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Abstract 
Structure of large hypersonic boundary layer separation and reattachment is considered within the 

framework of asymptotic theory of Nieland and Stewartson. It is shown that the separation bubble length 

and second minimum in shear stress are uniquely related to the perturbation strength expressed in terms 

of a scaled angle and that this is independent of the mode provoking separation. 

1. Introduction 

In recent years, in several investigations of supersonic and hypersonic shock wave/boundary layer interactions 

(SWBLI), involving large separated regions, numerical studies have shown multiple vortex structures/eddies 

embedded in the main separation bubble (Neiland et al. [1]; Shvedchenko [2]; Smith and Khorrami [3]; Korolev et al. 

[4]). The Effects of wall temperature and Reynolds number on the development of these multiple eddies has also been 

discussed by Neiland et al. [1]and Shvedchenko [2]. The critical parameter governing the origin and existence of these 

eddies seems to be the angle  α = O(Re1/4) which represents the strength of perturbation to the boundary layer such as 

shock wave provoking separation at a compression corner or a shock wave from a wedge incident on a boundary layer  

growing over a surface  such as a flat plate beneath the wedge. It must be emphasized that the existence of these eddies 

is based mainly on numerical simulations of two-dimensional flows involving large separated regions created by large 

pressure perturbations such as compression ramp angles. So far, there seems to have been no experimental confirmation 

of this phenomenon except in very few specific instances. 

 

In the present paper, we discuss the presence of such eddies in large separated regions in moderate to low enthalpy 

hypersonic flows under different scenarios – (i) a compression corner; (ii) a leading edge separation;  and (iii) an 

incident shock on a boundary layer over a flat plate.  

2. Some Theoretical Considerations 

A separation bubble is said to be small when the length of the bubble is O(lRe-3/8) or less and both separation and 

reattachment are contained within it. Here, l is the characteristic length such as the distance from the leading edge to 

the compression corner or the point of incidence of an incident shock on a boundary layer over a flat plate. Re is a 

characteristic Reynolds number based on l and freestream/boundary layer edge conditions. In subsequent discussion, 

we sometimes use the triple-deck controlling parameter ε = Re-1/8 so that O(lRe-3/8) becomes O(lε3). If the bubble length 

is greater or equal to O(l), separation is said to be large (Burggraf [5]; Korolev et al. [4]). Another characteristic of 

large separation bubble is that it consists of three distinct but contiguous regions – an initial rise, up to separation, with 

length of O(lε3), the Chapman free-interaction region, a large plateau region of  constant pressure O(l), which is 

followed by the reattachment region of O(lε4) in extent that is largely an inviscid process (see Daniels [6]).  Fig. 1 

shows a schematic of such a flow structure. 
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Figure 1: Pressure Distribution in a large separation region. 

 

Referring to Fig. 1, the point wherein separation just appears (S) – the so-called incipient separation, the scaled angle 

α  has a value αi = 1.57 (Rizzetta et al. [7]; Smith and Khorrami [3]) and can be completely described in terms of triple-

deck theory. It is also consistent with Chapman’s free-interaction theory (Chapman et al. [8]).  Burggraf [5], Korolev 

et al. [4], Neiland et al. [1] have argued that even large separation regions are amenable to analysis in terms of triple-

deck theory. 

 

We will now consider each of the regions depicted in Fig. 1 in turn. 

2.1 Separation Region 

Stewartson and Williams [9] have described the flow near separation in planar flow in terms of four regions as shown 

in Fig. 2. Region I consists of a forward moving inviscid supersonic/hypersonic flow. Region III delineates a largely 

inviscid slow moving reverse flow. The boundary layer which separates at xs forms the mixing layer region II, while a 

sub-boundary layer (region IV) that forms beneath region III and flows in the reverse direction joins smoothly with 

region II at xs, so that the dividing streamline separates the forward and reverse flows. These regions are consistent 

with the triple-deck assumptions. The symbol ε in the figure denotes triple-deck scaling parameter Re-1/8, where Re = 

u∞xs/ν∞. The angle θs which the dividing streamline makes with the surface can be determined through the Oswatitsch 

formula relating the streamwise shear stress and pressure gradients at the point of separation.  

 

 

 
Figure 2: Flow at separation (after Stewartson and Williams [9]). 
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2.2 Reattachment Region 

The reattachment region is simply the reverse of separation so that the basic flow features will be similar. Daniels [6] 

has shown that the triple-deck structure is equally valid in the reattachment region (Fig. 3). As in the case of separation, 

the flow in the immediate vicinity of reattachment can be considered independent of the overall flow configuration. 

Daniels treats the reattachment process using the triple-deck theory making a point that the phenomenon, although 

largely inviscid, is still dominated by viscous processes near the wall so that the reattachment pressure is different from 

the recompression shock pressure p’ which is the consequence of an inviscid process. This was also pointed out by 

Chapman et al. [8] while proposing their isentropic recompression theory, which ignores the role of viscosity in the 

reattachment process. This is illustrated in Fig. 1 wherein pr  is different from p’, showing that the actual recompression 

process as a whole is non-isentropic. The description of the reattachment process in the context of triple-deck theory 

has also been given by Gittler and Kluwick [10] and Korolev et al. [4] wherein the rise in pressure due to recompression 

process is shown to vary as Δp ~ α. 

 

 
Figure 3: Reattachment region. 

These viscous effects are accentuated in hypersonic SBLIs. Typically, in a high Mach number SBLI, the boundary 

layer in the reattachment region becomes very thin and confluence of separation and reattachment shocks (and 

sometimes the leading edge shock) occurs very close to the surface. This generates strong coalescence of compression 

waves  at the triple-point from whence a slip stream and centred expansion waves originate and reflect from the surface. 

The overall effect is then the so called ‘necking’ with a pressure over-shoot followed by a rapid decrease before the 

pressure attains a constant value p’. Fig. 4 shows such a state of affairs. The shock/shock/expansion interaction at the 

triple-point P shown in the inset gives rise to what is known as the Edney Type VI interaction (Edney [11]). 

 

 

 
Figure 4: Schematic of pressure distribution in a hypersonic SBLI. 
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2.3 Secondary Vortices 

In recent years, it has been shown that when separation is large, there may be no single recirculating eddy but that the 

separated region may consist of secondary or even tertiary eddies embedded within it. Discussion of such a feature in 

large separated flows has been presented by Smith [12], Smith and Khorrami [3], and Korolev et al. [4]. Dependence 

of these multiple eddies on wall temperature and Reynolds number has recently been investigated by Neiland et al. [1] 

and Shvedchenko [2] in hypersonic SBLI. 

 

A measure of the extent of separation can be expressed in terms of the scaled angle α discussed in Rizzetta [13]. Studies 

by Smith and Khorrami [3], Korolev et al. [4], and Shvedchenko [2] show that a secondary eddy begins to appear when 

4 ≤ α ≤ 5. A steady secondary eddy persists up to α ≥ 6. Beyond this, an instability sets in leading to further 

fragmentation into multiple eddies. 

 

Possible factors leading to the occurrence of secondary eddies are, perturbation strength, Mach number M∞, Reynolds 

number Re, and the wall temperature to stagnation temperature ratio Sw (= Tw/To). Then, if Π is a parameter influencing 

the formation of eddies, 

 

 
*

( , Re, , )wf M S                 (1) 

Based on the triple-deck theory, the perturbation strength α is expressed (see Rizzetta [13] ; Smith and Khorrami [3]; 

Korolev et al. [4]) as, 
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where α* is typically a geometric angle in a compression corner or a corresponding semi-angle of a wedge generating 

a shock wave incident on a boundary layer on a flat plate provoking separation. C is Chapman-Rubesin constant, λ the 

Blasius shear, and β = √M∞
2-1. For hypersonic flows β ≈ M∞. For a given Mach number,  

 

 (Re, , )wf S                                                             (3) 

The Reynolds number and wall temperature dependence can be combined in terms of alternate Reynolds number Rew 

where, 
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               (4) 

showing the dependence only on α and Rew (Potter [14]). In what follows, we restrict ourselves to only an isothermal 

wall with one baseline temperature. 

3. Results 

3.1 Compression Corner 

This is a much studied SBLI configuration both experimentally (for example, Holden [15]; Lewis et al. [16]; Délery et 

al. [17]; Mallinson et al. [18]) and numerically (Hung and Maccormack [19]; Rudy et al. [20]; Holden et al. 2003; 

Olejniczak and Candler [21]; Deepak et al. [22]). These studies present an exhaustive discussion and detailed analyses 

of both experimental as well as numerical simulations, which have shown agreement of varying degree with one 

another.  None of these studies, however, mentions or discusses details of the internal structure of the separation bubble 

such as the existence or possibility of secondary vortices mentioned earlier in Section 2 although some of the studies 

involved large separations. 

 

In the present study, we reconsidered the compression corner study of Mallinson et al. [18] and conducted a numerical 

investigation of a typical low enthalpy flow ho = 2.83 MJ/kg, M∞ = 9.1, Re∞= 32.2 × 105/m, for two corner angles of 

18o and 24o which yield moderate to large separated flows. For the flow conditions of the experiments the 

corresponding scaled angle α are 4.8 and 6.4, respectively. Figs. 5(a)-(c) show the results of nondimensional surface 
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pressure Cp, shear stress Cf, and heat flux Ch respectively for the 24o compression corner. The pressure curve illustrates 

all the major features of a large separated region as delineated in Fig. 1. Of particular note is the initial rise in pressure 

up to separation (s) followed by a long plateau region of near constant pressure and then a gradual rise up to 

reattachment (r). The recompression process continues rapidly until it reaches a peak identifying the neck region. The 

pressure then falls fairly rapidly till it reaches the final value p’. It is worth noting that just prior to the end of the 

plateau region and before the recompression process begins, there is a small dip in the pressure (x ≈ 0.08). This indicates 

the presence of a secondary vortex in the vicinity of the corner (see Korolev et al. [4]). This is reflected in the positive 

shear stress within the main recirculation region (see Fig. 5b). The heat flux distribution is consistent with the pressure 

and shear stress curves. The insets in Figs. 5(a)-(c) show fluctuations in the pressures, shear stress, and heat flux in the 

corner region where the secondary eddies exist. 

 

 
(a) Surface pressure. 

 
(b) Shear stress. 
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(c) Heat flux. 

 

Figure 5: Compression corner separation (24o). Insets show the corner region. 

 

Figs. 6(a) & (b) show contour plots of pressure and temperature on which streamlines are superposed in the separation 

bubble. A secondary vortex is clearly seen at the corner embedded within the main bubble. Further smaller eddies can 

also be seen upstream and downstream of the corner. Another feature to note is the shallow angles of separation and 

reattachment. As discussed earlier, when 6 ≤ α ≤ 7, flow instability sets in giving rise to fragmentation of eddies and it 

is possible the entire separation region becomes unsteady. It is worth noting that presence of these eddies is very 

difficult to verify experimentally in view of their scale and especially in short-duration facilities. Only indirect 

verification through shear stress measurements is a possibility but sometimes even this may not be feasible. To our 

knowledge, no direct experimental evidence of the presence of multiple vortices at large α exists at present. 

 

 
 

 

(a) Pressure (Pa). 
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(b) Temperature (K). 

 

Figure 6: Pressure and temperature contours of the 24o compression corner. Streamlines show fragmentation of 

separation region. 

3.2 Leading Edge Separation 

The leading edge separation configuration is a limiting case of a compression corner wherein the distance between the 

leading edge and separation point goes to zero (see Chapman et al. [8]; Khraibut et al. [23]). Although the configuration 

assumes no boundary layer growth before separation, in reality, there is a small boundary layer growth prior to 

separation. This is especially true in the case of hypersonic low Reynolds number flows such as those being considered 

in the present context. Because of the existence of a not well developed Blasius type boundary layer prior to separation, 

some of the standard assumptions made in the formulation and application of the triple-deck theory to such separations 

becomes questionable and suitable corrections need to be made (Khraibut et al. [23]). 

 

Fig. 7 shows schematic of the leading edge separation with the main flow features. Here the corner angle B is such as 

to ensure separation at or very near the leading edge A. The configuration is equivalent to a compression corner of 55o 

exposed to a Mach number M∞/cos(α*) where again M∞ is the freestream Mach number and α* is the compression 

corner angle. Ideally, after expansion at A, a thin shear layer, in which the velocity varies from zero to the local external 

stream value, springs from A and reattaches on the surface BD at C. A large recirculation region ABC is then formed 

bounded by the surface ABC and the shear layer AC. A weak shock precedes the strong expansion due to viscous 

effects at the leading edge. As can be seen, this is a large separated flow. The freestream conditions were ho = 3.1 

MJ/kg, M∞ = 9.66, and Re∞ = 13.4 × 105. 
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Figure 7: Schematic of the leading edge separation. 

 

Figs. 8(a), (b), and (c) show the nondimensional pressure, shear stress, and heat flux distributions for this flow. Looking 

at the pressure distribution, we can clearly delineate the various regions under the triple-deck framework. Although 

the boundary layer growth is small, we can still identify the interaction region O(lRe-3/8) and separation point s, which 

is then followed by a long plateau of length O(l), where l is a characteristic length, which is here taken as length of 

surface AB. Finally, the reattachment process which is largely inviscid as discussed earlier takes place over a distance 

O(lRe-1/2) in which the pressure rises from the plateau value to the reattachment pressure at r. This can be further 

elucidated by examining the shear stress distribution curve in Fig. 8(b) where the beginning of reattachment can be 

taken from the point of negative shear stress peak just before reattachment to where the shear stress becomes positive 

and the shear stress jumps quite rapidly. 

 

The inset in the shear stress distribution in Fig. 8(b) shows a positive double-loop structure on either side of the corner, 

which indicates the existence of a secondary/corner eddy embedded within the main vortex. The double-loop nature 

of this eddy is due to the corner discontinuity where the shear stress must go to zero at the vertex. Fig. 9 shows the 

corresponding streamlines superposed on contours of temperature. Important features to be noted here are the 

secondary/corner eddy is asymmetrically disposed towards the expansion surface AB, while the main vortex is centred 

slightly towards the compression surface BD. The secondary eddy occupies almost half of the expansion surface length. 

This asymmetrical position of the secondary eddy is because the wall is colder than the outer recirculatory flow as seen 

from the temperature distribution within the recirculation region, the temperature increasing as the mixing layer is 

approached. The movement of the secondary eddy and the primary vortex away from the leading edge and towards the 

trailing edge as the wall temperature is increased has been discussed in detail in Khraibut et al. [23]). The analogy 

between vorticity and thermal energy distribution to first order in a recirculating flow has also been noted and discussed 

by Burggraf [24]. 
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(a) Surface pressure; 

 
 

(b) Shear stress. 

 
  

(c) Heat flux. 

 

Figure 8: Leading edge separation with insets showing corner region. 
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Figure 9: Temperature contours (K). 

The existence and significance of an eddy at a corner in an incompressible flow was first discussed by Dean and 

Montagnon [25] and later rigorously analysed by Moffatt [26]. Moffatt showed that due to low local Reynolds numbers, 

a Stokes-like flow exists in the vicinity of the corner and gives rise to a sequence of eddies and provided the included 

corner angle is less than about 146o, the magnitude of these eddies diminishes rapidly in a geometric progression as 

the corner approaches. Moffatt also suggests that eventually only one or two eddies might exist at the corner. Thus, in 

a large separated flow, while the main recirculating region remains largely inviscid (Stewartson and Williams [9]), 

embedded within it are one or more secondary eddies which are generally of a size no more than 10% of the main 

vortex. 

 

Appearance of a secondary vortex within the main recirculating region of hypersonic near wakes has been noted in the 

numerical simulations done by Grasso and Pettinelli [27] and Bashkin et al. [28]. Grasso and Pettinelli [27] attribute 

this feature to accumulation and spread of vorticity in the recirculating region, which in turn, is a strong function of 

the dividing streamline (DSL) Reynolds number Red (=ρdudldsl/μd), where ρd,,ud, μd, and ldsl, are density, velocity, 

viscosity, and length of the dividing streamline, respectively. They suggest a range of Red wherein the vorticity in the 

recirculating region is dominated by either diffusion (Red ≤ 100) or convection (Red ≈ 300). When Red ≥ 500, a 

secondary vortex might appear due to an increase in the production of vorticity. These changes to vorticity field result 

from localized variations in the diffusion rate as a consequence of changes in temperature gradients occurring in the 

flow. In the present separated flow, the DSL Reynolds number Red  is about 1500 so that secondary vortices can appear 

and that the vorticity is largely convection dominated. We also note from Fig. 10 that the major part of the recirculating 

region is a near constant vorticity core bounded by shear and boundary layers. 

 

 
Figure 10: Vorticity distribution. 

DOI: 10.13009/EUCASS2017-619



ON THE STRUCTURE OF LARGE SCALE SEPARATION IN HYPERSONIC FLOW 

     

 11 

An interesting question still to be resolved is the distinction between a secondary eddy and a corner eddy in the Moffatt 

sense. From earlier studies (see Khraibut et al. [23]), it was revealed that development and movement of these 

secondary eddies is very much temperature dependent. For example, with very cold wall (Sw = 0.05), the secondary 

eddy was well upstream of the small corner eddy. However, when the wall temperature was increased (Sw = 0.1), the 

two eddies amalgamated with the single larger eddy moving downstream and lodged at the corner. In contrast, the 

compression corner data discussed earlier (Fig. 5) show the secondary vortices, one located just ahead and the other 

downstream of the corner, where Sw = 0.125. This movement of vortices downstream with increasing wall temperature 

has also been confirmed by Shvedchenko [2] for corner angles of 100 or more. 

3.3 Incident Shock Separation 

Most of laminar shock-induced separation analyses in terms of triple-deck theory have so far concerned mainly with 

compression corners and there seems very little attention paid to the incident shock-induced separation although this 

was one of the earliest examples of SBLI that was investigated (for example, Gadd et al. [29]; Hakkinen et al. [30]; 

Lees and Reeves [31]). It is therefore worth examining this configuration in the present context. In a free interaction, 

the behaviour of the boundary layer is the same whether separation is provoked by an incident shock, a compression 

corner, or a step. It follows, therefore, that provided the total pressure rise is the same and the flow has undergone the 

same amount of flow deflection, the effects due to interaction of an incident shock and a compression corner are 

equivalent. Thus an incident shock deflection of α* from a wedge is equivalent to a compression corner deflection 

angle of 2α* at the same Mach and Reynolds number. 

 

Detailed numerical and experimental investigations of the incident shock/laminar boundary layer interaction in 

supersonic flow under adiabatic wall condition have been made in recent years by Degrez et al. [32] and Katzer [33]. 

In these studies, time accurate two-dimensional compressible Navier-Stokes equations were solved and compared with 

experimental data of  Degrez et al. [32]. The Mach and Reynolds number range covered was 1.4 ≤ M∞ ≤ 3.4 and 1 × 

105 ≤ Re ≤ 6 × 105, respectively. The Reynolds number was based on freestream conditions and distance from the 

leading edge of the plate to the shock impingement location. Comparison showed good agreement. Katzer [33], in 

particular, compared his numerical data with triple-deck theory and found that, in general, the triple-deck theory 

seemed to over-predict the Navier-Stokes data and the discrepancy was found to increase with increase in Mach number 

and decrease in Reynolds number. There do not appear to be comparable investigations in hypersonic flows with this 

configuration. Herein, we present some numerical Navier-Stokes solutions of hypersonic incident shock/laminar 

boundary layer interaction and interpret them in terms of triple-deck theory. The parameters in the study were 

freestream mach number M∞ = 5.85; Reynolds number Rexc = 13.3 × 105; Sw = 0.5. A shock wave from a wedge of 

semi-angle 10o was incident on a laminar boundary layer developed on a sharp flat plate of length 230 mm. The point 

of incidence of the shock wave xc was 186 mm from the leading edge of the plate. Fig. 11 shows a schematic of the 

configuration.  

 

 
Figure 11: Schematic of incident shock separation. 

Figs. 12(a)-(c) show pressure, shear stress, and heat flux in terms of Cp, Cf, and Stanton number St. All the 

characteristics of a typically large separated region as discussed in relation to Fig. 1 are seen here also. Both the 

pressure and the shear stress clearly indicate a secondary eddy just ahead of the shock impingement location. The 

pressure is characterised by a small dip and the shear stress goes positive at x/xo ≈ -0.14 and after a small double peak 

goes negative again at x/xo ≈ -0.086. The heat flux increases to a peak at x/xo ≈ 0.14 and then goes through a minimum 
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at x/xo ≈ -0.086 before rising again. The plateau region which extends between -0.516 ≤ x/xo ≤ -0.14 is O(l), which 

indeed, is in accordance with the asymptotic theory. 

 

 
 

(a) Surface pressure. 

 
 

(b) Shear Stress. 

 
(c) Heat flux. 

 

Figure 12: Incident shock separation. 

DOI: 10.13009/EUCASS2017-619



ON THE STRUCTURE OF LARGE SCALE SEPARATION IN HYPERSONIC FLOW 

     

 13 

3.4 Structure of the Separation Bubble 

All the configurations considered here, are characterised by a large separation bubble where α ≥ 3.5 and the length is 

O(l). Burggraf [5] has shown that the bubble length scales as α3/2. Fig. 13 shows the bubble length XB, the distance 

between separation and reattachment plotted against α3/2, which shows a linear relation. The zero intercept gives α ≈ 

3, which is when the plateau region has fully developed, a characteristic of large separation (see Burggraf [5]). More 

interestingly, the figure illustrates the generality of this relationship, which appears to be independent of the mode of 

generating large separations, a basic assumption of Neiland’s asymptotic theory of large separated flows. It should be 

noted that, so far, most of the large separation analyses within the framework of triple-deck theory have been in terms 

of the compression corner configuration (Burggraf [5]; Rizzetta et al. [7]; Korolev et al. [4]; Neiland et al. [1]; and 

Shvedchenko [2]). Herein, we have shown it to be true in the case not only of the compression corner but also incident 

shock, and the leading edge separation, which can be considered an extreme example of separation geometry. The 

range also extends from supersonic (Chapman et al. [8]; Degrez et al. [32]; Katzer [33]; Korolev et al. [4]) to hypersonic 

SBLIs.  

 

A second characteristic of large separation is the higher (in magnitude) negative shear stress minimum just before 

reattachment. This sharp minimum in shear stress was first discussed as a possible ‘reverse flow singularity’ by Smith 

and Khorrami [3]. Later, it was argued by Korolev et al. [4] that there need be no singularity and that the reattachment 

is smooth after passing through this sharp minimum. We would also point out here that in our computations too of 

compression corner, leading edge separation (Khraibut et al. [23]), and incident shock, the reattachment reached 

smoothly after passing through a sharp negative minimum. Based on Neiland’s asymptotic theory, Korolev et al. [4] 

show that |τw|min ~ α. Fig. 13 shows |τw|min plotted against α for the three configurations considered here. We note that 

the variation of |τw|min appears linear up to about α ≈ 6 but beyond that the shear stress rise is quite sharp as the largest 

separation case of compression corner with α* = 240 (α = 6.42) is reached. It is, therefore, possible that the validity of 

the linear relationship between |τw|min and α in a two-dimensional separation does not extend beyond α ≥ 6. It can 

therefore be argued that even in a larger separated region, there is a stable flow regime beyond which rapid 

fragmentation of the flow in the recirculation region occurs in the form of instabilities in secondary vortices giving rise 

to further small scale eddies. 

 

 
Figure 13: Length of the separation bubble as a function of the scaled angle. 

 

Fig. 14 is consistent with the observations of Shvedchenko [2] that stable secondary eddies at 4 ≤ α ≤ 5 give rise to 

instabilities beyond α ≈ 6. This is in line with the suggestion Smith and Khorrami [3] that such instabilities can arise 

due to non-zero normal pressure gradients resulting in changes to the structure in the reverse flow region. A point also 

made by Neiland et al. [1]. While all these earlier studies were confined to the compression corner configuration, it is 

shown here that the classification is valid irrespective of the mode of provoking the separation. 
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Figure 14: Variation of second minimum in the bubble as a function of the scaled angle. 

 

It is worth pointing out here that although the actual length of the separation region (that is, the distance between 

separation and reattachment points) is slightly different from the length of the pressure plateau, they have been used 

synonymously in literature (for example, Korolev et al. [4]). As defined by Burggraf [5], the plateau length lp ~ α3/2 

while Korolev et al. [4] assume lB ~ α3/2, where lB is the bubble length. In actual fact, the bubble length comprises the 

plateau length and two small regions of length O(lRe-1/2) after separation before plateau begins and another length 

O(lRe-1/2) just after the end of plateau and before reattachment. In the present instance, we take bubble length to vary 

as α3/2. 

 

Another possible reason for the evolution of multiple vortices in a stable separation bubble is the change in the pressure 

field occurring as a consequence of superposition of longitudinal disturbances generated within the bubble. As 

suggested by Theofilis [34], these longitudinal disturbances induce degeneracy in the shear stress distribution, 

triggering thereby multiple structures in the bubble. Further, if these disturbances develop sufficient amplitude (by 

increasing α), three-dimensionality in the bubble structure will develop leading to both streamwise and spanwise 

instabilities. Theofilis [34] have anlaysed these instabilities in terms of linear stability theory. Defining the perturbed 

flow field as Q(x,y,z,t) in terms of  two-dimensional field on which is imposed a three-dimensional disturbance, then 

 

        , , ,   ,   ,   –    . . ...
b p

Q x y z t Q x y Q x y exp i z t c c                           (5) 

where Qb is a basic two-dimensional flow and Qp is a superposed disturbance. ε (<< 1) defines the magnitude of the 

disturbance assumed small in order that linearization is valid. β is a real wave number and Ω, the complex eigen value 

that contains frequency and temporal growth rate of the disturbance. Using this theory, Theofilis [34] show that 

instabilities in the separation bubble are a function of growth rate of disturbances propagating through the bubble. It 

must be pointed out that the above theory is basically built around an incompressible flow and its validity in 

supersonic/hypersonic boundary layers is not known although for low velocities that usually prevail in a separation 

bubble they may be approximately valid. 

 

Another aspect of these secondary vortices and instabilities is their apparent absence in axisymmetric flows. 

Computations done by Gittler and Kluwick [10] on a flared cylinder in supersonic flow, show no secondary eddy even 

for α as high as 9. This is more than a factor of two compared to a two-dimensional compression ramp. Their 

calculations show that the characteristic double-trough in negative skin friction and plateau of a large separated region 

do not begin till α ≥ 5. The steep increase in negative skin friction prior to reattachment also begins at α ≈ 5. These 

results are consistent with the fact that separation and reattachment phenomena are milder in axisymmetric flows in 

comparison with their two-dimensional counterpart. This is also obvious from inspection of the stability equation of 

Theofilis [34] mentioned above. It is also worth mentioning the absence of secondary eddy in well-known double-cone 

simulations (for example, Nompelis et al. [35]) in contrast to double-wedge solutions Olejniczak and Candler [21]). 
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4. Summary and Conclusions 
 

The analysis of large separations in supersonic and hypersonic SBLIs is presented within the framework of asymptotic 

theory of Neiland [36] and Stewartson and Williams [9]. It is seen that the separation bubble is made of three distinct 

regions – an initial free-interaction region up to separation of O(lRe-3/8), a long plateau region of O(l), and a nearly 

inviscid reattachment region of O(lRe-1/2). It was found that the size of the separated region was strongly dependent on 

the scaled angle α (representing the perturbation strength) being proportional to α3/2. While previous investigations 

addressed the problem only in terms of separation induced by a compression corner configuration, here for the first 

time, it is shown that the phenomenon is more general by considering the other often used configuration of an incident 

shock-induced separation of a boundary layer on a flat plate. We have also shown it to be true in the case of a leading 

edge separation, which is a limiting case of the compression corner. 

 

The study has further shown that the magnitude of the (negative) skin friction before reattachment varies linearly 

irrespective of the mode of instigating separation up to α ≈ 6 beyond which further fragmentation of vortices occurs 

triggering instability within the separation bubble, consistent with earlier compression corner investigations of Neiland 

et al. [1] and Shvedchenko [2]. The present study, while confined to a single wall temperature, effects of wall 

temperature will be dealt with in another paper.  
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