
7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS)

DOI: ADD DOINUMBER HERE

Numerical study of acoustic radiation effects
on air-assisted jets

N. Rutard?, L.-H. Dorey?, C. Le Touze?, M. Théron?? and S. Ducruix†
? Onera- The French Aerospace Lab

F-92322 Châtillon, France
luc-henry.dorey@onera.fr

?? Cnes DLA
F-75612 Paris Cedex, France

† Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay
F-92290 Châtenay-Malabry, France

3-6 July 2017

Abstract
The present work is motivated by the high-frequency combustion instabilities often encountered during
liquid rocket engine developments. These instabilities are usually associated with transverse acoustic
modes of the combustion chamber. In this framework, the objective of the present contribution is to gain
comprehension on the dynamical response of coaxial two-phase flows submitted to transverse acoustic
modulations. A formulation for the analytical acoustic radiation force experienced by a sphere submit-
ted to a multi-harmonic stationary wave is first proposed. This formulation is then used as a reference
to validate a compressible simulation code through a simple numerical case representative of what is ex-
perienced by the central liquid core in coaxial jets. Afterwards, the dynamics of a spray under acoustic
radiation modulations are examined. It is found that the acoustic radiation force and the drag between
the spray droplets and the gaseous phase play an important role in the size segregation mechanism. This
last process may impact the triggering of combustion instabilities in liquid rocket engines at subcritical
operating conditions.

1. Introduction

Understanding High-Frequency (HF) combustion instabilities in Liquid Rocket Engines (LRE) has been a significant
matter since the second half of the twentieth century1, 8, 14. Indeed, high power densities and mean pressure involved
in such engines (around 50 to 100 GW ·m−3 and 100 bar respectively) make this kind of combustion instabilities a
dangerous phenomenon. Acoustic pressure oscillations due to the unsteady heat release of flames can rise up to 10 %
of the mean pressure in the combustion chamber and may result in a dramatic increase of heat fluxes at chamber walls,
causing damages to the propulsion system and possibly its destruction. Up to now, full-scale engine tests have been
favoured for the study of combustion instabilities, as during the F1 program, between 1962 and 1966, for which more
than 2 000 tests24 have been carried out on first-stage Saturn V engines. However, the significant cost of full-scale tests
incites the scientific community to explore other methods such as high-performance Large Eddy Simulations (LES) to
give a better insight into triggering and coupling mechanisms of HF combustion instabilities.

Several LES studies of self-excited or forced instabilities in LRE can be found in the literature. Unsteady
numerical simulations have been carried out to investigate the response of an isolated cryogenic flame submitted to
a transverse acoustic modulation and determine the effect of the modulation frequency on both the central dense core
and the flame itself12. To take into account a possible coupling effect between multiple flames as in full-size LRE, LES
of the reduced-size test bench Mascotte30 have been carried out13 with 5 shear coaxial injectors. Furthermore, to get
a better insight into the triggering of self-excited transverse instabilities, LES of the BKD test bench, comprising 42
shear coaxial injectors, have also been performed29. One may note that all these studies were carried out considering
only transcritical conditions, which means that the combustion chamber operates at a mean pressure above the critical
pressure of oxygen (pcr,O2 = 50,4 bar) but with an injection temperature well below the critical value (Tcr,O2 = 155 K).
To the best of the authors’ knowledge, no similar numerical study has been presented yet in the literature considering
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subcritical conditions. Because of numerous differences between mechanisms at stake in both kinds of operating
conditions, the results obtained in transcritical cases cannot be extended to subcritical ones, which justifies the present
work.

Contrary to transcritical conditions mentioned previously, in subcritical conditions the mean pressure in the
combustion chamber is below the critical pressure of oxygen used as propellant. This kind of situation is observed
during the engine ignition, when the pressure in the combustion chamber is arising from ambient pressure to its nominal
value, and at low thrust operating conditions. The oxygen is then injected in the chamber in a liquid state, surrounded
by a coaxial gaseous flow of fuel. Therefore, in opposition to transcritical conditions, a physical interface exists
between both propellants and surface tension cannot be neglected. The central liquid core then undergoes primary
atomization under the action of shear stresses. Small ligaments torn away from the liquid core experiment secondary
fragmentation, thereby creating smaller quasi-spherical droplets. Finally, the presence of hot burn gases induces the
liquid vaporisation which is crucial for combustion. All these mechanisms, inherent to subcritical conditions, may
participate to the thermo-acoustic coupling. That is why it is absolutely necessary to reproduce them correctly when
dealing with unsteady numerical simulations of subcritical cryogenic flames. One of the most challenging issues in
simulating this kind of flow for a reasonable cost is to accurately describe all the liquid structures, from large separated
two-phase flow down to the smaller droplets of the spray. To this end, a numerical strategy has been developed at
Onera19 for the coupling of a diffuse interface method adapted to the simulation of separated phase zones, and a
Eulerian statistical model adapted to the simulation of sprays. This methodology has been applied to the LES of
an isolated cryogenic LOX/GH2 flame reproducing a subcritical operating point of the Mascotte test bench20. This
numerical simulation demonstrated the great potential of this original strategy and justifies its use for numerical studies
of HF combustion instabilities in subcritical conditions.

As mentioned before, multiple coupling mechanisms may intervene between acoustics, combustion and the
coaxial stream in such combustion instabilities. As a first step of our study, it has been preferred to isolate acoustics
/ two-phase flow coupling mechanisms from combustion processes. Therefore, it is of great interest to review exper-
imental studies on acoustic effects on non-reactive two-phase flows. Only transverse acoustic perturbations will be
considered because these are known as the most destructive ones in LRE when coupling with combustion8. Experi-
ments have first demonstrated the ability of intense acoustic perturbations to deviate round liquid jets at the acoustic
frequency5, 6, 23. The same observation has been made later for coaxial jets7, 9, 10, more representative of LRE’s oper-
ating conditions. The second effect of acoustics being noticed has been a dramatic flattening of coaxial jets15 under
the action of transverse acoustic waves, this observation being confirmed later for round jets6. The authors explained
these two phenomena by the presence of intense velocity fluctuations around the liquid core due to acoustics. More
recent experiments of transverse acoustic perturbations applied to coaxial air/water flows3, 4, 11 tend to agree with pre-
vious observations for a large range of atomization regimes. However, these physical phenomena are not only due to
strong velocity fluctuations but also to the presence of acoustic radiation pressure3. This mechanism has been studied
by King16 in 1934 and can be viewed as a non-zero mean pressure variation in acoustic field. Usually mentioned as
a non-linear effect, King proved that acoustic radiation pressure can also exist in linear acoustics, particularly around
any object submitted to propagative or standing waves. In the case of two-phase flows submitted to transverse acoustic
perturbations, the non-homogeneous pressure radiation profile around coaxial jets induces a suction effect and the flat-
tening of the liquid core as soon as acoustic waves are intense enough to counterbalance the stabilizing effect of surface
tension. In an equivalent way, spray droplets submitted to a non-symmetrical pressure radiation profile can experience
a specific force causing their deviation.

At this point it is worth noting that in the case of reactive flows, all these interactions between acoustics and two-
phase flows may play an important part in the setting of combustion instabilities in LRE. Therefore, the present paper
aims at progressively evaluating the ability of a compressible simulation code to quantitatively reproduce acoustic
radiation pressure and its previously mentioned effects on coaxial jets. First, a new formulation of the analytical
acoustic radiation force experienced by a sphere submitted to a transverse standing wave is proposed, based on the
initial model derived by King16. This formulation, described in section 2, brings the possibility to take into account
linear and non-linear interactions between all harmonics contained in intense acoustic waves such as the ones that
intervene in LRE at unstable operating points8. After a brief description of the Cedre code in section 3, this new
formulation is used in section 4 as a reference to validate the code through a simple numerical case of a small rigid
sphere submitted to a transverse acoustic modulation, representative of what is experienced by the central liquid core in
coaxial jets. Afterwards, the spray behaviour under acoustic radiation forces is examined by simulating a polydisperse
spray injected in a moving stream submitted to transverse acoustic modulations, which corresponds quite well to what
happens downstream atomization processes in coaxial two-phase flows.
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2. Acoustic radiation force on spheres in multi-harmonic standing waves

2.1 Analytical derivation

King16 formulated the analytical expression of the mean acoustic radiation force applied to a sphere submitted to plane
propagative or standing waves. In this model, the compressibility of the sphere and the viscosity of the medium are
both neglected. In particular, King proposed a simplification of the expression when α = ka � 1, where a is the sphere
radius and k is the acoustic wave number defined as k = 2π f /c with f the acoustic frequency and c the speed of sound
in the medium. In this case, the appropriate expression for the temporal mean acoustic radiation force 〈Frad〉King is:

〈Frad〉King = − πρ0A2α3 sin(2kh)
1 + 2

3

(
1 − ρ0

ρ1

)

2 +
ρ0
ρ1

fcor , (1)

where ρ0 and ρ1 are the medium and sphere densities respectively, A = Pac/(ρ0ck) with Pac the acoustic amplitude,
and h = (xpan − x) is the distance between a pressure anti-node xpan and the centre of the sphere x. In cases where
α � 1 cannot be assumed, some authors18, 22 proposed the corrective factor fcor(α) = 3/(4α2) [sin(2α)/(2α) − cos(2α)]
tending to 1 for small spheres. Through this analytical model, King16 demonstrated the part played by the acoustic
radiation pressure on dust striations in resonance tubes and standing waves, as noticed by experimental investigation of
acoustic effects on coaxial jets mentioned in section 1. However, in his work, the author made the hypothesis of mono-
harmonic acoustic perturbations. But high acoustic levels can be reached in LRE in unsteady operating conditions,
leading to acoustic non-linearities characterised by the presence of multiple harmonics. Therefore, it is of great interest
to take into account the effect of these harmonics on the acoustic radiation force. To do so, a new formulation of King’s
model is derived below.

If we apply the equations of motion and continuity to an irrotational flow with constant speed of sound c, it is
possible to write the pressure variation δp in the medium and the medium velocity components (u, v, w) as:

δp = p − p0 = ρ0φ̇ − ρ0

2
q2 +

ρ0

2c2 φ̇
2 , (2)

u = −∂φ
∂x

; v = −∂φ
∂y

; w = −∂φ
∂z

, (3)

with p0 the mean pressure in the medium, φ̇ the partial temporal derivative of the velocity potential φ and q2 =

u2 + v2 + w2. As in King’s work, the motion of the sphere under acoustics has to be considered. In the case of an
acoustic field with radial symmetry with respect to the sphere, this one will be moving at velocity ξ̇. With the material
derivative Dφ/Dt applied to the centre of the sphere, we can then write in spherical coordinates (r,θ,ϕ):

φ̇ =
Dφ
Dt
− ξ̇ cos θ

∂φ

∂r
+ ξ̇

sin θ
r

∂φ

∂θ
. (4)

Finally, the dynamical equation of motion of the sphere of mass M = 4/3πa3ρ1 and its corresponding boundary
condition can be expressed as in equations (5) and (6), with µ = cos θ:

2πa2

1∫

−1

δp µ dµ = Mξ̈ , (5)

− ∂φ
∂r |r = a

= ξ̇µ . (6)

Let us now consider a standing wave composed of m harmonics. As in all acoustic problems, the velocity
potential is a solution of the well-known wave equation. Thanks to the linear aspect of this equation, it is possible to
decompose the total velocity potential of the multi-harmonic acoustic field φ into a sum of the velocity potentials of
each isolated harmonic φi. By extending King’s work to multi-harmonic standing waves, this can be expressed as:

φ =

m∑

i=1

φi , (7)

φi = cos(ωit + ψi)
∞∑

n=0

(Rn(αi)Pn(µ)) + sin(ωit + ψi)
∞∑

n=0

(S n(αi)Pn(µ)) , (8)
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where ωi = 2π fi with fi the frequency of the ith harmonic, ψi its phase and Pn(µ) the nth - degree Legendre polynomial.
For the sake of readability, the term ωit + ψi will be written Φi. In equation (7), φ is defined with respect to the moving
origin centred on the sphere. The definitions of Rn(αi) and S n(αi) are given in the system of equations (9):



Rn(αi) =
Ai

Hn(αi) αn+1
i

(2n + 1) cos(kihi + 1
2 nπ)

Fn(αi)
Hn(αi)

,

S n(αi) = − Ai

Hn(αi) αn+1
i

(2n + 1) cos(kihi + 1
2 nπ)

Gn(αi)
Hn(αi)

,

(9)

where ki = 2πωi, Ai = Pac,i/(ρ0cki) with Pac,i the acoustic amplitude of the ith harmonic, αi = kia, and hi = (xpan,i − x),
xpan,i being the position of a pressure anti-node for the ith harmonic. We also define:



Fn(αi) = α2
i βn+1(αi) − n βn(αi) when n , 1 ,

F1(αi) = α2
i β2(αi) − (1 − ρ0

ρ1
) β1(αi) ,

Gn(αi) = α2
i γn+1(αi) − n γn(αi) when n , 1 ,

G1(αi) = α2
i γ2(αi) − (1 − ρ0

ρ1
) γ1(αi) ,

(10)

and 

βn(αi) = (−1)n α−n
i

(
π

2αi

) 1
2

J−n− 1
2
(αi) ,

γn(αi) = α−n
i

(
π

2αi

) 1
2

Jn+ 1
2
(αi) ,

(11)

with Jn(αi) the nth - degree Bessel function.
Now that φ is defined as a function of the velocity potential of each harmonic, it is possible to use equations (2)

and (5) together to express the acoustic radiation force Frad as:



Frad = 2πa2ρ0

1∫

−1

(
φ̇ − 1

2 q2 + 1
2c2 φ̇

2
)
µ dµ ,

= 2πa2ρ0

(
flin + fq + fφ + fξ

)
,

(12)

The terms flin, fq, fφ and fξ of equation (12) are defined below.

Analytical expression for flin

The first term flin in equation (12) refers to the linear interaction between harmonics at the surface of the sphere.
This term is first order and can be expressed as in equation (13):

flin =

1∫

−1

Dφ
Dt

µdµ =

1∫

−1

m∑

i=1

ωi

cos Φi

∞∑

n=0

(
S n(αi)Pn(µ)

)µdµ

−
1∫

−1

m∑

i=1

ωi

sin Φi

∞∑

n=0

(
Rn(αi)Pn(µ)

)µdµ .

(13)

Thanks to the definition of Legendre polynomials, it can be proved that,

1∫

−1

Pn(µ)Pm(µ)dµ =



2
2n + 1

when m = n ,

0 otherwise .
(14)

As a result, since P1(µ) = µ, we finally obtain equation (15):

flin =
2
3

m∑

i=1

ωi [cos Φi S 1(αi) − sin Φi R1(αi)] . (15)
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Analytical expression for fq

The second term fq in equation (12) is one of the three terms playing a part in second-order harmonic interactions.
By using the definition of q2 in spherical coordinates and the equation (6), we obtain:

fq = −1
2

1∫

−1

q2µdµ ,

= −1
2

1∫

−1

ξ̇2µ2 +
1
a2

(
∂φ

∂µ

)2 (
1 − µ2

) µdµ ,

= − 1
2 a2

1∫

−1

(
∂φ

∂µ

)2 (
1 − µ2

)
µdµ .

(16)

By using equations (7) and (8), the term (∂φ/∂µ)2 in equation (16) can be written as:

(
∂φ

∂µ

)2

=

m∑

i=1

cos Φi

∞∑

n=0

(
Rn(αi)

∂Pn

∂µ

)
+ sin Φi

∞∑

n=0

(
S n(αi)

∂Pn

∂µ

)
2

+ 2
∑

1≤i< j≤m

∂φi

∂µ

∂φ j

∂µ
.

(17)

Thanks to the definition of Legendre polynomials, it can be proved that,

1∫

−1

∂Pn

∂µ

∂Pm

∂µ
(1 − µ2)µdµ =



2n(n + 1)(n + 2)
(2n + 1)(2n + 3)

when m = n + 1 ,

0 otherwise .
(18)

Finally, thanks to equations (16), (17) and (18), we can define fq = fq1 + fq2, with fq1 and fq2 respectively expressed as
in equations (19) and (20):

fq1 = − 1
2 a2

m∑

i=1

cos2 Φi

∞∑

n=0

4n(n + 1)(n + 2)
(2n + 1)(2n + 3)

Rn(αi)Rn+1(αi)



− 1
2 a2

m∑

i=1

sin2 Φi

∞∑

n=0

4n(n + 1)(n + 2)
(2n + 1)(2n + 3)

S n(αi)S n+1(αi)



− 1
2 a2

m∑

i=1

cos Φi sin Φi

∞∑

n=0

4n(n + 1)(n + 2)
(2n + 1)(2n + 3)

(
Rn(αi)S n+1(αi) + Rn+1(αi)S n(αi)

) ,

(19)

fq2 = − 1
2 a2

∑

1≤i< j≤m

cos Φi cos Φ j

∞∑

n=0

4n(n + 1)(n + 2)
(2n + 1)(2n + 3)

(
Rn(αi)Rn+1(α j) + Rn+1(αi)Rn(α j)

)

− 1
2 a2

∑

1≤i< j≤m

sin Φi sin Φ j

∞∑

n=0

4n(n + 1)(n + 2)
(2n + 1)(2n + 3)

(
S n(αi)S n+1(α j) + S n+1(αi)S n(α j)

)

− 1
2 a2

∑

1≤i< j≤m

cos Φi sin Φ j

∞∑

n=0

4n(n + 1)(n + 2)
(2n + 1)(2n + 3)

(
Rn(αi)S n+1(α j) + Rn+1(αi)S n(α j)

)

− 1
2 a2

∑

1≤i< j≤m

cos Φ j sin Φi

∞∑

n=0

4n(n + 1)(n + 2)
(2n + 1)(2n + 3)

(
Rn(α j)S n+1(αi) + Rn+1(α j)S n(αi)

) .

(20)

Analytical expression for fφ

The second term playing a part in harmonic interactions in equation (12) is fφ. By using equation (7) and limiting
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the expansion of φ̇2 to second-order terms, we can write:

fφ =
1

2 c2

1∫

−1

φ̇2µdµ ,

=
1

2 c2

1∫

−1


m∑

i=1

(Dφi

Dt

)2

+ 2
∑

1≤i< j≤m

Dφi

Dt
Dφ j

Dt

 µdµ ,

= fφ1 + fφ2 .

(21)

Thanks to the definition of Legendre polynomials, it can be proved that,

1∫

−1

Pn(µ)Pm(µ)µdµ =



2(n + 1)
(2n + 1)(2n + 3)

when m = n + 1 ,

0 otherwise .
(22)

Therefore, we finally obtain equations (23) and (24) to express fφ1 and fφ2 respectively:

fφ1 =
1

2 c2

1∫

−1

m∑

i=1

(Dφi

Dt

)2

µdµ ,

=

m∑

i=1

ki
2 cos2 Φi

∞∑

n=0

2(n + 1)
(2n + 1)(2n + 3)

S n(αi)S n+1(αi)



+

m∑

i=1

ki
2 sin2 Φi

∞∑

n=0

2(n + 1)
(2n + 1)(2n + 3)

Rn(αi)Rn+1(αi)



−
m∑

i=1

ki
2 cos Φi sin Φi

∞∑

n=0

2(n + 1)
(2n + 1)(2n + 3)

(
S n(αi)Rn+1(αi) + S n+1(αi)Rn(αi)

) ,

(23)

fφ2 =
1
c2

1∫

−1

∑

1≤i< j≤m

Dφi

Dt
Dφ j

Dt
µdµ ,

=
∑

1≤i< j≤m

kik j cos Φi cos Φ j

∞∑

n=0

2(n + 1)
(2n + 1)(2n + 3)

(
S n(αi)S n+1(α j) + S n+1(αi)S n(α j)

)

+
∑

1≤i< j≤m

kik j sin Φi sin Φ j

∞∑

n=0

2(n + 1)
(2n + 1)(2n + 3)

(
Rn(αi)Rn+1(α j) + Rn+1(αi)Rn(α j)

)

−
∑

1≤i< j≤m

kik j cos Φi sin Φ j

∞∑

n=0

2(n + 1)
(2n + 1)(2n + 3)

(
S n(αi)Rn+1(α j) + S n+1(αi)Rn(α j)

)

−
∑

1≤i< j≤m

k jki cos Φ j sin Φi

∞∑

n=0

2(n + 1)
(2n + 1)(2n + 3)

(
S n(α j)Rn+1(αi) + S n+1(α j)Rn(αi)

) .

(24)

Analytical expression for fξ

The term fξ in equation (12) is the last term playing a part in harmonic interactions. This term has to be con-
sidered only when the sphere is free to move under the action of acoustics. By using the boundary condition (6), we
obtain:

fξ =

π∫

0

(
−ξ̇ cos θ

∂φ

∂r
+ ξ̇

sin θ
a

∂φ

∂θ

)
sin θ cos θ dθ ,

=
ξ̇

a

1∫

−1

(µ2 − 1)
∂φ

∂µ
µdµ .

(25)
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An integration by part together with the use of equation (14) lead to:

fξ = −2
ξ̇

a

1∫

−1



P2(µ)
m∑

i=1

cos Φi

∞∑

n=0

(
Rn(αi)Pn(µ)

)
+ sin Φi

∞∑

n=0

(
S n(αi)Pn(µ)

)
︸                                                                     ︷︷                                                                     ︸

φ



dµ ,

= −4
5
ξ̇

a

m∑

i=1

(
cos ΦiR2(αi) + sin ΦiS 2(αi)

)
.

(26)

In order to determine the sphere velocity ξ̇, it is sufficiently accurate to consider only first-order terms in equation (2).
After integrating with respect to time, the dynamical equation becomes:

ξ̇ ≈ 2πa2ρ0

M

1∫

−1

φ µ dµ ,

≈ 1
a
ρ0

ρ1

m∑

i=1

(
cos ΦiR1(αi) + sin ΦiS 1(αi)

)
.

(27)

We finally obtain equation (28):

fξ = −4
5

1
a2

ρ0

ρ1

m∑

i=1

(
cos ΦiR1(αi) + sin ΦiS 1(αi)

) m∑

i=1

(
cos ΦiR2(αi) + sin ΦiS 2(αi)

)
. (28)

As a result, the acoustic radiation force experienced by a small sphere submitted to a multi-harmonic standing
wave is formulated through equation (12) together with equations (15), (19), (20), (23), (24) and (28). Contrary to
King’s work16, no time integration has been carried out. However, orders of magnitude of each term in Frad can be
estimated to show that the effect of temporal fluctuations of the acoustic radiation force on the sphere deviation can be
neglected in most cases.

2.2 Discussion on temporal aspects

As shown previously, the acoustic radiation force can be defined as Frad = 2πa2ρ0

(
flin + fq + fφ + fξ

)
. Among these

terms, it comes up that 〈 flin〉 = 0. The only terms playing a part in the temporal mean acoustic radiation force 〈Frad〉
are then 〈 fq〉, 〈 fφ〉 and 〈 fξ〉. Moreover, it can be proved that the amplitude of flin is at least two orders of magnitude
higher than the three others fq, fφ and fξ. From these observations, we can approximate Frad as:

Frad = 2 π a2 ρ0

(
〈 fq〉 + 〈 fφ〉 + 〈 fξ〉

)
︸                               ︷︷                               ︸

〈Frad〉
+ 2 π a2 ρ0 flin︸         ︷︷         ︸

F′rad(t)

. (29)

For the sake of simplicity, only one harmonic will be considered in our approximation. In that case, and if αi � 1,
S 1(αi) ≈ 0 in equation (15). If we define C1 as the amplitude of F′rad(t) and C2 = 〈Frad〉, equation (29) becomes
Frad ≈ −C1 sin Φi + C2. To approximate the order of magnitude of the displacement due to each term of Frad, we can
integrate the classical equation of motion with respect to time:

Frad = M
∂2ξ

∂t2 ,

→ ξ ≈ C1

M ωi
2

︸ ︷︷ ︸
x1

sin Φi +
C2

2 M︸︷︷︸
x2

t2 .
(30)

Finally, by estimating C1 and C2 thanks to equations (15) and (1) respectively, we find the ratio between x1 and x2:

x2

x1
≈ 5

6
Pac,i

ρ0
ki

2 cos(ki hi) . (31)

If we apply this approximation to typical values encountered in LRE in subcritical operating conditions, we find a
ratio rising up to 107 s−2. Therefore, in such conditions, the sinusoidal displacement due to acoustic radiation force
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fluctuations F′rad(t) becomes quickly negligible compared to the mean displacement, except for objects already located
in velocity anti-nodes where x2 = 0. As a conclusion, only the mean temporal values of the acoustic radiation force
will be analysed in the next sections of this paper.

3. Numerical methods

3.1 Eulerian/Eulerian coupling strategy

Numerical simulations presented in this paper are performed with the Cedre industrial code25 developed at Onera.
Cedre is used for multi-physics simulations in energetics and propulsion and is based on the coupling of several
solvers, each of them being dedicated to model specific physical phenomena. The code uses the finite volume method
and can handle general unstructured meshes.

As previously mentioned, non-reactive air-assisted jets undergo successive atomization steps involving a wide
range of scales. To correctly describe all of them, a numerical strategy has been developed at Onera19 for the coupling
of a diffuse interface method and a Eulerian statistical model, respectively integrated in Cedre solvers Charme and
Spiree. This coupling strategy is represented in figure 1. A diffuse interface method referred to as "4-equation model"
or "Locally Homogeneous Flow" (LHF)19 is used to simulate the separated phase zones where liquid structures are
fully described by the mesh while the Spiree solver is used to follow the spray (dispersed phase zone) in a statistical way
as soon as the mesh becomes too coarse to describe the interface between the droplets ans the gas. This methodology
does not enable us to take into account the mixed zone where liquid fragments torn from the central liquid core are too
small to be described by the mesh and cannot be considered as being part of the spray yet. However, the impact of this
zone on the spray behaviour is considered negligible in a first approach.

Figure 1: Coupling strategy for two-phase flow simulations from Cedre.

In the following sections of this paper, the dense liquid phase will not be simulated. As a first approach, the two-
phase flow will then only be composed of a gaseous ambient flow and a liquid spray simulated thanks to the Charme
and Spiree solvers respectively.

3.2 Charme solver

In the Charme solver, the gaseous flow is described by multi-species compressible Navier-Stokes equations with an
LES formalism. The system closure is provided by the ideal gas law. Upwind numerical fluxes based on approximate
Riemann solvers, such as the HLLC flux scheme28, are used to approximate the convective fluxes. Second-order
multislope MUSCL reconstructions extended to general unstructured grids21 are computed on each grid faces. For
the viscous terms, a central differencing method is used whereas the source terms are evaluated with the value of the
variables at the cell centers. Finally, we use the three-step explicit Runge-Kutta scheme for time integration.

3.3 Spiree solver

In all generality, polydisperse sprays can be described by Williams statistical kinetic equation31 on the Number Density
Function (NDF). Direct resolution of this equation is nevertheless out of reach for practical applications. This is why
in practice we perform a reduction of the highly-dimensional phase space by solving Eulerian transport equations on
some moments of the NDF. To do so, the kinetic equation is integrated over droplets velocity w and temperature θ,
leading to a semi-kinetic system17, 26 not reproduced here for the sake of clarity. Then, the size phase space is divided
into sections and the size distribution function f (s), for which s is the droplet surface, is continuously discretized as
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a piecewise linear function26, this method being called sectional method. A set of equations is then obtained for each
section, and sections are coupled through fluxes. In the vector form, the system of equations for each section (k) is:



∂q(k)

∂t
+ ∇ · fc

(k) = s(k) ,

q(k) =
(
ρ(k) ρ(k)w(k)

d ρ(k)h(k)
d n(k)

d

)t
,

fc
(k) = q(k) ⊗ w(k)

d ,

s(k) = s(k)
drag + s(k)

rad ,

(32)

where ρ(k) = α(k)ρ0
(k) is the volumetric mass density of droplets with α(k) the local spray volume fraction and ρ0

(k)

the volumetric mass density of pure liquid, w(k)
d and h(k)

d are respectively the velocity and total energy of all droplets of
section (k) located at the position x at time t, and finally n(k)

d is the local number of droplets per unit of volume in the
section.

The first source term s(k)
drag stands for momentum and energy fluxes between the two solvers due to drag forces.

Thanks to the spherical droplets hypothesis made in the spray solver, we can easily calculate the total drag force F̂(k)
drag

by integrating the classical expression of the drag force19 F(k)
drag experienced by an isolated droplet over each section

(k): F̂(k)
drag =

∫ sk

sk−1
F(k)

drag f (s) ds, where sk−1 and sk are the left and right boundaries of the section (k) respectively. The
drag source vector is then expressed as s(k)

drag =
(
0 F̂(k)

drag F̂(k)
drag · w(k)

d 0
)t

. The second source term considered
in (32) is related to the acoustic radiation force. It is important to note that the coupling between the two solvers
only intervene through source terms. Consequently, the ambient fluid does not take into account the volume occupied
by the spray and the acoustic field around each spherical droplet is not simulated. As a consequence, the acoustic
radiation force experienced by the spray when submitted to a standing wave has to be modelled. The proximity
between several droplets may have an impact on this acoustic radiation force. Indeed, it has been demonstrated in
the literature27 that when two or more particles are close enough, there could exist an acoustic interaction force on
each droplet due to the scattered waves from the others. According to the authors, this mechanism does not modify
the deviation effect in the wave propagation direction observed for isolated particles, but may force the particles to
attract or repel each other in the transverse direction. However, as a first approach, it is supposed in this preliminary
work that the distance between the spray droplets is sufficiently large to neglect this acoustic interaction force. As
a result, it is possible to directly implement the analytical model presented in section 2 (see equation (12)) into the
solver to consider the spray deviation under acoustic modulations. The acoustic radiation source term can then be
expressed as s(k)

rad =
(
0 n(k)

d F(k)
rad n(k)

d F(k)
rad · w(k)

d 0
)t

with F(k)
rad the acoustic radiation force experienced by every

droplets in section (k), evaluated with the mean D30 diameter. No integration is performed over the size variable
because complementary work showed there are no consequences on the calculation of s(k)

rad.
Convective fluxes are evaluated through the Godunov’s scheme solving the exact Riemann problem at the in-

terface of each mesh cells, with a second-order multislope MUSCL reconstruction21. Time integration is performed
through a two-step explicit Runge-Kutta scheme.

4. Numerical simulations

4.1 Validation of the acoustic radiation force on a sphere with the Charme solver

As mentioned in the introduction, the long-term objective is to carry out an LES of a subcritical flame under transverse
acoustic modulations. In such a case, where the dense liquid core is simulated, the two-phase flow is described by multi-
species compressible Navier-Stokes equations. Acoustic waves around this dense liquid core are then directly simulated
with a precision depending on both the local spatial discretization and the numerical schemes of the solver, without the
need of any specific numerical model. Therefore, to validate the numerical reproduction of acoustic radiation effects
on the liquid jet, a fixed rigid sphere of radius a is exposed to a standing acoustic wave at mean atmospheric pressure
(see figure 2a). The total acoustic radiation force Frad experienced by the sphere is then compared to the analytical
solution derived in section 2. The mesh presented in figure 2b is composed of two different characteristic sizes. The
first one ∆1 has been chosen so that the mesh cut-off frequency is greater than 3 f1, where f1 is the second natural
mode of the cavity. The second mesh characteristic size ∆2 has been chosen to have 50 points in one half of the sphere
circumference. Acoustics is imposed through pressure fluctuations at the red boundary conditions (see figure 2a). All
other boundaries are set to slip wall conditions except for the sphere for which no slip boundary conditions are used.
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(a) (b)

Figure 2: Numerical geometry (a) and mesh used (b) for the evaluation of the acoustic radiation force experienced by
a small and fixed rigid sphere in a transverse acoustic wave.

Mono- and multi-harmonic modulations at low amplitudes

To validate the Charme solver, two different acoustic modulations are investigated, as defined in table 1 (cases
1 and 2). First, a sinusoidal acoustic modulation is imposed in the cavity at a frequency f1 = 1 kHz corresponding to
the second natural frequency of the cavity. For such a modulation, the position of the rigid sphere corresponds to an
intensity anti-node (the intensity is defined as the product of pressure and velocity fluctuations). According to King’s
theory16, the mean acoustic radiation force is maximum at this location. To ensure a completely linear propagation
of waves in the cavity, very low modulation amplitudes are applied. An acoustic level of 130 dB equivalent to a
modulation amplitude Pac,1 of 89 Pa is imposed based on the commonly used Gol’dberg number2 Γ, characterizing
the strength of non-linear distorsions relative to that of dissipation. The second acoustic modulation is composed of
one more harmonic (the third natural mode of the cavity) and is representative of the wave distorsion encountered in
non-linear propagation. Amplitude of each acoustic mode is chosen so that the total acoustic energy is the same as for
the purely sinusoidal modulation. With reference to the second harmonic, the sphere is located at a velocity anti-node.

Table 1: Acoustic modulation parameters for
each simulation. Pac,i is the forcing amplitude
of the ith harmonic, fi its frequency and ψi its
phase difference with the first harmonic.

P′(t) =

3∑

i=1

Pac,i sin(2π fit + ψi)

Case 1 Case 2 Case 3

Pac,1 [Pa] 89 87.5 5135
f1 [Hz] 1000 1000 961
ψ1 [rad] 0 0 0

Pac,2 [Pa] - 16 887
f2 [Hz] - 2000 1922
ψ2 [rad] - 0 5.44

Pac,3 [Pa] - - 555
f3 [Hz] - - 2883
ψ3 [rad] - - 4.97

Figure 3: Instantaneous acoustic radiation force experi-
enced by a sphere in a standing acoustic wave. Analyti-
cal profiles for case 1 ( ) and case 2 ( ) and corre-
sponding Cedre results ( ).

Comparisons between numerical results and the analytical expression of Frad are presented in figure 3 and table 2
over one acoustic period. It can be seen that, for both acoustic modulations, the instantaneous acoustic radiation force is
well retrieved by the Cedre code. In addition, there exists four orders of magnitude between the maximum amplitude
of Frad and its mean value. However, it has been proved in section 2 that the effect of these fluctuations F′rad(t) on
the sphere deviation could be neglected. As a result, comparisons will be realized only on temporal mean values.
For the mono-harmonic modulation, the relative difference between 〈Frad〉 obtained with Cedre and the analytical
expression is around 8 %. In the multi-harmonic case, this difference only reaches 2 % of the analytical value, which
can be considered, in both cases, as sufficiently low to validate the reproduction of the acoustic radiation force with the
Charme solver.
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In addition, it can be noted that the analytical value obtained from the formulation presented in section 2 correctly
degenerates to King’s expression (1) for the mono-harmonic modulation (〈Frad〉King = 7.15 x 10−8 N). In the multi-
harmonic case, this value reaches 6.91 x 10−8 N which corresponds to a small relative difference of 3.5 % with the
mono-harmonic value. Therefore, in this case, the deviation that could be observed for a mobile sphere would be
quasi-identical for both types of modulations. However, it will be shown hereafter that the impact of harmonics on the
mean radiation force can be much greater in some cases.

Table 2: Instantaneous and temporal mean acoustic radiation forces on a sphere in a standing wave.

(a)

Case 1

Analytical model Cedre

Amplitude x 104 [N] 1.94 1.93
Mean value x 108 [N] 7.15 7.75

(b)

Case 2

Analytical model Cedre

Amplitude x 104 [N] 2.51 2.49
Mean value x 108 [N] 6.91 7.03

Multi-harmonic modulation at higher amplitudes

At this point, the objective beyond the scope of the preliminary work presented in this paper should be explained:
carrying out an LES reproducing an experimental air-assisted jet submitted to high frequency/high amplitude acoustic
modulations4 in order to investigate the coupling between acoustics and the two-phase flow. For this reason, it is inte-
resting to reproduce the previous test case with an acoustic modulation representative of the one imposed in experiments
of Baillot et al.4 An FFT of the raw experimental acoustic signal indicates that more than 99.8 % of the acoustic energy
is comprised into the frequency range [0 Hz ; 3 000 Hz] and more precisely in the second, third and fourth natural
modes of the cavity. To numerically reproduce this acoustic modulation, it is then possible to reconstruct this signal by
considering only these three harmonics. The experimental signal is plotted on figure 4 together with its reconstruction
used for the numerical acoustic modulation. Parameters used for this numerical reconstruction are presented in table 1
(case 3).

The acoustic radiation force experienced by the sphere once submitted to this acoustic modulation is shown in
figure 5 over one acoustic period and numerical values are presented in table 3. First, these results demonstrate the
ability of the Charme solver to correctly reproduce the dramatic effect of all harmonics on the shape of the instantaneous
profile of Frad. However, as explained before, the parameter of interest is the temporal mean value 〈Frad〉. In this case,
the relative difference between the numerical and analytical mean acoustic radiation forces is only about 3 % of the
analytical value, which validates the solver in presence of high amplitude acoustic modulations.

Figure 4: Raw experimental acoustic signal of Baillot et
al. ( ) and its numerical reconstruction based on the fre-
quency range [0 Hz ; 3 000 Hz]( ).

Figure 5: Acoustic radiation force experienced by a
sphere in a standing acoustic wave. Analytical profile for
case 3 ( ) and corresponding Cedre results ( ).

As done before for low amplitude cases, we can easily compare the value of the mean acoustic radiation force
given by King’s model taking into account only one harmonic (〈Frad〉King = 2.30 x 10−4 N) and the one announced by
the analytical model presented in section 2, which takes into account the presence of multiple harmonics. In this case,
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Table 3: Instantaneous and temporal mean acoustic radiation forces on a sphere in a standing wave.

Case 3

Analytical model Cedre

Amplitude x 102 [N] 1.84 1.93
Mean value x 104 [N] 2.21 2.14

the relative difference only reaches 4 % of the value predicted by the updated model. As for low amplitudes, the impact
of harmonics on the mean acoustic radiation force is then very low at this location in the acoustic field. However, by
plotting 〈Frad〉 over the wave propagation axis for both models (see figure 6), we can see that this relative difference can
rise up to 60 % at the intensity anti-node located at X = 3λ1/8. This result demonstrates the importance of considering
the presence of multiple harmonics when evaluating the acoustic radiation force and its effects on any object submitted
to high amplitude standing waves.

Figure 6: Mean acoustic radiation force experienced by a sphere for different locations on the wave propagation axis.
King’s model for mono-harmonic waves ( ). Updated model adapted to multi-harmonic waves ( ).

4.2 Application of the updated model to the Spiree solver

We are interested here in investigating step by step the deviation of droplets under high amplitude multi-harmonic
acoustic modulations. In air-assisted jets submitted to acoustics, the force experienced by the spray droplets can be
decomposed into two components as mentioned in section 3: a first one due to the drag force between droplets and
the coaxial gaseous flow and a second one due to the acoustic radiation force. Gravity is neglected here because
preliminary work showed it has no impact on the spray dynamics. To investigate the impact of each component on the
spray deviation, two different situations are investigated: a first one where the acoustic radiation force is isolated and
a second one where drag is considered. The numerical configuration and the associated mesh are represented in figure
7a and 7b respectively. The mesh is composed of a far field zone adapted to acoustic propagation and a second zone
with finer cell size adapted to the spray discretization. The mesh parameter ∆1 adapted to the acoustic propagation has
been chosen with the same criteria as for the test case presented in section 4.1. Droplets of two different diameters
D1 = 2a1 = 20 µm and D2 = 2a2 = 250 µm are injected with an initial vertical velocity Vp,in j = 1 m · s−1 in a cavity.
As explained in section 3, a specific model has been integrated to the Spiree solver in order to simulate the effect of
acoustics on the spray dynamics. By activating this model, the droplets can experience an acoustic radiation force
oriented towards the closest velocity anti-node without the need of any acoustic modulation in the Charme solver. It is
however necessary to indicate the acoustic modulation parameters to the Spiree solver. For the two situations presented
below, these parameters correspond to the ones used in case 3 of section 4.1 (see table 1).

Acoustic radiation effect on droplets trajectories

First, in order to isolate the effect of the acoustic radiation force on droplets trajectories, the Frad model is
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(a) (b)

Figure 7: Numerical geometry (a) and mesh (b) to investigate a spray deviation when submitted to acoustics. Acoustics
is imposed only through the Frad model in the Spiree solver. The top and bottom boundary conditions are respectively
inlet and outlet. Intensity anti-node ( ) and velocity anti-node ( ) for the first harmonic.

activated in the Spiree solver without drag between the droplets and the ambient gas. Therefore, the only non null
source term in the system of equation (32) is srad. The resulting mean trajectories for the two types of droplets are
represented in figure 8. In this situation, both types of droplets are deviated to the nearest velocity anti-node, as
predicted by the theory. Regarding the comparison between behaviours of both droplets sizes, King’s theory predicts
an evolution of the type Frad ∝ a3 for small droplets (see equation (1)). This can be proved in the same way for multi-
harmonic waves. However, despite the fact that the droplets injected in this numerical simulation can be considered
small enough compared to the acoustic wave length of each harmonic (k3a2 = 6.5 × 10−3 � 1), it can be seen from
figure 8 that both trajectories are identical. This is due to droplets inertia. Indeed, the equation of motion (30) clearly
shows that the greater its mass is, the less a droplet accelerates under a given acoustic radiation force. Since M ∝ a3, it
is natural to find exactly the same trajectories for both types of droplets.

Figure 8: Zoom on the mean trajectories of 20 µm ( )
and 250 µm ( ) droplets submitted to acoustic radiation
force without drag. Intensity anti-node (vertical ) and
velocity anti-node (vertical ) for the first harmonic.

Figure 9: Zoom on the mean trajectories of 20 µm ( )
and 250 µm ( ) droplets submitted to acoustic radia-
tion force and a homogeneous and constant vertical flow
with drag. Intensity anti-node (vertical ) for the first
harmonic. The two points represent the locations where
Vp = 0.9Vg for both droplet diameters.

Vertical flow effect on droplets trajectories

The second situation corresponds to droplets submitted to the acoustic radiation force and drag. A homogeneous
and constant gaseous flow with velocity Vg = 3Vp,in j is simulated to get closer to what happens downstream atomiza-
tion processes in coaxial two-phase flows. To investigate the part played by this mean flow on droplets deviation, the
drag source term in the system of equation (32) is activated in the Spiree solver. The resulting mean trajectories for
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the two types of droplets are represented in figure 9. In this situation, the droplets are still deviated toward the nearest
velocity anti-node, as expected, but with lower amplitudes. Indeed, now that drag is taken into account, each droplet
experiences an additional force Fdrag due to the momentum transfer with the gaseous stream. This force can be divided
into two components Fdrag,x and Fdrag,y, as represented on figure 9, and can be expressed as:

Fdrag = M
u − ξ̇
τ

#»
X

︸       ︷︷       ︸
Fdrag,x

+ M
v − η̇
τ

#»
Y

︸      ︷︷      ︸
Fdrag,y

, (33)

where (u, v) and (ξ̇, η̇) are the gas and droplet velocities respectively, τ is the characteristic response time of the droplet
and M its mass. For the situation investigated here, Fdrag,x is oriented to the opposite direction of Frad, which tends
to reduce the droplets acceleration in the horizontal direction, while Fdrag,y tends to accelerate them in the vertical
direction because of the presence of the imposed gaseous flow. The result of these two additional forces is a dramatic
reduction of the deviation for both types of droplets compared to the previous situation without drag. It can also be
noticed a great difference between the dynamics of small and bigger droplets. The Stokes number, directly related
to the characteristic response time as S ti = τi Vg/ai, is much greater for the bigger droplets than for the smaller ones
(S t1 ≈ 140 � S t2 ≈ 860). Therefore, smaller droplets of diameter D1 = 20 µm reach the gas velocity faster than bigger
particles of diameter D2 = 250 µm and experience consequently a lower deviation. This phenomenon is represented
on figure 9 with two points located at the positions where the droplet velocity reaches 90 % of the gaseous one. To
conclude, both the acoustic radiation force and the drag have a great impact on the deviation of polydisperse sprays
submitted to transverse acoustics and can induce an important size segregation. This phenomenon may play a part in
the triggering of combustion instabilities in liquid rocket engines at subcritical operating conditions.

5. Conclusion

In this paper, we present a preliminary work on the numerical investigation of acoustic radiation effects on coaxial
two-phase flows. First, a new analytical formulation of the acoustic radiation force experienced by a sphere submitted
to a high frequency / high amplitude standing acoustic wave is developed. Based on King’s initial theory adapted
to mono-harmonic acoustic waves, this updated formulation brings the possibility to consider the effect of multiple
harmonics and their coupling, which is more representative of what can be observed in Liquid Rocket Engines (LRE).
The importance to take into account the presence of such harmonics is then underlined through several numerical
simulations of a fixed rigid sphere under acoustic modulations. These simulations are also the occasion to validate the
ability of the separated phase solver to reproduce the acoustic radiation force on an object, which plays an important
part in the behaviour of the dense liquid core observed in excited two-phase flows.

To simulate the spray resulting from the atomisation of such liquid core, we use a different solver based on a
Eulerian statistical approach. With this solver, the acoustic radiation force experienced by the droplets of the spray
cannot be simulated and has to be modelled. As a first approach, the possible interaction effect between the droplets
is neglected and the updated analytical formulation of the acoustic radiation force adapted to multi-harmonic waves is
implemented. Finally, thanks to this new model, the dynamics of a polydisperse spray under acoustic modulations is
progressively investigated. First, it is demonstrated that, when drag is not considered, the acoustic radiation force in-
duces an identical deviation of all droplets as long as their size can be considered small enough compared to the acoustic
wave length. Once drag is taken into account, it is shown that bigger droplets will experience a much greater deviation
than smaller ones. This size segregation may play an important role in the triggering of combustion instabilities in LRE
operating at subcritical conditions.

On-going work is carried out to investigate acoustic radiation effects on a full air-assisted jet. A practical confi-
guration11 will be simulated with the Cedre code and the numerical results will be compared to experimental data. For
this purpose, an additional effort is required to assure a correct coupling between the separated phase and the spray
solvers once the radiation force model is activated. This simulation is the last step of the validation procedure of the
Cedre code and will be the occasion to investigate acoustic radiation effects in more realistic operating conditions.
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