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Abstract

This paper presents the fundamental work on the attitude control design using solely magnetic actuation
for the MOVE-II mission. Two control modes are primarily considered: detumbling and sun pointing
control. Regarding the sun pointing control, two approaches are discussed. The first is the Spin Stabilized
Sun Pointing Control (SSPC) which provides gyroscopic stiffness against disturbances. The second is
a non-spinning approach called Reduced Sun Pointing Control (RSPC). Simulation results have shown
satisfactory performance providing proof of concept and motivation for further work.

1. Introduction

MOVE-II (Munich Orbital Verification Experiment II) is a CubeSat currently developed in the Institute of Astronautics
(LRT) of the Technical University of Munich (TUM).! As a follow-up of the First- MOVE?? mission, which utilized
permanent magnets and hysteresis rods for passive attitude stabilization, MOVE-II, shown in Fig. 1, will be the first
CubeSat of the LRT with active attitude control. MOVE-II is a 1U CubeSat (10 x 10 x 10 cm?®) comprising six printed
circuit boards (PCBs), five of them located on the satellite’s outside: the Toppanel and Sidepanels. The Toppanel is
similar to the Sidepanels, but it also features the payload solar cells and its electronics. The ADCS mainboard, which
is called Mainpanel, is located in the board stack of the satellite. The complete ADCS hardware is depicted in Fig. 2.
Linked to the Toppanel, the Flappanels (see Fig. 1), which will be deployed during launch and early operation phase
(LEOP), features also solar cells. The Toppanel and the front side of the Flappanels have to be directed towards the
sun in order to guarantee power generation, charging of the battery, and also the success of the payload experiments.
Attached to the bottom of the satellite is the communication subsystem including an S-band system with a limited
transmit and receive angle. Following mission analysis, it turns out that nadir pointing attitude is not suitable to ensure
sufficient communication coverage, yet a sun pointing attitude has shown to improve communication with the ground
station as well as guarantees power generation for a fully operational satellite.

Regarding the particular case of the sun pointing problem, the paper presents two candidate solutions. The first
technique considers spin stabilization in order to exploit the spin axis stiffness against external disturbances. A simple
sun pointing control law combined with gyroscopic spin stabilization is proposed in Sedlund* as the contingency mode,
when only analog-output sensors (three-axis magnetometer and sun sensors), analog-input actuators (magnetic torque
rods or coils) and a simple microprocessor are available. More recent research have also presented similar approach
and provided further analysis in spin stabilization for solely magnetically actuated satellites.”>® In order to achieve
passive spin stabilization a rotation around the major or minor axes of inertia of a rigid body is required. However, in
real applications satellites cannot be considered as a completely rigid body due to the presence of flexible structures.
MOVE-II, for instance, features semi-rigid antennas, which can oscillate in space. This would result in small dissipative
effects making the minor axis of inertia unstable. The current determination of the inertia tensor of MOVE-II implies
that the axis of interest for sun pointing matches the intermediate axis of inertia of the MOVE-II CubeSat, which results
in an unstable motion. Thus, a second technique considers a non-spinning control resolving both stabilization and sun
pointing task. A simple but effective controller is designed able to drive the satellite to stability from large rotational
rates and to maintain the solar panels facing the sun. Attitude knowledge is not necessarily required for the proposed
sun pointing algorithms, as the sun vector can be explicitly used in the state feedback. Both approaches are formulated
as a linear quadratic regulation (LQR) problem. Since a complete control synthesis and stability proof is desired, the
control design procedure presented in Wisniewski® for a three-axis stabilization problem is reused.
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The paper presents the B-dot control and the sun pointing control approaches. The latter ones are presented in de-
tail. Therefore, controller design and stability analysis are conducted. The concept is investigated through simulations
considering external disturbances.

,ht-' k\ 1 Toppanel (shared with payload)
1 Mainpanel (in stack)

4 Sidepanels

Figure 1: The assembled engineering model of the Figure 2: Explosion rendering of the ADCS hardware. The
MOVE-II satellite Mainpanel, the Toppanel and one Sidepanel are marked.

2. System Modelling

The satellite’s attitude kinematics and rotational dynamics are described hereinafter. The nonlinear equations of motion
are used to simulate the satellite, whereas the linearized equations of motion are utilized for the control design. Firstly,
we define the two coordinate frames considered through this paper as follows.

2.1 Coordinate Frames

Inertial Frame. The inertial frame is fixed in space placed at the center of the Earth. Denoted by frame ¥;, +z;-axis
lies along the Earth’s axis of rotation, +x;-axis lies along the equator plane pointing towards the vernal equinox, and
+y; completes the Cartesian coordinate system.

Body Frame. The body frame is attached to the center of mass of the satellite, aligned with the principal axes of inertia.
The body frame is denoted by ;. Let MOVE-II be approximated by a perfect cube with uniformly homogeneous mass
distribution. The z;-axis is directed away from the Toppanel. Thus, in a sun directed attitude, the sun vector resolved
in 7 is given by s” = (0,0, —1)7. At times, subscript » may be omitted when the reference is implicit.

2.2 Equations of Motion

Let the attitude of the satellite with respect to the F; be represented by a quaternion g;, = (qo,0")" € R*, where
© = (q1,¢2,g3)", and the angular velocity of the body relative to the F; expressed in the F, be denoted by wf’b =
(w1, wa, w3)T. The quaternion-based kinematic equations can be decomposed as follows:

L7

90 = 50 Wi (H

1
0 = 5@l +lex)w;, @

where [-X] corresponds to the cross-product operator defined as

0 —V3 1%
[vx] = V3 0 -V (3)
-V Vi 0

Now consider the satellite as a rigid body described by the inertia matrix J approximated as

Ju 0 0
J=| 0 Jxn O 4)
0 0 Js3
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Then applying the Euler’s equation for a rotative body, the dynamic equation of the satellite can be described as

b g-l b b b b
wy = J (Jwib Xy + Ty + Td)

8 (wf';b’ T TZ) ®)

where ‘rf 1 € R3 refers to the control torque performed by the satellite and TZ € R3 refers to disturbance torques acting
on the satellite.

2.3 Magnetic Actuation

The MOVE-II satellite is solely magnetically actuated by magnetorquers. The magnetic attitude control problem
is intrinsically nonlinear and time-varying as the actuation is based on the interaction between the magnetic dipole
momentum generated by a set of three orthogonal current-driven coils and the local geomagnetic field. Consequently,
the control design becomes non-trivial yet it has been shown that the attitude stabilization and controllability are
achievable for a wide range of orbit inclinations.!®"'* In order to model the magnetic actuation in the dynamic equation
of motion, let the control torque be described as

Tt = mMX b
[bx]" m ©6)

where m € R? and b € R? are the magnetic dipole momentum generated by the magnetorquers and the geomagnetic
field, respectively, expressed in the . It can be verified in equation (6) that the performed control torque only exists
in the plane perpendicular to the local geomagnetic field vector, meaning that only two axes can be controlled at once.
Indeed, as [bX] is structurally singular, full controllability is lost at each time instant. It also turns out that parallel
components are ineffective to perform the desired maneuver.'? For convenience, therefore, we can define a mapping
formula in order to obtain u — m L b, where u € R is the control input vector. This mapping formula can be defined
as!5

uxb
m = (7
liall
Substituting (7) in (6), and rearranging the terms, yields
bx]" [bx]"
rn = = Bu ®

where the magnetic control matrix 8 > 0 € R is given by

R bibs
= il b cbi-n b )
bibs baby b} - b2

Due to the periodic nature of the Earth’s magnetic field its components are not constant over time. In our investigations
we assume that the time-variability mainly results from the orbital period. We can write B(r) = B(T + t), where T is
the system period, to emphasize the time dependency. According to Lovera'? Lemma 1, for sufficiently small angular
rates w, average controllability is guaranteed in the sense of

1 T

B = lim - B(dt > 0 (10)
T—o00 T 0

for all trajectories of the model described in equation (5). Henceforth, result obtained in equation (10) can be considered

in the control design.

2.4 Disturbances Modelling

Knowing that the MOVE-II is designed to a low-Earth orbit (LEO) mission with an altitude between 500 km to 600 km,
three main disturbance torques are of special concern in the present paper: disturbance torque due to (a) gravity
gradient, (b) atmospheric drag, and (c) residual magnetic dipole momentum. Modelling equations are provided in the
sequel and will be considered in the simulation to assess the controller performance.
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24.1 Gravity Gradient

Disturbance torques due to the gravity gradient results from the inverse square gravitational force field.'® As the nature
of the gravity gradient is known, an analytic formula can be derived as

Toe = 3W2(F X JF) (D

where w, is the orbital rate and # € R? as the normalized position vector. It can be noted that equation (11) depends
only on the symmetry of the satellite, i.e. the satellite’s moment of inertia, and the current position. Thus, the torque
due to gravity gradient should affect just a little considering that the MOVE-II satellite is significantly symmetric.

2.4.2 Atmospheric Drag

The drag force acting on an infinitesimal surface element can be calculated with:'® 17

dF = —%chﬁ%(ﬁ - n)dA (12)
where p is the atmospheric density, v = ||v|| is the satellite’s velocity relative to the flow, Cp, is the drag coefficient and
dA is the infinitesimal area, which is normal to the relative velocity v € R3. The normal vector is denoted by n € R>.
Let « be the angle between v and n. According to Hughes,!” the torque should only be calculated according to equation
(12) if cos @ > 0, otherwise dA is not affected by the flow. Therefore, the so-called Heaviside Function ®(x) has to be
introduced, which is ® = 1 for x > 0 and ® = 0 otherwise. Thus, we get

1
dF = —ECDpv2®(fJ -n)p(P - n)dA (13)

When dA is known, the total force can be calculated by integrating (13). A common approach to solve this integral is to
decompose the total spacecraft surface into elementary shapes, e.g. planes . The drag force F; € R? can be calculated
simply for each plane A; by

1
F;= —chpvz(a(ﬁ )P - m)A; (14)
The corresponding drag torque acting on this surface is given by
7, =F;x1; (15)

with I; € R? as the distance vector from the center of mass and the center of pressure of the surface A;. The total
atmospheric drag toque is the vector sum of the individual torques:

=T (16)

As depicted in Fig.3, the MOVE-II satellite can be approximated by planes, but due to the configuration of the Flap-
panels overshadowing effect occurs blocking the incident flow denoted by v,,; against the Sidepanels, and vice-versa.
An analytic expression to describe such a configuration is rather beyond of the scope of this paper and, therefore, an
approximated expression is considered. Another important aspect is the appropriate modelling of the atmospheric den-
sity p. In our simulation the density has been calculated by the MSIS-E-90 Atmosphere Model provided by NASA.'8

A4 /
4

Figure 3: Overshadowing effect of the panels
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2.4.3 Residual Magnetic Dipole Moment

In practice, when all subsystems operate as a whole, undesired magnetic dipole moments may be built up by on-board
electronics, scientific instruments and ferromagnetic materials resulting in a residual dipole momentum mgyy, i.€., a
magnetic bias, that can disturb the stability and maneuverability of the satellite. As an example, the UWE-3 mission
encountered an estimated residual dipole moment of mgyy, ~ (—0.001,0.012,—-0.045) + 0.001Am? that affected the
motion of the satellite.'” Recalling equation (6), therefore, the disturbance torque due to residual magnetic dipole
momentum, Trayu, can be modelled as

Trum = Meym X b a7

For our investigations we assume that the residual magnetic dipole moment is a constant offset.
2.5 Linearized Model

As aforementioned, attitude knowledge is not necessarily required in the formulation of the sun pointing problem.
Instead, it is of the interest to replace the quaternion-based kinematic equation (2) with an adapted model as function a
of the sun vector s® € R3? seen from the ¥, as follows:

b _ b b
§ = -—w),Xs

= f(s, ) (18)

Considering the sun vector-based kinematic equation (18) and recalling the dynamics in (5), the satellite model can be
described in the state-space form linearizing the system about a desired equilibrium state. Then, let the equilibrium
state be §” = (0,0, —1)7 and d)fh = (0,0, wg)T, where wy refers to spin rate about the z-axis of the body frame, yielding
the linear system

af(st, G)Z,) af(s’, G)?b) Af s, ‘D,‘bb)
N o5 oty || T
X = _ _ X < u
ag (wf']b’ T?trz) ag (w?b’ Tl;trl) ag (“’?b’ Tftrl)
Osb o, oub
- Abx+Bu (19)

Solving the Jacobian equations in (19), the state matrix A and the control input matrix B are, therefore, given by

0 ws 0 0 1 0

-ws 0 O -1 0 0

) 0 0 0 0 0 | 033

A= 0 0 0 0 wsey o BO= [ J'B(0) } 20

0 0 0 —Wwso) 0 0

0 0 O 0 0 0

O_I=J22—J33 O_2=J11_J33
Ju 2

The model represents a time-periodic system, since B(f) = B(T + t). Moreover, the system described in equations
(19)-(20) can be rather reduced. In fact, it can be verified that matrix A has the third row and the third column with
zeroed elements, allowing us to define the system into a reduced form given by

o0x, = A,0x, + B, (Hu 21)
S 0 ws 0 1 0
$2 -ws 0 -1 0 0 0
5%, = w , A= 0 0 0 wsor 0 |, B,n)= [ BZ(X;) } (22)
wy 0 0 —Ws 0 0 0
w3 — Wg 0 0 0 0 0

When equation (10) is used to calculate an average control input matrix, the reduced linear system (21)-(22) is fully
controllable and, therefore, can be used to find a static gain controller.
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3. Control Design

Control laws are introduced for two mission phases specified earlier: (a) detumbling and (b) sun pointing mode. The
first mode concerns the imminent scenario encountered by the satellite after its deployment. Special attention is given
to the latter mode for two different control approaches. Therefore, model-based state-feedback control approach is
utilized. For a first guess, an LQR formulation is used to design a controller gain. Afterwards the stability of the
closed-loop system is analyzed with the Floquet theory for time-periodic systems.??

3.1 Detumbling Control

Right after deployed, satellites are likely to experience angular rates higher than usually desired. The so-called B-dot
algorithm is a simple and commonly applied method for detumbling a satellite. This method does not require attitude
knowledge, but rather only the rate of change of the local geomagnetic field as follows:

mb = —kb” (23)

where m” is the control dipole moment, k is a positive scalar gain and b is expressed with respect to Fp,. Assuming
that the rate of change of the geomagnetic field is negligible compared to the attitude rate,’ the formula (23) can be
approximated by

§
I

b —k(b” x w0, + A(g")b)
—k(b? x ) (24)

Q

with A(g"") as the attitude matrix which corresponds to g”. We refer to Jensen?' for the stability proof of the B-dot
control.

3.2 Sun Pointing Control

Considering the reduced system obtained in (21), two constant gain sun pointing controllers can be obtained relying in
the solution of the LQR problem as shown in the sequel. For simplification, we define x = 6x,, A = A, and B = B,.

3.2.1 Control Synthesis

Based on the optimal control theory, the LQR problem solves the optimal state feedback law # = —Kx by minimizing
a performance index

T3 [ (ex+uRu)ar (25)

where O > 0 and R > 0 are design matrices with appropriate dimensions which relate the state transient energy and
the control input energy, respectively. Then the constant gain matrix K € R> can be derived from the steady-state
solution as

K=R'B'P (26)

where B is the averaged control input matrix and P is the unique positive definite solution to the algebric Riccati
equation:
PA+A"P-PBR'B'P+Q=0 27

The control input matrix is averaged over one system period 7.

3.2.2 Stability Analysis

After calculation of the gain, stability of the closed-loop system has to be analyzed. According to Wisniewski® this
check is necessary, since stability of the time-varying system is not equivalent with the corresponding time-invariant
model. The closed-loop system to be analyzed is given by

x=A.()x=(A-B(HK)x (28)

where A.(f) is the corresponding system matrix of closed-loop system. This matrix is time periodic, thus A.(f) =
A (T +1). The Floquet theory can be used to investigate stability of this time-periodic system. Therefore, the so-called
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monodromy matrix W, € R has to be introduced. It is the transition matrix at time 7 relating the value state vector
at time 7 to the value after one period 7 + T

x(t+T) =W,y (7)x(1) (29)

The characteristic multipliers are the eigenvalues of the monodromy matrix ¥4 (7). The monodromy matrix is an
essential tool for analyzing stability of periodic systems. A periodic system (in continuous or discrete time) is stable
if only if its characteristic multipliers belong to the open unit disk in the complex plane.?? For all computed gains the
monodromy matrix is calculated and its characteristic multipliers are analyzed to prove stability.

3.2.3 Spin Stabilized Sun Pointing Control - SSPC

The first sun pointing approach proposed is a spin stabilized control method. We use the terminology Spin Stabilized
Sun Pointing Control (SSPC). Therefore, wg # 0 has to be inserted in the reduced linear system (21)-(22). For proof
of concept, a first gain is calculated with a desired spin rate of approximately 10 times the orbit period, given by
ws = 0.011rads™!. The results are given in subsection 4.1. To achieve a stiffer spin axis when disturbance torques
are considered, a final gain is computed with a spin rate of approximately 100 times the orbit period, given by wg =
0.11rads™". The results are presented in subsection 4.2. This final gains for SSPC is given by matrix K pc in (30):

~0.0454 0.0677 -27.3049 —0.6948  0.0000
Ksspe = |-0.0794 —0.0386 —-0.9586 —27.2337  0.0000 (30)
0.0000 0.0000  0.0000  0.0000 -26.8701

The SSPC is expected to decrease the pointing error and also provide spin stiffness against the disturbance effects.
After acquiring the desired spin rate, magnetorquers can be shut down for saving power consumption and stabilization
is sustained passively only by the gyroscopic effect.

3.2.4 Reduced Sun Pointing Control - RSPC

The second controller is referred to as Reduced Sun Pointing Control (RSPC). The RSPC is not spin stabilized, thus the
controller dampens angular rates of the three axes. Hence, using @, = 0 for the reduced linear system (21)-(22), a first
gain for RSPC is calculated according to the proposed control design. The results can be found in subsection 4.1. The
gain is refined to yield better performance for disturbance rejection. Stability is analyzed afterwards. The results are
presented in subsection 4.2. The refined matrix Kggpc is given by

0.0000 0.7606 —92.7963  0.0000  0.0000
Krspe = |-0.7606  0.0000  0.0000 —74.7403 —0.0335 31)
0.0067 0.0000 0.0000  0.0590 —0.3803

4. Results

For the upcoming simulation results, the mission orbit is calculated employing the Simplified General Perturbation 4
(SGP4) orbit propagator, which takes orbital perturbations into account. The initial conditions of the classical orbital
elements are given in Tab. 1. In addition, the International Geomagnetic Reference Field (IGRF) model is used for
simulating the Earth’s magnetic field.?

The satellite is simulated as a nonlinear plant described by the equations of motion (1)-(5), and disturbance
torques are considered in order to assess the performance. For all control law investigations the ideal full state feedback
is used, i.e. attitude estimation and sensor measurement models are not considered. Actuator constraints are not
implemented as well. The inertia tensor considered for MOVE-II is provided in Tab. 2 and the initial conditions used
in the simulations are provided in Tab. 3.

4.1 Proof of Concept

Before disturbance torques are considered, the functionality of SSPC and RSPC are analyzed. For the SSPC approach
the passive spin stabilization is considered as well. After reaching the desired spin rate, the magnetic actuation is shut
down. Thus, only the stiffness of the spin axis provides the stabilization of the satellite.

In a first simulation the initial conditions given in Tab. 3 are considered. Moreover, no perturbation torques
are taken into account. Fig. 4 illustrates the result of the SSPC for a time period of 5 orbits. The SSPC approach
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Table 1: Orbital Parameter Settings

Parameter Symbol Value
Eccentricity e 0.00001
Semi-major axis a 6953.1km
RAAN Q 78.12°
Inclination i 97.63°
Arg.og Perigee w 0°
Orbit Epoch - 17 Jan 2017

Table 2: Inertia Tensor for MOVE-II

Symbol Value
111 0.002 97 kgm2
Ja 0.003 30 kgm?
J33 0.003 20 kgm2

Table 3: Initial Conditions
Symbol Value
ol [0.01 0.01 0.01] radys
g, 09515 02393 0.1893 0.0381]

leads to the desired direction of the satellite. The pointing error converges to zero within the considered time period.
Furthermore, the satellite is rotating with the desired spin rate of wg = 0.011rads™'. Other spin rates could be applied
on the controller successfully. This is not shown in this paper.

Fig. 5 shows the result for RSPC with a first design of the controller gain. The upper plot illustrates how the
pointing error decreases over time. Furthermore, the angular velocities converges to zero within the considered time
period. Thus, the satellite is pointing to the sun, but does not spin. Since the attitude around this axis is not controlled,
it can be arbitrary.

In further simulations, passive spin stabilization is investigated. Therefore, one simulation was run with the
inertia tensor given in Tab. 2. After 2.5 orbits the magnetorquers are shut down. Thus, closed-loop control is not
active. Without the presence of any torques, the satellite motion behaves in accordance with the description in section
1. The satellite is spinning around the z,-axis, the intermediate axis of inertia. Thus, the motion becomes unstable. In
a second simulation the moments of inertia J,, and J33 from Tab. 2 are exchanged so that the spin axis is the major
principal axis. Again the magnetorquers are shut down after 1.5 orbits. The motion is stable as expected. Thus, passive
spin stabilization is possible. The magnetorquers can be switched off if passive spin stabilization is desired. Power
consumption can be reduced by using the advantage of a stable spin axis. This requires a rotation around the major axis
of inertia which, however, does not match the axis of interest for sun-pointing control. In the case of only active spin
stabilization a rotation around the intermediate axis of inertia shall be avoided, since ADCS can be shut down during
mission.

4.2 Disturbance Rejection

This subsection presents the performance of the control approaches under disturbance torques. The pointing error
caused by the perturbation torques is analyzed. Actuator constraints, sensor artifacts and attitude estimation are not
taken into account.

Two simulations are run to determine the pointing error for a spin stabilized satellite. The initial conditions are given
in Tab. 3. The original inertia tensor given in Tab. 2 is used. Gravity gradient torque and atmospheric drag torque are
considered. The drag torque is modelled by considering Flappanels and a density of p =2.64 x 10713 kgm?. The panel
area is approximated by 0.01 m? and the aerodynamic coefficient is set to 2.5. Moreover, a worst-case estimation of the
residual dipole moment ||mgy || = 20 mAm? is considered. A constant offset vector is assumed for simplification:

My = [1 1.547mAm?  11.547mAm> 11.547 mAmZ]T (32)

The following two simulation settings are considered:



DOI: 10.13009/EUCASS2017-664

MAGNETIC ACS FOR MOVE-II

200

150 -

100

Error [deg]

50 -

0.5

15

2 25 3 35
Number of Orbits

15

2 2.5 3 35
Number of Orbits

Figure 4: Sun directed spin stabilization: pointing error (top) and angular velocities (bottom)
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Figure 5: Reduced Sun pointing: pointing error (top) and angular velocities (bottom)
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A. Spin Stabilization with wy = 0.011rads™!, without residual magnetic dipole moment

1

B. Spin Stabilization with wg = 0.11 rads™", with residual magnetic dipole moment

In case A no residual dipole moment is considered to assess the impact of only drag and gravitational torque. The
result is given in Fig. 6. The error varies over time, having its maximum around 20°. The result shows that spin
stabilization is an appropriate technique for disturbance rejection. For better results the spin controller is designed with
wo = 0.11rads™". The gain was introduced in (30). The result for the case B can be seen in Fig. 6. The maximum

40 S B S R T T T T T T T

Error [deg]

0 0.5 1 15 2 2.5 3 35 4 4.5 5
Number of Orbits

Figure 6: Sun directed spin stabilization: pointing error (top) and angular velocities (bottom)

deviation is below 10°. Thus, a higher spin rate could increase the pointing accuracy. The system in case B could be
stabilized. The main idea is to gain a spin axis which is stiff enough to withstand perturbation torques. Depending on
the magnitudes of those torques passive spin stabilization also a possible solution. Therefore, an appropriate spin rate
has to be chosen.

Two further simulations are run to investigate the performance of the RSPC approach. All parameter settings
from the previous testcases are used. The simulations are specified below:

C. Kgspc, with residual magnetic dipole moment
D. Kgspc, without residual magnetic dipole moment

For both testcases the refined controller gain given in (31) is implemented. In the first simulation (case C) reveals
the performance if only drag and gravitational torques are considered. As seen in Fig. 6, the pointing error can be
decreased enormously. Maximum deviation is given by 3°. The increased gain entries make the controller more ag-
gressive. Similar performance is observed when the residual dipole moment is considered. The controller is able to
suppress the influence of the total disturbance torque. For RSPC, maximum deviation is around 10° and 20° degrees.
However, the refined gain leads to a deteriorated performance to stabilize the angular velocity around the pointing
axis. However, in both cases the third component of the angular velocity does not converge towards zero. It rather
oscillates with an amplitude of around 0.002 rads™' in case C and 0.02rads™' in case D. This behavior is observed,
whenever perturbation torques are considered. Nevertheless, the attitude around the pointing axis is not relevant. The
rotation around this axis is constrained, no spinning up is observed. Due to those facts and the possibility to increase
the pointing accuracy, we accept this limitation.

10
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5. Conclusion and Outlook

This paper presented fundamental work on the the attitude control design using only magnetic actuation for the MOVE-
II mission. The B-dot control law is introduced as the chosen detumbling controller. Reduced attitude control strategies
were investigated as a main objective of this paper instead of control techniques which requires full attitude information.
Two main approaches were considered: Spin Stabilized Sun Pointing Control (SSPC) and Reduced Sun Pointing
Control (RSPC). Both approaches are sufficient techniques to orient the satellite to the sun. The proof of concept and
performance under perturbation torques were shown for both methods.

Both approaches lead to satisfying results. The pointing error could be decreased enormously and the pointing
requirement is fulfilled. Since the inertia tensor is not completely determined yet, the risk of unstable spin stabilization
exists. If spin stabilization is considered, it is highly recommended to utilize the major axis of inertia for spin axis.
Therefore, the RSPC was selected as an appropriate technique for the mission.

Further investigations and tuning procedures of all controllers are undergoing. In the simulation sensor and
actuator models will be integrated to assess the performance in more realistic applications. The attitude estimation
algorithm will be integrated in order to provide valid data of the complete functionality of the ADCS algorithms.
Furthermore, it is considered to adjust the inertia tensor of the satellite so that spin stabilization could be enabled. A
Hardware-in-the-Loop (HiL) setup will be developed to test the complete interaction of algorithms implemented in the
flight software. Thus, sufficient testing can be guaranteed before launch early 2018.
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