selection by incident category: LOS or SMI; 

 Selection by type of flight: limited only to commercial aircraft involved in the incident scenario; 

 Selection by operating phase: when the incident occurred, none of involved aircraft was operating at the 

final approach phase or before achieving the second segment of the take-off. 

 

Figure 3: Spanish investigated incidents during four consecutive years 

These datasets contain events and factors extracted from reports (step 2) as results of the analysis, which depict a 

causal-effect map of selected LOS. Precursors related to loss of separation incidents are identified, filtered (step 3), 

and registered as mathematical parameters in an incident database (Step 4). 

3.2. Case study phase 2: Development and validation of BN model (step 5) 

With expert knowledge and frequency data, the BN model proposed was constructed using GeNIe software. For the 

assessment of MAC precursors, several stages were followed during the BN modelling. 

Stage 1: extraction of LOS key factors and determination of BN nodes. This last one is considered as the basic step 

for BN model structure. The nodes have two important properties, one presents the type of LOS at each incident, and 

the other determines the kind of precursors of a LOS. In general, three categories of nodes can be considered in ATM 

incidents.  

 Adverse events. They are interpreted as effects or stages that establish the LOS incident. 

 Influential causes. Influential factors are extracted from incident reports and can be considered as DFs and EFs, 

which are causes of failures. Then, the precursors are identified with these three components: events, DFs and 

EFs. 

 The type of LOS at each incident. LOS are classified with the associated severity. 
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One detail should be noted, during the BN model construction, not all extracted influential factors from reports were 

used for data processing. The EFs have rarely been collected due to incidents not being as strictly investigated as 

accidents, consequently, the reliability of this case study would be damaged. Therefore, only DFs are considered for 

this BN modelling.  

In this BN model, events and DFs have been divided into five groups: 

 Group 1 of events, parent nodes, related to A/C systems or flight crew’s operations. 

 Group 2 of events, parent nodes, related to ATM systems or operations. 

 Group 3 of DFs, children nodes, related to A/C systems or flight crew’s operations.  

 Group 4 of DFs, children nodes, related to ATM systems or operations. 

 Group 5 of DFs, children nodes, related to the interaction of operations between flight crew and ATM.  

The dependency condition between parent and child nodes, as well as the conditioned independence of each node are 

assumed. The explicit hypothesis is P (xi | x1 ··· xi-1) = P (xi | parents (Xi)). It means that, a DF is conditionally 

independent of the other DFs when an event (parent node) is detected. Additionally, each event or factor is defined as 

a taxon and due to the characteristic of taxonomy, these events or factors are independent of each other. Finally, 

regarding the default options provided by GeNIe, all nodes in the network are defined as chance-general.  

Stage 2: determination of the BN structure. The structure of BN is a causality chain that derived from expert 

knowledge and logic analysis.  

The results reached in the first phase of this case study (steps 1 to 4) are used for the BN structure construction. In 

this phase all results (events and factors) are registered as mathematical parameters in an incident database (step 4). 

The correlation between events and factors is used as the basis for the posterior development and validation of the 

proposed BN model. 

Stage 3: the BN presentation based on probability theory. During one investigation, sometimes the information 

provided by experts are limited in determinate area, then it is difficult to gather enough data related to causal factors 

presented in incidents from all operational perspectives. Therefore, the assignment of conditional probabilities is 

simplified with the BN analysis. 

Prior probabilities are assumed to follow a multinomial distribution, with the parameter vector 𝜃1, 𝜃2,…, 𝜃𝑛 where n 

is the number of states of variable x and 𝜃𝑘 = 𝑃(𝑥 = 𝑥𝑘|𝑝), for 1 ≤ 𝑘 ≤ 𝑛; the parameter 𝜃 posses the Dirichlet 

distribution 𝜃~𝐷[∝1, ∝2, … , ∝𝑛], with ∝𝑖> 0 (𝑖 = 1, … , 𝑛), and ∑ 𝜃𝑖 = 1𝑛
𝑖=1 . The parameters ∝𝑖  represent counts of 

past cases that are stored as a summary of experience in the database produced in step 4. 

As a default option, the ‘clustering algorithm’ of GeNIe was used for belief updating in the Bayesian network. A 

clustering algorithm is trained for small and simple network, it is considered as the fastest exact algorithm for belief 

updating in BN. This algorithm works in two phases in the junction tree: (1) compilation of a directed graph, and (2) 

probability updating.  

Stage 4: BN structure learning. Two kinds of learning are presented in BN structure. One consists of verifying the 

structure of BN and remove weak connections between nodes by massive data sets. The other involves deciding the 

BN structure by data reasoning. In this proposed BN model, the structure has been decided based on the study of 

phase 1 and expert knowledge.  

Table 1 and Table 2 present the CPT of the correlation between events and DFs into serious and major LOS scenario. 

Their derived DAG is represented in Figure 4 as a correlation map. The proposed BN model is illustrated in Figure 5.  

Stage 5: BN parameters learning. The Bayes method uses prior density and posterior density to learn and assess 

parameters. BN also uses the above process to learn parameters after collecting and accumulating relevant data. In 

the practical application, conjugate prior is used to simplify the parameter learning of BN. In Bayesian theory, the 

conjugate means that the posterior distributions as well as the prior distributions are in the same probability 

distribution family. Then the prior and posterior can be identified as conjugate distributions; moreover, the likelihood 

function of the prior is identified as conjugate prior. A conjugate prior is an algebraic convenience, providing a 

closed-form expression for the posterior. In this proposed BN model, prior probabilities and posterior probabilities 

have the same distribution family – Dirichlet distribution. 

Stage 6: validation. The procedure of validation is the same described in [36]. The BN model is validated using the 

validation functionality provided by the GeNIe software [37]. Three alternatives are available: a) Test only, b) K-fold 

cross validation and c) Leave One Out. For this proposed model, K-fold cross validation is applied, one data file of 

1000 records is generated by GeNIe and used to compile the validation. The validation accuracy of all nodes is 0.945 

and for individual node it is calculated with GeNIe. 

Stage 7: sensitivity analysis. A simple sensitivity analysis with DFs as target is done to identify highly sensitive 

parameters, which affect the reasoning results significantly. Basically, GeNIe applies algorithms proposed by 

Kjaerulff and van der Gaag for this kind of analysis. As results, Figure 6 shows the most sensitive parameters of the 

network when DFs related to Flight Crew-ATM are identified as target and, Figure 7 presents the most sensitive 

parameters with DFs related to both Flight Crew and ATM set as target. In both figures, it can be observed that the 
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DFs with low likelihood are less sensitive and cause less impact on their corresponding events and, on the contrary, 

the DFs with high likelihood present more influence over events in the BN model. 

Table 1: CPT of events and descriptive factors under scenario of LOS in commercial aviation – Severity A 

Adverse  

Events (E) 

Event Definition P(E) P(E|Severity) Descriptive  

Factors (DF) 

Descriptive Factor  

Definition 

P(DF) P(DF|E) 

1230000 Communication 
systems 

1.15E-02 7.14E-02 12232800 Pilot's operation of 
communication equipment 

1.15E-02 5.00E-01 

2020201 ANS erroneous 

clearance 

3.45E-02 2.14E-01 22060100 ATM's monitoring of A/C 1.15E-02 1.00E-01 

    24010703 ATC provision of flight 

information 

1.15E-02 1.00E-01 

    25050000 ATM service personnel 
operating 

procedures/instructions 

2.30E-02 2.00E-01 

2020202 ANS clearance to 
wrong altitude 

1.15E-02 7.14E-02 24010704 ATC provision of a 
minimum safe flight 

level/altitude/height/sector 

altitude 

1.15E-02 6.67E-02 

2020300 Communication 

between pilot and 

ANS 

6.90E-02 4.29E-01 12251800 Pilot's radiotelephony 

phraseology 

1.15E-02 5.56E-02 

    12252600 Pilot's air/ground/air 

communication 

4.60E-02 2.22E-01 

    22080101 ATM's internal coordination 
of civil sectors in the same 

unit 

2.30E-02 1.11E-01 

    24010101 ATC use of phraseology 1.15E-02 5.56E-02 
    24010102 ATC use of 

readback/hearback error 

detection 

4.60E-02 2.22E-01 

    24010103 Blocked communication 2.30E-02 1.11E-01 

    24010107 ATC requirement for the 

acknowledgement of 
information by the Pilot 

1.15E-02 5.56E-02 

    24010301 ATC requirement for the 

acknowledgement of 
information by the ATCO 

1.15E-02 5.56E-02 

2020508 Clearance 
deviation - 

approach 

1.15E-02 7.14E-02 23020400 ATC use of clearance 
procedure 

1.15E-02 3.33E-01 

4010100 ANS operational 
communications 

2.30E-02 1.43E-01 12252600 Pilot's air/ground/air 
communication 

1.15E-02 6.67E-02 

    22080101 ATM's internal coordination 

of civil sectors in the same 
unit 

1.15E-02 6.67E-02 

    24010102 ATC use of 

readback/hearback error 
detection 

1.15E-02 6.67E-02 

4010400 ANS conflict 

detection and 
resolution 

1.38E-01 8.57E-01 22060100 ATM's monitoring of A/C 3.45E-02 5.26E-02 

    22080303 Revision of ATM's 

coordination procedures 

1.15E-02 1.75E-02 

    22100600 Briefing for the hand-

over/take-over 

1.15E-02 1.75E-02 

    22100700 Familiarization with traffic 
during the hand-over/take-

over 

1.15E-02 1.75E-02 

    22120100 ATM's strategic planning for 
conflict detection 

5.75E-02 8.77E-02 

    22120200 ATM's tactical execution of 

the conflict detection 
strategy 

6.90E-02 1.05E-01 

    22130101 ATM's horizontal conflict 

resolution by radar 

vectoring/monitoring 

1.15E-02 1.75E-02 

    23010300 Clearance procedure 3.45E-02 5.26E-02 

    24010604 ATC provision of a short 
term conflict alert (STCA) 

warning 

2.30E-02 3.51E-02 
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Adverse  

Events (E) 

Event Definition P(E) P(E|Severity) Descriptive  

Factors (DF) 

Descriptive Factor  

Definition 

P(DF) P(DF|E) 

    27030000 ATC monitoring of sector 

traffic load 

1.15E-02 1.75E-02 

4010600 ANS handing 
over/taking over 

procedure 

3.45E-02 2.14E-01 22080101 ATM's internal coordination 
of civil sectors in the same 

unit 

3.45E-02 4.29E-01 

    23010300 Clearance procedure 1.15E-02 1.43E-01 
4050300 Failure of 

surveillance 

1.15E-02 7.14E-02 22060100 ATM's monitoring of A/C 1.15E-02 5.00E-01 

    24010705 ATC provision of delay 
related information 

1.15E-02 5.00E-01 

4070400 Air space 
capacity 

reduction 

4.60E-02 2.86E-01 22080103 ATM's internal coordination 
of military sectors in the 

same unit 

1.15E-02 1.25E-01 

    22100300 Airspace during the hand-

over/take-over 

1.15E-02 1.25E-01 

    27030000 ATC monitoring of sector 

traffic load 

2.30E-02 2.50E-01 

    27050200 Factors relating coordination 

with ATFM 

1.15E-02 1.25E-01 

    41100300 Runway obstruction 1.15E-02 1.25E-01 
    52020400 Tailwind 1.15E-02 1.25E-01 

    52031400 Cloud amount restricting 

visibility 

1.15E-02 1.25E-01 

Table 2: CPT of events and descriptive factors under scenario of LOS in commercial aviation – Severity B 

Adverse  

Events 

(E) 

Event Definition P(E) P(E|Severity) Descriptive  

Factors 

(DF) 

Descriptive Factor  

Definition 

P(DF) P(DF|E) 

1230000 Communication systems 1.15E-02 1.37E-02 21010900 Headsets 1.15E-02 5.00E-01 
    24010103 Blocked communication 1.15E-02 5.00E-01 

2020201 ANS erroneous clearance 8.05E-02 9.59E-02 25050000 ATM service personnel 

operating 
procedures/instructions 

5.75E-02 5.00E-01 

    27030000 ATC monitoring of 

sector traffic load 

2.30E-02 2.00E-01 

    24010105 ATC call-sign confusion 1.15E-02 1.00E-01 

    23020400 ATC use of clearance 

procedure 

1.15E-02 1.00E-01 

    12230900 Pilot's operation of 

emergency brakes 

1.15E-02 1.00E-01 

    23020700 ATC use of descent 

procedure 

1.15E-02 1.00E-01 

    22060100 ATM's monitoring of 
A/C 

1.15E-02 1.00E-01 

2020202 ANS clearance to wrong 

altitude 

1.61E-01 1.92E-01 25050000 ATM service personnel 

operating 
procedures/instructions 

1.15E-01 6.67E-01 

    22120100 ATM's strategic 

planning for conflict 
detection 

1.15E-02 6.67E-02 

    27030000 ATC monitoring of 

sector traffic load 

2.30E-02 1.33E-01 

    23020400 ATC use of clearance 

procedure 

1.15E-02 6.67E-02 

    12240600 The rate of descent of 
the aircraft 

1.15E-02 6.67E-02 

    22060100 ATM's monitoring of 

A/C 

5.75E-02 3.33E-01 

    23020500 ATC use of climb 

procedure 

1.15E-02 6.67E-02 

    24010105 ATC call-sign confusion 1.15E-02 6.67E-02 
2020300 Communication between pilot 

and ANS 

1.38E-01 1.64E-01 12252600 Pilot's air/ground/air 

communication 

4.60E-02 2.22E-01 

    24010102 ATC use of 

readback/hearback error 

detection 

8.05E-02 3.89E-01 

    12251800 Pilot's radiotelephony 
phraseology 

2.30E-02 1.11E-01 

    24010101 ATC use of phraseology 4.60E-02 2.22E-01 

    52031600 Thunderstorm 1.15E-02 5.56E-02 
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Adverse  

Events 

(E) 

Event Definition P(E) P(E|Severity) Descriptive  

Factors 

(DF) 

Descriptive Factor  

Definition 

P(DF) P(DF|E) 

    12251400 Pilot's action in respect 

to instruction 

1.15E-02 5.56E-02 

    24010105 ATC call-sign confusion 1.15E-02 5.56E-02 

    22060200 ATM's monitoring of 

frequencies 

1.15E-02 5.56E-02 

    25050000 ATM service personnel 

operating 

procedures/instructions 

1.15E-02 5.56E-02 

2020505 Clearance deviation - take-off 3.45E-02 4.11E-02 23020600 ATC use of departure 

procedure 

1.15E-02 3.33E-01 

    22100600 Briefing for the hand-

over/take-over 

1.15E-02 3.33E-01 

    23020500 ATC use of climb 

procedure 

1.15E-02 3.33E-01 

    22050100 A/C performance 

differences 

2.30E-02 6.67E-01 

    23020400 ATC use of clearance 

procedure 

1.15E-02 3.33E-01 

2020506 Clearance deviation - en-route 6.90E-02 8.22E-02 23020700 ATC use of descent 
procedure 

2.30E-02 3.33E-01 

    24010703 ATC provision of flight 

information 

1.15E-02 1.67E-01 

    23020500 ATC use of climb 

procedure 

3.45E-02 5.00E-01 

    22090000 ATM's traffic transfer 1.15E-02 1.67E-01 
    12251800 Pilot's radiotelephony 

phraseology 

1.15E-02 1.67E-01 

    22100600 Briefing for the hand-
over/take-over 

1.15E-02 1.67E-01 

    52020400 Tailwind 1.15E-02 1.67E-01 

    23010300 Clearance procedure 1.15E-02 1.67E-01 

    23010200 AWY/Route approach 

procedure 

1.15E-02 1.67E-01 

2020508 Clearance deviation - 
approach 

2.30E-02 2.74E-02 24010101 ATC use of phraseology 1.15E-02 3.33E-01 

    12210900 Pilot's obstacle 

clearance judgement 

1.15E-02 3.33E-01 

    12251400 Pilot's action in respect 

to instruction 

1.15E-02 3.33E-01 

    52031400 Cloud amount 
restricting visibility 

1.15E-02 3.33E-01 

    22050100 A/C performance 

differences 

1.15E-02 3.33E-01 

2020509 Clearance deviation - holding 1.15E-02 1.37E-02 23020400 ATC use of clearance 

procedure 

1.15E-02 1.00E+0

0 

2020513 Clearance deviation - special 
procedure 

2.30E-02 2.74E-02 12251400 Pilot's action in respect 
to instruction 

2.30E-02 1.00E+0
0 

    24010102 ATC use of 

readback/hearback error 
detection 

2.30E-02 1.00E+0

0 

2020517 Deviation from clearance - 

assigned flight level 

1.03E-01 1.23E-01 12251500 Pilot's action in respect 

to ATC clearance 

8.05E-02 7.78E-01 

    52020500 Crosswind 2.30E-02 2.22E-01 

    22060100 ATM's monitoring of 

A/C 

1.15E-02 1.11E-01 

    12232800 Pilot's operation of 

communication 

equipment 

1.15E-02 1.11E-01 

    24010102 ATC use of 

readback/hearback error 

detection 

1.15E-02 1.11E-01 

    12251400 Pilot's action in respect 

to instruction 

1.15E-02 1.11E-01 

    52031600 Thunderstorm 1.15E-02 1.11E-01 

    11222000 Speed-attitude 

correction system 

1.15E-02 1.11E-01 

    12230900 Pilot's operation of 

emergency brakes 

1.15E-02 1.11E-01 

    12252200 Pilot's action in respect 
to standard operating 

procedure 

1.15E-02 1.11E-01 
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Adverse  

Events 

(E) 

Event Definition P(E) P(E|Severity) Descriptive  

Factors 

(DF) 

Descriptive Factor  

Definition 

P(DF) P(DF|E) 

    25050000 ATM service personnel 

operating 
procedures/instructions 

1.15E-02 1.11E-01 

2020519 Deviation from clearance - 

assigned or specified speed 

2.30E-02 2.74E-02 12251500 Pilot's action in respect 

to ATC clearance 

1.15E-02 5.00E-01 

    12240700 The flying speed of the 

aircraft 

1.15E-02 5.00E-01 

    12252600 Pilot's air/ground/air 
communication 

1.15E-02 5.00E-01 

2020522 Deviation from clearance - 
climb/descent conditional 

clearance 

1.15E-02 1.37E-02 24010101 ATC use of phraseology 1.15E-02 1.00E+0
0 

    12210500 Pilot's perception of 

visual/oral warning 

1.15E-02 1.00E+0

0 

2020805 Deviation from approach 

procedure 

3.45E-02 4.11E-02 24010703 ATC provision of flight 

information 

2.30E-02 6.67E-01 

    23020300 ATC use of approach 

procedure 

3.45E-02 1.00E+0

0 

    24010101 ATC use of phraseology 1.15E-02 3.33E-01 
2100100 Diversion due to weather 

conditions 

3.45E-02 4.11E-02 52031400 Cloud amount 

restricting visibility 

1.15E-02 3.33E-01 

    52010200 Instrument 
meteorological 

conditions 

1.15E-02 3.33E-01 

    52021200 Turbulence in cloud 1.15E-02 3.33E-01 
2170200 Wrong runway selected 1.15E-02 1.37E-02 21040200 ATM's information data 

system 

1.15E-02 1.00E+0

0 

    24010304 Information input error 
in the ATC operations 

1.15E-02 1.00E+0
0 

4010100 ANS operational 

communications 

1.49E-01 1.78E-01 22080203 ATM's coordination 

with an adjacent civil 

sector 

6.90E-02 4.00E-01 

    22090000 ATM's traffic transfer 6.90E-02 4.00E-01 

    22080101 ATM's internal 
coordination of civil 

sectors in the same unit 

2.30E-02 1.33E-01 

    24010703 ATC provision of flight 
information 

1.15E-02 6.67E-02 

    23020700 ATC use of descent 

procedure 

1.15E-02 6.67E-02 

    22080103 ATM's internal 

coordination of military 

sectors in the same unit 

1.15E-02 6.67E-02 

    22100600 Briefing for the hand-

over/take-over 

2.30E-02 1.33E-01 

    22080201 ATM's coordination 
with an adjacent civil 

unit 

1.15E-02 6.67E-02 

    25050000 ATM service personnel 
operating 

procedures/instructions 

1.15E-02 6.67E-02 

    24010106 ATC transfer of 
communication 

1.15E-02 6.67E-02 

4010200 ANS operational information 

provisions 

2.30E-02 2.74E-02 24010703 ATC provision of flight 

information 

2.30E-02 1.00E+0

0 
    27030000 ATC monitoring of 

sector traffic load 

1.15E-02 5.00E-01 

4010300 ANS separation provision 2.30E-02 2.74E-02 24010703 ATC provision of flight 
information 

2.30E-02 1.00E+0
0 

    21020103 ATM's use of the 

instrument landing 
system 

1.15E-02 5.00E-01 

    23020300 ATC use of approach 
procedure 

1.15E-02 5.00E-01 

    22060100 ATM's monitoring of 

A/C 

1.15E-02 5.00E-01 

    23020700 ATC use of descent 

procedure 

1.15E-02 5.00E-01 
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Adverse  

Events 

(E) 

Event Definition P(E) P(E|Severity) Descriptive  

Factors 

(DF) 

Descriptive Factor  

Definition 

P(DF) P(DF|E) 

4010400 ANS conflict detection and 

resolution 

5.17E-01 6.16E-01 23010201 Surveillance radar 

element of a precision 
approach radar system 

approach 

1.15E-02 1.75E-02 

    22130101 ATM's horizontal 
conflict resolution by 

radar 

vectoring/monitoring 

1.26E-01 1.93E-01 

    24010703 ATC provision of flight 

information 

4.60E-02 7.02E-02 

    23010300 Clearance procedure 1.15E-02 1.75E-02 

    22060100 ATM's monitoring of 

A/C 

5.75E-02 8.77E-02 

    23020700 ATC use of descent 

procedure 

8.05E-02 1.23E-01 

    22110200 ATM's updating of a 
flight plan 

1.15E-02 1.75E-02 

    23020600 ATC use of departure 

procedure 

1.15E-02 1.75E-02 

    23020400 ATC use of clearance 

procedure 

4.60E-02 7.02E-02 

    27060100 ATC assistance to the 
ATC in recovering 

control of traffic 

2.30E-02 3.51E-02 

    22120100 ATM's strategic 
planning for conflict 

detection 

3.45E-02 5.26E-02 

    23020300 ATC use of approach 
procedure 

2.30E-02 3.51E-02 

    24010102 ATC use of 

readback/hearback error 

detection 

2.30E-02 3.51E-02 

    22120200 ATM's tactical 

execution of the conflict 
detection strategy 

2.30E-02 3.51E-02 

    22130200 ATM's vertical conflict 

resolution 

8.05E-02 1.23E-01 

    12252600 Pilot's air/ground/air 

communication 

1.15E-02 1.75E-02 

    24010604 ATC provision of a 
short term conflict alert 

(STCA) warning 

5.75E-02 8.77E-02 

    52031600 Thunderstorm 1.15E-02 1.75E-02 
    22090000 ATM's traffic transfer 1.15E-02 1.75E-02 

    22130300 ATM's conflict 

resolution by planned 
controller action 

1.15E-02 1.75E-02 

    24010101 ATC use of phraseology 1.15E-02 1.75E-02 

    27030000 ATC monitoring of 
sector traffic load 

2.30E-02 3.51E-02 

    24010605 ATC provision of 

airborne proximity 
warning 

1.15E-02 1.75E-02 

    12251500 Pilot's action in respect 

to ATC clearance 

1.15E-02 1.75E-02 

    25050000 ATM service personnel 

operating 

procedures/instructions 

3.45E-02 5.26E-02 

    24010105 ATC call-sign confusion 1.15E-02 1.75E-02 

4010500 ANS handling of 

accidents/incidents/emergency 

1.15E-02 1.37E-02 23020800 ATC use of emergency 

procedure 

1.15E-02 1.00E+0

0 
    22060100 ATM's monitoring of 

A/C 

1.15E-02 1.00E+0

0 
    26070000 ATM handling of A/C 

unusual/emergency 

situation 

1.15E-02 1.00E+0

0 

    23010700 Emergency procedure 1.15E-02 1.00E+0

0 

4010600 ANS handing over/taking 
over procedure 

4.60E-02 5.48E-02 22080203 ATM's coordination 
with an adjacent civil 

sector 

2.30E-02 2.86E-01 
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Adverse  

Events 

(E) 

Event Definition P(E) P(E|Severity) Descriptive  

Factors 

(DF) 

Descriptive Factor  

Definition 

P(DF) P(DF|E) 

    25050000 ATM service personnel 

operating 
procedures/instructions 

1.15E-02 1.43E-01 

    27030000 ATC monitoring of 

sector traffic load 

2.30E-02 2.86E-01 

    22090000 ATM's traffic transfer 1.15E-02 1.43E-01 

    22080101 ATM's internal 

coordination of civil 
sectors in the same unit 

1.15E-02 1.43E-01 

    22100600 Briefing for the hand-
over/take-over 

1.15E-02 1.43E-01 

    27010300 ATC rostering/sector 

opening in relation to 

expected traffic 

1.15E-02 1.43E-01 

4050300 Failure of surveillance 1.15E-02 1.37E-02 21030401 ATM's use of secondary 

area radar 

1.15E-02 5.00E-01 

4070400 Air space capacity reduction 4.60E-02 5.48E-02 52010200 Instrument 

meteorological 

conditions 

1.15E-02 1.25E-01 

    27030000 ATC monitoring of 

sector traffic load 

3.45E-02 3.75E-01 

    24010301 ATC requirement for 
the acknowledgement of 

information by the 

ATCO 

1.15E-02 1.25E-01 

    23021100 ATC use of holding 

procedure 

1.15E-02 1.25E-01 

    22100300 Airspace during the 
hand-over/take-over 

1.15E-02 1.25E-01 
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Figure 4: BN model for LOS serious & major incidents in commercial aviation 

DFs related to A/C or Flight 

Crew 

Events related to A/C or 

Flight Crew 

DFs related to A/C or Flight 

Crew – ATM 

Events related to ATM DFs related to ATM 
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Figure 5: GeNIe output of events and DFs during four consecutive years 
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Figure 6: Results of the sensitivity analysis with common DFs between A/C and ATM as target 
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Figure 7: Results of the sensitivity analysis with DFs corresponding to A/C and ATM as target 
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3.2. Case study phase 3: Information theory application (step 6 thru 9) 

Once the BN has been validated, the entropy principle could be applied to identify the events and DFs with the most 

influential contribution to a LOS. Applying Equation (5), the mutual information of the serious/major LOS incidents 

with their events/DFs are calculated and presented in Figure 8 (Step 6). As can be seen, depending on the category of 

incident severity, the occurrence of the following DFs conveys the most information following the occurrence of a 

high-severity LOS: 

1. Severity A. 

 DF 22120200: ATM’s tactical execution of the conflict detection strategy 

 DF 22080101: ATM's internal coordination of civil sectors in the same unit 

 DF 22120100: ATM's strategic planning for conflict detection 

 DF 12252600: Pilot's air/ground/air communication 

 DF 24010102: ATC use of readback/hearback error detection 

 DF 22060100: ATM's monitoring of A/C 

2. Severity B. 

 DF 25050000: ATM service personnel operating procedures/instructions 

 DF 22130101: ATM's horizontal conflict resolution by radar vectoring/monitoring 

 DF 24010102: ATC use of readback/hearback error detection 

 DF 22060100: ATM's monitoring of A/C 

 DF 27030000: ATC monitoring of sector traffic load 

 DF 12251500: Pilot's action in respect to ATC clearance 

 DF 23020700: ATC use of descent procedure 

 DF 22080203: ATM's coordination with an adjacent civil sector 

 DF 22090000: ATM's traffic transfer 

 DF 24010101: ATC use of phraseology 

The previous DFs are considered as the most informative precursors based on different severities. Different 

predictive scenarios can be developed using them as the predictive classifier (step 7). The performance of these 

scenarios should be examined by the ROC curve. 

A total of 11 scenarios in severity A and 19 in severity B have been defined: 

1. Severity A. 

The first six correspond to each of the precursors independently. The seventh scenario corresponds to the 

combination of two precursors; the eighth, ninth and tenth scenarios correspond to the combination of three 

precursors and, finally, the last scenario corresponds to the combination of the six precursors previously identified.  

For interpretation of this analysis, scenario 1 is chosen as a sample. In scenario 1 the DFs ‘22120200: ATM’s tactical 

execution of the conflict detection strategy’ is used to predict the occurrence of a LOS. TPR and FPR values are 

calculated according to Equations (6) and (7), where: 

 TP is the number of times that both the classifier ‘22120200: ATM’s tactical execution of the conflict detection 

strategy’ and a LOS incident with severity A took place. 

 FN is the number of times that the classifier ‘22120200: ATM’s tactical execution of the conflict detection 

strategy’ did not take place although a LOS incident with severity A occurred. 

 FP is the number of times that the classifier ‘22120200: ATM’s tactical execution of the conflict detection 

strategy’ took place but no LOS incident with severity A occurred. 

 TN is the number of times that neither the classifier ‘22120200: ATM’s tactical execution of the conflict 

detection strategy’ took place nor the LOS incident with severity A occurred. 

The values of TPR and FPR for this predictive classifier are 0.43, and the Accuracy (ACC) of the classifier is 0.57. 

For the rest of defined scenarios, the values of TPR, FPR and ACC are summarised in Table 3. 

2. Severity B. 

The first ten correspond to each of the precursors independently. The eleventh scenario is the combination of two 

most influential precursors; the twelfth scenario is the previous scenario with one influential precursor added, thus 

successively to the last scenario, which corresponds to the combination of the ten precursors already identified.  
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As the same in the severity A, scenario 1 is taken as a sample for facilitating the interpretation. In scenario 1 the DFs 

‘25050000: ATM service personnel operating procedures/instructions’ is used to predict the occurrence of a LOS. 

TPR and FPR values are calculated according to Equations (6) and (7), where: 

 TP is the number of times that both the classifier ‘25050000: ATM service personnel operating 

procedures/instructions’ and a LOS incident with severity B took place. 

 FN is the number of times that the classifier ‘25050000: ATM service personnel operating 

procedures/instructions’ did not take place although a LOS incident with severity B occurred. 

 FP is the number of times that the classifier ‘25050000: ATM service personnel operating 

procedures/instructions’ took place but no LOS incident with severity B occurred. 

 TN is the number of times that neither the classifier ‘25050000: ATM service personnel operating 

procedures/instructions’ took place nor the LOS incident with severity B occurred. 

The values of TPR and FPR for this predictive classifier are 0.30, and the Accuracy (ACC) of the classifier is 0.70. 

For the rest of defined scenarios, the values of TPR, FPR and ACC are summarised in Table 4. 

Generally speaking, the value of TPR reflects the positive conditional probability of classifying/predicting the 

occurrence of the LOS. The prediction accuracies of aforementioned scenarios, both severity A and B, are depicted 

by the value of ACC. Additionally, Figure 9 and Figure 10 show the ROC curve analysis for all defined scenarios 

with both severities.  

In practice, these results lead to great operational usefulness. Based on them, a program that monitors activities of the 

ATCs could be designed and implemented during standard operations. By monitoring the occurrence of identified 

DFs, it will be possible to anticipate or predict the occurrence of a high-severity LOS. This program will be 

extremely cost-effective; instead of complicated and wide supervisory programs. During the activity of an ATC, it 

will only require the monitoring of a few precursors that have the highest mutual information with the LOS. 
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Figure 8: Mutual information for each DF in all events of serious & major LOS 
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Table 3. Evaluation of predictive scenarios – Severity A. 

Scenario DFs in Each Scenario TPR FPR ACC 

1 22120200: ATM's tactical execution of the conflict detection strategy 0.43 0.43 0.57 

2 22080101: ATM's internal coordination of civil sectors in the same unit 0.43 0.43 0.57 

3 22120100: ATM's strategic planning for conflict detection 0.36 0.36 0.64 

4 12252600: Pilot's air/ground/air communication 0.36 0.36 0.64 

5 24010102: ATC use of readback/hearback error detection 0.36 0.36 0.64 

6 22060100: ATM's monitoring of A/C 0.36 0.36 0.64 

7 22120200+22060100: ATM's tactical execution of the conflict detection strategy & 

ATM's monitoring of A/C 

0.64 0.15 0.85 

8 22120200+22060100+24010102: ATM's tactical execution of the conflict detection 
strategy & ATM's monitoring of A/C & ATC use of readback/hearback error detection 

0.79 0.06 0.94 

9 22120200+22060100+12252600: ATM's tactical execution of the conflict detection 

strategy & ATM's monitoring of A/C & Pilot's air/ground/air communication 

0.79 0.06 0.94 

10 22120200+22060100+22120100: ATM's tactical execution of the conflict detection 

strategy & ATM's monitoring of A/C & ATM's strategic planning for conflict detection 

0.79 0.06 0.94 

11 22120200+22080101+22120100+12252600+24010102+22060100: ATM's tactical 
execution of the conflict detection strategy & ATM's internal coordination of civil sectors 

in the same unit & ATM's strategic planning for conflict detection & Pilot's air/ground/air 

communication & ATC use of readback/hearback error detection & ATM's monitoring of 
A/C 

0.93 0.00 1.00 

Table 4. Evaluation of predictive scenarios – Severity B. 

Scenario DFs in Each Scenario TPR FPR ACC 

1 25050000: ATM service personnel operating procedures/instructions 0.30 0.30 0.70 

2 22130101: ATM's horizontal conflict resolution by radar vectoring/monitoring 0.15 0.15 0.85 

3 24010102: ATC use of readback/hearback error detection 0.16 0.16 0.84 

4 22060100: ATM's monitoring of A/C 0.19 0.19 0.81 

5 27030000: ATC monitoring of sector traffic load 0.16 0.16 0.84 

6 12251500: Pilot's action in respect to ATC clearance 0.12 0.12 0.88 

7 23020700: ATC use of descent procedure 0.16 0.16 0.84 

8 22080203: ATM's coordination with an adjacent civil sector 0.11 0.11 0.89 

9 22090000: ATM's traffic transfer 0.12 0.12 0.88 

10 24010101: ATC use of phraseology 0.11 0.11 0.89 

11 25050000+23020700: ATM service personnel operating procedures/instructions & ATC 

use of descent procedure 

0.47 0.05 0.95 

12 25050000+23020700+24010102: ATM service personnel operating procedures/instructions 
& ATC use of descent procedure & ATC use of readback/hearback error detection 

0.59 0.01 0.99 

13 25050000+23020700+24010102+22130101: ATM service personnel operating 

procedures/instructions & ATC use of descent procedure & ATC use of readback/hearback 
error detection & ATM's horizontal conflict resolution by radar vectoring/monitoring 

0.67 0.00 1.00 

14 25050000+23020700+24010102+22130101+22060100: ATM service personnel operating 

procedures/instructions & ATC use of descent procedure & ATC use of readback/hearback 
error detection & ATM's horizontal conflict resolution by radar vectoring/monitoring & 

ATM's monitoring of A/C 

0.74 0.00 1.00 

15 25050000+23020700+24010102+22130101+22060100+22090000: ATM service 
personnel operating procedures/instructions & ATC use of descent procedure & ATC use 

of readback/hearback error detection & ATM's horizontal conflict resolution by radar 

vectoring/monitoring & ATM's monitoring of A/C & ATM's traffic transfer 

0.81 0.00 1.00 

DOI: 10.13009/EUCASS2019-165



Schon Z.Y. Liang Cheng, Rosa María Arnaldo Valdés, Victor Fernando Gómez Comendador, Ricardo Román Cordón 

     

 22 

Scenario DFs in Each Scenario TPR FPR ACC 

16 25050000+23020700+24010102+22130101+22060100+22090000+24010101: ATM 
service personnel operating procedures/instructions & ATC use of descent procedure & 

ATC use of readback/hearback error detection & ATM's horizontal conflict resolution by 

radar vectoring/monitoring & ATM's monitoring of A/C & ATM's traffic transfer & ATC 
use of phraseology 

0.86 0.00 1.00 

17 25050000+23020700+24010102+22130101+22060100+22090000+24010101+12251500: 

ATM service personnel operating procedures/instructions & ATC use of descent procedure 
& ATC use of readback/hearback error detection & ATM's horizontal conflict resolution 

by radar vectoring/monitoring & ATM's monitoring of A/C & ATM's traffic transfer & 

ATC use of phraseology & Pilot's action in respect to ATC clearance 

0.90 0.00 1.00 

18 25050000+23020700+24010102+22130101+22060100+22090000+24010101+12251500+

27030000: ATM service personnel operating procedures/instructions & ATC use of 
descent procedure & ATC use of readback/hearback error detection & ATM's horizontal 

conflict resolution by radar vectoring/monitoring & ATM's monitoring of A/C & ATM's 

traffic transfer & ATC use of phraseology & Pilot's action in respect to ATC clearance & 
ATC monitoring of sector traffic load 

0.93 0.00 1.00 

19 25050000+23020700+24010102+22130101+22060100+22090000+24010101+12251500+

27030000+22080203: ATM service personnel operating procedures/instructions & ATC 
use of descent procedure & ATC use of readback/hearback error detection & ATM's 

horizontal conflict resolution by radar vectoring/monitoring & ATM's monitoring of A/C & 

ATM's traffic transfer & ATC use of phraseology & Pilot's action in respect to ATC 
clearance & ATC monitoring of sector traffic load & ATM's coordination with an adjacent 

civil sector 

0.96 0.00 1.00 

 

Figure 9: ROC curve using DFs of severity A as precursor data in the prediction of LOS 
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Figure 10: ROC curve using DFs of severity B as precursor data in the prediction of LOS 

4. Conclusion 

In this work, the authors have developed a method that combines principles from Quantitative Risk Analysis, 

Bayesian modelling, and Information Theory, to infer the likelihood of catastrophic accidents based upon precursor 

data. 

The implementation baseline for this methodology details that major accidents and their links to near accidents arise 

from common initiating events and descriptive factors. Therefore, the occurrence of such events and DFs conveys 

essential information related to the probability of an extreme accident. 

The methodology combines a complex BN Model created with the events and DFs extracted from serious/major LOS 

incidents and the application of Information Theory to quantify the mutual information. These events and DFs are 

later used to establish exhaustive predictive scenarios to anticipate the occurrence of severe LOS or MAC. 

4.1. Benefits of the methodology application 

This study illustrates how simple are inference methods to allow the exploration of information of simple operational 

errors to predict the likelihood of near accidents. Although there are other sophisticated approaches to the assessment 

of accident precursors, the added value of this information derives from the fact that near accidents frequently take 

place prior to major accidents. Therefore this method allows us to take advantage of an abundance of partially 

relevant data, which reflect operational issues and errors. 

The processes, analyses, and modelling have demonstrated the detection of precursors for serious loss of separation 

incidents from simple reports and the construction of simple models for future incident prediction.  

Within the present case study, a correlation between events and factors is set up and achieves predictive quality, 

which supports the identity of a set of events and factors that could occur with high probability in a new incident 

case.  

In summary, the proposed methodology provides an in-depth diagnostic to serious loss of separation scenarios and 

predictive capacity for new incident analyses. 
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4.2. Limitations 

This methodology presents limitations as follows: 

 Limitation on data source. The BN model is based on expert knowledge due to the quantitative limitation on 

incident data. Considering all events and factors extracted from reports could be occurring in other ATM 

occurrences not classified as incidents, this missing data might affect the accuracy of the information theory 

approach. 

 Limitation on BN model. Uncertainty is inevitable presented in the BN model as other predictive models. To 

reduce its degree, the model needs to be updated continuously with new incident data.  

4.3. Future work 

 Based on the Heinrich pyramid theory, all factors that contribute on a high level of severity should be presented 

in the minor level. The correlation between the same DFs presented in severity A and B under selected 

scenarios need to be analysed. 

 A new ATM safety monitoring program could be designed focusing on different perspective according to this 

methodology and the case study results. This program could be applied to real operations and implies 

improvement of the BN model using the real operational data as feedback.  

Abbreviation 

A/C Aircraft 

ADREP Accident/Incident Data Reporting 

ANS Air Navigation Service 

ATC Air Traffic Control 

ATCO Air Traffic Control Officer 

ATM Air Traffic Management 

ATS Air Traffic Services 

BN Bayesian Network 

CPT Conditional Probabilistic Table 

DAG Directed Acyclic Graph 

DF Descriptive Factor 

EASA European Aviation Safety Agency 

EF Explanatory Factor 

EU European Union 

FDM Flight Data Monitoring 

FN False Negatives 

FP False Positives 

FPR False Positive Rate 

FT Fault Tree 

ICAO International Civil Aviation Organization 

IT Information Theory 

LOS Loss of Separation 

MAC Mid-Air Collision 

NextGen Next Generation Air Transportation System 

ROC Receiver Operating Characteristic 

SESAR Single European Sky ATM Research 

SMI Separation Minima Infringement 

SOAM Safety Occurrence Analysis Methodology 

STCA Short Term Conflict Alert 

TN True Negatives 

TP True Positives 

TPR True Positive Rate 
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