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Abstract
This paper analyzes the real-time relative pose estimation and attitude prediction of a tumbling target
spacecraft through a high-order numerical extended Kalman filter based on differential algebra. In partic-
ular, linear and nonlinear algorithms are developed and implemented on a BeagleBone Black platform, as
representative of the limited computational capability available on onboard processors. The performance
are assessed varying measurement acquisition frequency and processor clock frequency, and considering
various levels of uncertainties. Moreover, a comparison among the different orders of the filter is carried
out.

1. Introduction

Active debris removal (ADR) missions have gained increasing importance inside the space community due to the
necessity of reducing the number of debris jeopardizing the operative satellites. In this context, autonomous guidance,
navigation and control (GNC) plays a fundamental role in the problem of rendezvous with an uncooperative target.
Especially, the estimation of the relative pose and the prediction of the attitude of the target are crucial for safe proximity
operations.14

To deal with estimation problems, many filtering techniques have been developed. At present time, one of the
most exploited estimation algorithm is the extended Kalman filter8 (EKF). The EKF is based on the main idea of
linearizing the equations of motion and the measurement equations via first-order Taylor expansions around the current
mean and covariance. In some cases, however, the linear assumption may fail due to the nature of the dynamics or
the number of available measurements, leading to inaccurate realization of the local motion. Therefore, alternative
methods capable of accounting for system nonlinearity must be used. A different approach is the unscented Kalman
filter5, 6 (UKF). This technique is based on the unscented transformation, which does not contain any linearization,
and thus provides superior performance with respect to the EKF in highly nonlinear situations. However, the UKF is
often slightly slower than the EKF. Conversely, Park and Scheeres9, 10 proposed a nonlinear filter named high-order
numerical extended Kalman filter (HNEKF), which describes the local nonlinear motion by solving for higher-order
Taylor series and maps the initial uncertainties. Since the prediction steps rely on a fully nonlinear mapping of the
mean and covariance, this method turns out to be more accurate than the EKF. However, the HNEKF is numerically
quite intensive due to the required derivation of the so-called higher-order tensors.

Later, the HNEKF was derived exploiting differential algebra (DA) techniques,11 which significantly simplify
the process, and applied to orbit determination problems.13 Indeed, in the DA framework, the Taylor expansion of the
phase flow is automatically available once the spacecraft dynamics is integrated and thus the need to write and integrate
high-order variational equations is completely avoided. Despite the evident advantages, the DA approach is not free of
drawbacks. More specifically, the approach relies on Taylor expansions and, thus, the problem to be dealt with must be
well behaved. In addition, the computational burden associated to the calculation of the polynomials quickly increases
with the order, and this could limit the current applicability of DA-based HNEKF for onboard applications.

The aim of this work is to assess the performance and onboard applicability of the DA-based HNEKF algorithm
with the target application of estimating the relative pose between two spacecraft during a rendezvous maneuver. For
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Figure 1: Evaluation of the expression 1/(1 + x) in Cr(0) and DA arithmetic.

this purpose, linear and nonlinear algorithms are developed in the DA framework and implemented on a BeagleBone
Black platform, as representative of the limited performance available on onboard processors.

The paper is organized as follows. First, an introduction to DA is given and the derivation of the DA-based
HNEKF is explained. Then, a comparison among different orders of the filter is carried out. Afterwards, the considered
relative pose estimation problem is introduced and the dynamics model is developed. Finally, the performance of the
filters are assessed through numerical simulations.

2. Differential algebra

Differential Algebra techniques allow solving analytical problems through an algebraic approach.2 Similar to the com-
puter representation of real numbers as Floating Point (FP) numbers, DA allows the representation and manipulation of
functions on a computer. Each sufficiently often differentiable function f is represented by its Taylor expansion around
an expansion point truncated at an arbitrary finite order. Without loss of generality, we choose 0 as the expansion
point. Algebraic operations on the space of truncated Taylor polynomials are defined such that they approximate the
operations on the function space Cr(0) of r times differentiable functions at 0. More specifically, each operation is
defined to result in the truncated Taylor expansion of the correct result computed on the function space Cr(0). This
yields the so-called Truncated Power Series Algebra (TPSA).1

To illustrate the process, consider Fig. 1. The expression 1/(x + 1) is evaluated once in Cr(0) (top) and then
in DA with truncation order 3. Starting with the identity function x, we add one to arrive at the function x + 1,
the representation of which is fully accurate in DA as it is a polynomial of order 1. Continuing the evaluation the
multiplicative inversion is performed, resulting in the function 1/(1 + x) in Cr(0). As this function is not a polynomial
any more, it is automatically approximated in DA arithmetic by its truncated Taylor expansion around 0, given by
1− x + x2 − x3. Note that, by definition of the DA operations, the diagram for each single operation commutes. That is
to say the same result is reached by first Taylor expanding a Cr(0) function (moving from the top to the bottom of the
diagram) and then performing the DA operation (moving from left to right), or by first performing the Cr(0) operation
and then Taylor expanding the result.

In addition to algebraic operations, the DA framework can be endowed with natural differentiation and integration
operators, completing the structure of a differential algebra. Intrinsic functions, such as trigonometric and exponential
functions, are built from elementary algebraic operations.2 This way, Taylor expansions of arbitrary sufficiently smooth
functions given by some closed-form expression can be computed fully algebraically in a computer environment. An
implementation of such DA computer routines is available in the software DACE 2.0, which is used to implement the
algorithm presented in this paper.

An important application of DA in engineering applications is the expansion of the flow ϕ(t; x0) of an Ordinary
Differential Equation (ODE) to arbitrary order with respect to initial conditions, integration times and system parame-
ters. The following is a short summary of the underlying concept. For a more complete introduction to DA, as well as
a fully worked out illustrative example of a DA based ODE integrator using a simple Euler step, see.13

Consider the initial value problem {
ẋ = f (x, t)
x(t0) = x0,

(1)

and its associated flow ϕ(t; x0). By means of classical numerical integration schemes, such as Runge-Kutta or multi-
step methods, it is possible to compute the orbit of a single initial condition x0 using floating point arithmetic on a
computer. Starting instead from the DA representation of an initial condition x0, and performing all operations in the
numerical integration scheme in DA arithmetic, DA allows propagating the Taylor expansion of the flow around x0
forward in time, up to the desired final time t f , yielding a polynomial expansion of ϕ(t f ; x0 + δx0) up to arbitrary order.
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The conversion of standard explicit integration schemes to their DA counterparts is rather straightforward. One
simply replaces all operations performed during the execution of the scheme by the corresponding DA operations. Step
size control and error estimates are performed only on the constant part of the polynomial, i.e. the reference trajectory
of the expansion point. The result is an automatic Taylor expansion of the result of the numerical method (i.e. the
numerical approximation to the flow) with respect to any quantity that was initially set to a DA value.

The main advantage of the DA-based approach is that there is no need to derive, implement and integrate varia-
tional equations in order to obtain high-order expansions of the flow. As this is achieved by merely replacing algebraic
operations on floating-point numbers by DA operations, the method is inherently ODE independent. Furthermore, an
efficient implementation of DA such as the DACE 2.0 package, allows us to obtain high-order expansions with limited
computational time.

3. High-order extended Kalman filter

This section is devoted to introduce the algorithm of the high-order DA-based HNEKF and to provide a first assessment
of its performance. The equations of motion and measurement equations describing a generic dynamic system are as
follows:

xk+1 = Φ(tk+1; xk, tk) + wk,

zk+1 = h(xk+1, tk+1) + vk+1,
(2)

where xk is the m-dimensional vector of state, wk is the process noise perturbing the state, zk is the n-dimensional
vector of actual measurements, h is the measurement function, and vk+1 is the measurement noise characterizing the
observation error. The process noise and the measurement noise are assumed to be uncorrelated, that is, E{vi wT

j } = 0,
with the autocorrelations E{wi wT

j } = Qiδi j and E{vi vT
j } = Riδi j for all discrete time indexes i and j.

Starting from the general theory of state estimation, HNEKF sequentially estimate the spacecraft state and the
associated uncertainty by incorporating system nonlinearity in terms of higher-order Taylor expansions and relying on
the assumption that uncertainties can be described using Gaussian statistics.

3.1 The DA-based HNEKF

Consider the system model equations (2). The filtering process can be summarized as follows:

1. Prediction step: at time tk+1, the mean and covariance of the state vector, m−k+1 and P−k+1, and the mean of the
measurements, n−k+1, are estimated as:

m−k+1,i = E{Φi(tk+1; xk, tk) + wk,i}
P−k+1,i j = E{[Φi(tk+1; xk, tk) − m−k+1,i + wk,i][Φ j(tk+1; xk, tk) − m−k+1, j + wk, j]}
n−k+1,p = E{hp(xk+1, tk+1) + vk+1,p},

(3)

where i, j = 1, ...,m, p = 1, ..., n, E{} denotes the expectation operator, and m−k+1,i, P−k+1,i j and n−k+1,l are the
components of m−k+1, P−k+1, and n−k+1 respectively;

2. Update step: the new measurements acquired at time tk+1, zk+1, are incorporated into the updated estimate of the
state vector and covariance matrix as follows:

Pzz
k+1,pq = E{[hp(xk+1, tk+1) − n−k+1,p + vk+1,p][hp(xk+1, tk+1) − n−k+1,q + vk+1,p]}

Pxz
k+1,ip = E{[Φi(tk+1; xk, tk) − m−k+1,i + wk,i][hp(xk+1, tk+1) − n−k+1,p + vk+1,p]}
Kk+1 = Pxz

k+1(Pzz
k+1)−1

m+
k+1 = m−k+1 + Kk+1(zk+1 − n−k+1)

P+
k+1 = P−k+1 − Kk+1Pzz

k+1KT
k+1,

(4)

where q = 1, ..., n, Kk+1 is the Kalman gain matrix, Pxz
k+1 is the cross-covariance matrix of the state and the

measurement, and Pzz
k+1 is the covariance matrix of the measurements.

The DA implementation of the HNEKF relies on the fact that DA can easily provide the arbitrary order Taylor
expansion of bothΦ and h in Eq. (2). Thus, the arbitrary order expansion of the equations of motion and measurement
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equations can be easily written, and component-wise reads:

xk+1,i = Φi(tk+1; m+
k , tk) +

∑v
r=1

1
r!

Φ
i,γ1...γr
(tk+1,tk)δxγ1

k,1 . . . δxγr
k,m + wk,i,

zk+1,p = hp(Φ(tk+1; m+
k , tk), tk+1) +

∑v
r=1

1
r!

hp,γ1...γr
(tk+1,tk) δxγ1

k,1 . . . δxγr
k,m + vk+1,p,

(5)

where v is the order of the expansion, γi ∈ {1, ...,m}, Φ
i,γ1...γr
(tk+1,tk) includes the higher-order partials of the solution flow,

which map the deviations at time k to time k + 1, and hp,γ1...γr
(tk+1,tk) includes the higher-order partials of the measurement

function. Both Φ
i,γ1...γr
(tk+1,tk) and hp,γ1...γr

(tk+1,tk) are obtained by integrating the equations of motion and evaluating the measurement
equations in the DA framework.

The Taylor polynomials of Eq. (5) can be inserted into Eqs. (3) and (4) to obtain the steps of the high-order
extended Kalman filter:

1. Prediction step: at time tk+1, the mean and covariance of the state vector, m−k+1 and P−k+1, and the mean of the
measurements, n−k+1, are estimated as:

m−k+1,i = Φi(tk+1; m+
k , tk) +

∑v
r=1

1
r!

Φ
i,γ1...γr
(tk+1,tk)E{δxγ1

k,1 . . . δxγr
k,m}

P−k+1,i j =
∑v

r=1
∑v

s=1
1

r!s!
Φ

i,γ1...γr
(tk+1,tk)Φ

j,ξ1...ξs
(tk+1,tk)E{δxγ1

k,1 . . . δxγr
k,mδxξ1

k,1 . . . δxξs
k,m}+

−δmi
k+1δm

j
k+1 + Qi j

k

n−k+1,p = hp(Φ(tk+1; m+
k , tk), tk+1) +

∑v
r=1

1
r!

hp,γ1...γr
(tk+1,tk) E{δxγ1

k,1 . . . δxγr
k,m},

(6)

where ξi ∈ {1, ...,m} and δmi
k+1 = Φi(tk+1; m+

k , tk) − m−k+1,i;

2. Update step: the new measurements acquired at time tk+1, zk+1, are incorporated into the updated estimate of the
state vector and covariance matrix as follows:

Pzz
k+1,pq =

∑v
r=1

∑v
s=1

1
r!s!

hp,γ1...γr
(tk+1,tk) hq,ξ1...ξs

(tk+1,tk) E{δxγ1
k,1 . . . δxγr

k,mδxξ1
k,1 . . . δxξs

k,m}+
−δnp

k+1δn
q
k+1 + Rpq

k+1

Pxz
k+1,ip =

∑v
r=1

∑v
s=1

1
r!s!

Φ
i,γ1...γr
(tk+1,tk)h

p,ξ1...ξs
(tk+1,tk) E{δxγ1

k,1 . . . δxγr
k δxξ1

k,m . . . δxξs
k }+

−δmi
k+1δn

p
k+1

Kk+1 = Pxz
k+1(Pzz

k+1)−1

m+
k+1 = m−k+1 + Kk+1(zk+1 − n−k+1)

P+
k+1 = P−k+1 − Kk+1Pzz

k+1KT
k+1,

(7)

where δnp
k+1 = hp(Φ(tk+1; m+

k , tk), tk+1) − n−k+1,p.

If the case of variables with Gaussian random distributions is considered, the higher-order moments E{δxγ1
k . . . δxγp

k }
can be completely described by the first two moments (i.e., mean and covariance), and can be easily computed in terms
of the covariance matrix using Isserlis’ formula on the monomials of the Taylor polynomial.4 It is worth to stress that,
in the DA framework, the high-order partials integration, required by standard HNEKF, is completely avoided.

3.2 Order comparison

Before applying the DA-based HNEKF to the relative pose estimation problem, the effects of considering high-order
expansion of the dynamic flow in the extended Kalman filter is discussed.

Consider the illustrative example of a spacecraft at the pericenter of an elliptical orbit of eccentricity e = 0.5,

moving in Keplerian dynamics. Assume the lengths are scaled by the orbit pericenter rp and the time by
√

r3
p/µ. Thus,

the nominal initial state is reported in Table 1. The initial position of the spacecraft is assumed to be uncertain with
standard deviations 3σx = 0.008 and 3σy = 0.08 on the x and y components of the position vector, with no correlation
between the different components. The uncertain initial state is propagated forward to the final epoch t f = 0.95 T ,
where T = 2π is the nominal period of the orbit. First of all, a Monte Carlo simulation is carried out to propagate 105
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Table 1: Initial conditions in the 2BP.

x0 y0 z0 vx,0 vy,0 vz,0

1 0 0 0
√

1 + e 0

x [-]
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

y
 [

-]

-2

-1.5

-1

-0.5

0 Monte Carlo

Order 1

Order 2

Order 3

Figure 2: Propagated mean and covariance for the illustrative example on two-body dynamics: comparison between a
Monte Carlo simulation and the DA-based estimation at different orders. Grey dots represent the propagated samples
of the Monte Carlo simulation.

initial conditions to t f and to compute the resulting mean and covariance, which are used as reference for the following
analysis. As can be seen from Fig. 2, the samples of the Monte Carlo simulation at t f exhibit an evident nonlinear
distribution.

Using the techniques introduced in Sect. 2, DA is then used to compute arbitrary order Taylor expansions of the
spacecraft state at t f with respect to x0 and y0. The resulting polynomials are used to compute the propagated mean and
covariance using the formulas of Eq. (6). Fig. 2 reports the results obtained for different expansion orders. As shown
in the figure, the first order expansion fails to accurately estimate the exact mean and covariance, which are represented
by the result of the Monte Carlo simulation. The second order expansion already introduces sufficient information
for an accurate representation of both moments. The third order expansion do not provide further improvements in
terms of accuracy. Thus, being based on a Gaussian representation of the propagated uncertainties, the accuracy of the
extended Kalman filter significantly benefits of a second order expansion of the flow of the dynamics. However, no
relevant improvement is obtained with higher orders.

Based on these results, the assessment of the performance of the DA-based HNEKF will be limited to the use of
first and second order expansions in the following analyses.

4. Relative Pose Estimation

This paper focuses on exploiting the proposed DA-based HNEKF to face the challenging problem of estimating the
spacecraft state for proximity operations during a rendezvous with an uncooperative target. In particular, the ESA
e.deorbit mission3 is considered as reference and Envisat is selected as target satellite.

In the following analysis, some assumptions are made. Firstly, an a priori knowledge of both chaser and target
is assumed, i.e. the inertia properties are perfectly known. Secondly, the chaser motion is supposed to be deterministic
and, thus the related data are not affected by noise and uncertainties. Finally, neither flexible dynamics nor external
disturbances are considered. It should be noticed that neglecting external disturbances and flexibility implies the
decoupling of the relative translational and rotational dynamics.

4.1 Relative translational dynamics

The relative translational dynamic equations are developed in the local vertical local horizontal (LVLH) frame fixed on
the chaser. In this frame the target relative position rr and velocity vr can be defined as:

5

DOI: 10.13009/EUCASS2017-607



ON-BOARD DA-BASED STATE ESTIMATION

rr = xr̂ + yθ̂ + zĥ (8)

vr = ẋr̂ + ẏθ̂ + żĥ (9)

where x, y and z are the three components of rr in the chaser LVLH frame and r̂, θ̂ and ĥ are the versors of the
considered triad. The relative translational dynamics are governed by the following equations:12

ẍ − 2ν̇ẏ − ν̈y − ν̇2x = −µ(r̄ + x)/[(r̄ + x)2 + y2 + z2]3/2 + µ/r̄2 (10)

ÿ + 2ν̇ẋ + ν̈x − ν̇2y = −µy/[(r̄ + x)2 + y2 + z2]3/2 (11)

z̈ = −µz/[(r̄ + x)2 + y2 + z2]3/2 (12)

where µ is the gravitational parameter, r̄ is the distance from the Earth center to the chaser and ν is the true anomaly.
Finally, the motion of the chaser is described by the following equations:

¨̄r = r̄ν̇2 − µ/r̄2 (13)

ν̈ = −2˙̄rν̇/r̄ (14)

4.2 Relative rotational dynamics

As for the rotational dynamics, the relative orientation of the body-fixed reference frame on the target with respect to
the body-fixed reference frame on the chaser can be described through a rotation matrix Γ. Consequently, the relative
angular velocity and acceleration of the target can be expressed as follows:

ωr = ωt − Γωc (15)

ω̇r = ω̇t − Γω̇c + ω̇app (16)

ω̇app = ωr × Γωc (17)

where ωc and ωt are the angular velocity of the chaser and the target expressed in their body-fixed reference frame,
respectively, whereas ωr is the relative angular velocity expressed in the target body-fixed reference frame.

The relative attitude of the target can be described parameterizing the rotation matrix Γ. To this aim, the Modified
Rodrigues Parameters (MRP) are adopted in this study.7 The MRP are related to quaternions and to the rotation matrix
by the following relations:

ζ =
q̃

1 + q0
(18)

Γ(ζ) = I3 − αA
1 [ζ×] + αA

2 [ζ×]2 (19)



αA
1 = 4 1−ζTζ

(1+ζTζ)2

αA
2 = 8 1

(1+ζTζ)2

(20)

where ζ are the MRP, q̃ are the quaternions and I3 is the identity matrix.
The time evolution of the MRP is governed by Eq. 21.

ζ̇ =
1
4
Σ(ζ)ωr (21)

Σ(ζ) = (1 − ζTζ)I3 + 2ζζT + 2[ζ×] (22)

6
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As for the dynamics, the chaser motion is described by the torque-free Euler equations, while the relative attitude
dynamics can be obtained substituting kinematics relationship in the Euler absolute equations of the target spacecraft.
The resulting dynamic system is:

J tω̇r + ωr × J tωr = Mapp − Mg − Mci (23)

Mapp = J tωr × Γωc (24)

Mci = J tΓω̇c (25)

Mg = Mgc + Mgcoup (26)

Mgc = Γωc × J tΓωc (27)

Mgcoup = (ωr × J tΓωc + Γωc × J tωr) (28)

where J t is the matrix of inertia of the target, Mapp is the apparent torques, Mci is the chaser-inertial torques and Mg

is the gyroscopic torques.

4.3 Measurement model

In real application relative position and relative attitude measurements can be obtained by processing images from a
camera. In this study, they are generated numerically exploiting a suitable error model.

While the relative position is already part of the state vector, and thus it is linearly related to it, the attitude
is provided in terms of roll, pitch and yaw angles (hereinafter also referred to as φ, θ and ψ). Consequently, it is
necessary to derive the rotation matrix Γ from the MRP (see Eq. (19)) and, afterwards compute the roll, pitch and yaw
angles from the associated parameterization. The relations binding the MRP and the measured attitude introduce other
nonlinearities in the problem.

For the measurements generation, the true states of the target spacecraft are computed through the integration of
the dynamic equations (see Sect. 4.1-4.2) and then the related measured quantities are derived. Afterwards, some noise
is introduced as an exponentially correlated random variable according to the following model:

E(tk+1) = KE(tk) +
√

1 − K2 · N(0, σ) (29)

K = exp(−1/( f τ)) (30)

where E is the error w.r.t. the true states, N(0, σ) is a random number generated with a normal distribution of zero
mean and standard deviation σ, f is the measurement acquisition frequency and τ is the autocorrelation time. In this
model, the error at time k + 1 is exponentially correlated to the error at the previous instant, and this correlation decays
with a time scale defined by τ. Considering a camera, this seems to be a more reasonable model w.r.t. the Gaussian
one in which error values at different time instant are completely uncorrelated.

4.4 Software architecture

Fig. 3 reports the software architecture, which is made up of three main blocks. The first one is the "dynamics sim-
ulator+noise generator" that receives as inputs the initial states, then propagates the dynamics through a variable-step
integrator (Runge-Kutta78) and generates the measurements adding noise computed with the exponentially correlated
random model. These computations are performed in advance and the outputs are loaded in memory before running
the filter.

For the filtering, the decoupling of the dynamics is exploited to split the problem into two parts: the estimation
of the relative translational states (rr and vr) and the estimation of the relative rotational states (ζ and ωr). In this
way, 6 DA variables have to be initialized for each filter instead of 12, lightening the computational burden. In both
filters the required measurements and chaser absolute state are loaded at the beginning and an initial estimate of the
relative states, in terms of mean and covariance, has to be provided. For the relative dynamics propagation inside the

7
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filter, a 4th-order Runge-Kutta integrator is exploited since it is a better solution for embedded systems in terms of
computational effort.

Finally, the estimated relative state is compared with the true state propagated by the dynamics simulator to
assess the performance of the filters.

Dynamics Simulator
+

Noise Generator

Translational 
Dynamics Filter

Rotational
Dynamics Filter

𝑟",$
𝑣",$

𝜁'()

𝜔",$

𝜔+

𝑟+̅, 𝑟̅+̇, �̇�+

𝑟",/'0(

𝜑/'0(
𝜗/'0(
𝜓/'0(

• RK78

• RK4

• RK4

True states
Performance 
assessment𝜁$

𝜔",'()

𝑟",'()

𝑣",'()

𝑚"5),$, 𝑃"5),$

𝑚)",$, 𝑃)",$

𝑟+̅,$,𝑟̅+̇ ,$, �̇�+,$, 𝜔+,$

Offline Embedded

Figure 3: Software architecture.

5. Results

In the numerical analysis, the chaser and target are assumed to be on the same orbit at a reasonable distance for a proper
functioning of the camera. The initial conditions of the relative states are reported in Table 2. The attitude is initialized
randomly, while the angular velocity is selected in order to have an absolute value of about 2.5 deg/s.

In the following sections, first, the accuracy and robustness of the first and second order filter are assessed, and
then an analysis on the required computational time is performed in order to verify the real-time feasibility.

Table 2: Initial conditions.

Tr. Dyn. Rot. Dyn.
x (m) -0.002 φ (rad) 1.66
y (m) -31.17 θ (rad) 2.27
z (m) 0 ψ (rad) -0.38
ẋ (m/s) -3.5e-6 ωr,x (rad/s) 0.02
ẏ (m/s) -2.0e-6 ωr,y (rad/s) 0.02
ż (m/s) 0 ωr,z (rad/s) 0.04

5.1 Accuracy and robustness analysis

Before presenting the results, some comments are provided to guide the reader through the following analyses. First,
the target velocity can be assumed to be the most uncertain variables since neither a priori knowledge nor direct mea-
surements are available. Then, when limited-resource systems are considered, low measurement acquisition frequency
could be imposed or at least beneficial. Therefore, a Monte Carlo-based sensitivity analysis is carried out to assess the
robustness of the first and second order filter with various acquisition frequencies and initial uncertainty in the relative
velocity. The examined cases are reported in Table 3, for the translational filter, and in Table 4, for the rotational filter,
being σi,0 and σs

i the initial standard deviation and the sensor standard deviation, respectively, of the variable i.
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Table 3: Translational dynamics: sensitivity to initial velocity uncertainty and acquisition frequency.

Dynamics Sensors Frequency
σrr ,0 (m) 1 σs

x,y (m) 0.02 0.1 Hz to 3 Hz
σvr ,0 (m/s) K*0.1 σs

z (m) 0.03
K = [0.1,0.5,1,5,10]

Table 4: Rotational dynamics: sensitivity to angular velocity uncertainty and acquisition frequency.

Dynamics Sensors Frequency
σζ,0 () 0.02 σs

φ,θ (rad) 0.003 0.1 Hz to 3 Hz
σωr ,0 (rad/s) K*0.01 σs

ψ (rad) 0.006

K = [0.1,0.5,1,5,10]

For each case, 1000 samples are generated around the true initial conditions, according to the statistics, and then
the furthest 100 are selected and used as initial estimate of the relative state in the filter. This choice is motivated by
the will to study the worst circumstances, in which the nonlinearities are expected to play a prominent role.

Afterwards, the performance are quantified by means of some statistical indices, reported in Eqs. (31) and (32).

nµ̄ =

∑100
i=1 RMS Ei

100
(31)

nσµ̄ =
[∑100

i=1 (nµ̄ − RMS Ei)2

100

] 1
2 (32)

RMS Ei is the root mean square error of the estimated variables computed at steady state for the ith simulation,
nµ̄ and nσµ̄ are the mean and the standard deviation of RMSE, respectively, considering the filter of order n. Fig. 4
provides a deeper insight of the indices: µ̄ gives the mean accuracy of the filter, while σµ̄ quantifies the dispersion
around the mean. If the standard deviation is high, the final accuracy strongly depends on the estimate of the initial
conditions and thus large initial errors may result in bad performance or even failure.

Figure 4: Graphical representation of the statistical indices.

5.1.1 Translational dynamics filter

The translational dynamics is almost static and linear since the two spacecrafts are very close on the same orbit, which
is nearly circular. Therefore, high-order filters do not provide better performance w.r.t. a linear one, which is already
capable of following the dynamic evolution. Indeed, both first and second order filters succeed in all the considered
conditions of acquisition frequency and initial velocity uncertainty with the same estimation error at steady state, which
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is in the order of 10−2 m for the position and 10−7 m/s for the velocity. As example, in Fig. 5 the absolute position and
velocity errors considering a frequency of 3 Hz and σrr ,0 = 0.01 m/s are reported.

(a) (b)

Figure 5: Position (a) and velocity (b) absolute error with a frequency of 3 Hz and σrr ,0 = 0.01 m/s.

5.1.2 Rotational dynamics filter

Regarding the rotational dynamics filter, the nonlinearities affect the estimation more significantly, especially in case
of high uncertainties and low observability of the system.

In order to compare the two filters and have a deeper insight into their performance, the ratios 2µ̄

1µ̄
and 2σµ̄

1σµ̄
are

computed and reported in Tables 5-6. The superscript reports the success percentage (i.e., when the filter converges) of
the second order filter, while the subscript the success percentage of the first order filter.

On one hand, it can be observed that first and second order filters present the same performance for low uncer-
tainties and high frequency. However, moving to high uncertainties and low frequency (shaded area), the second order
filter starts outperfoming the first order filter. Indeed, even though 1µ̄ is very similar to 2µ̄, 1σµ̄ is significantly larger
than 2σµ̄, namely the first order filter features a higher dispersion of the steady-state estimation error. This means that,
in case of large deviations from the true initial conditions, the first order filter performance deteriorate leading to final
estimates up to 2 order of magnitude worse than the second order filter. For instance, Fig. 6 reports the MRP and
angular velocity absolute error considering an acquisition frequency of 0.4 Hz, σωr ,0 = 0.05 rad/s and inaccurate initial
estimate of the states.

Finally, the second order filter turns out to be also more robust in terms of failure. Indeed, in some cases, the fisrt
order filter do not manage to deal with the nonlinearity and diverges, while the second order filter converges.

(a) (b)

Figure 6: MRP (a) and angular velocity (b) absolute error with a frequency of 0.4 Hz, σωr ,0 = 0.05 rad/s and inaccurate
initial estimate.
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Table 5: Ratio 2µ̄

1µ̄
for the MRP (a) and the angular velocity (b).

Freq. σωr ,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.995100

100 0.991100
100 0.882100

97 0.37354
17 −0

0

0.4 0.997100
100 0.997100

100 0.997100
100 0.790100

75 0.75999
81

1 0.999100
100 0.998100

100 0.999100
100 0.998100

100 0.993100
100

3 1.000100
100 1.000100

100 1.000100
100 1.000100

100 1.000100
100

(a)

Freq. σωr ,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.999100

100 0.999100
100 0.985100

97 0.42154
17 −0

0

0.4 0.999100
100 0.999100

100 0.999100
100 0.757100

75 0.79899
81

1 0.999100
100 0.999100

100 0.999100
100 0.999100

100 0.997100
100

3 1.000100
100 1.000100

100 1.000100
100 1.000100

100 1.000100
100

(b)

Table 6: Ratio 2σµ̄

1σµ̄
for the MRP (a) and the angular velocity (b).

Freq. σωr ,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.688100

100 0.386100
100 0.009100

97 0.35954
17 −0

0

0.4 0.782100
100 0.752100

100 0.669100
100 0.003100

75 0.01599
81

1 0.795100
100 0.791100

100 0.778100
100 0.435100

100 0.060100
100

3 0.797100
100 0.797100

100 0.799100
100 0.771100

100 0.645100
100

(a)

Freq. σωr ,0 (rad/s)
(Hz) 0.001 0.005 0.01 0.05 0.1
0.1 0.839100

100 0.522100
100 0.048100

97 0.30654
17 −0

0

0.4 0.830100
100 0.803100

100 0.721100
100 0.004100

75 0.01999
81

1 0.788100
100 0.783100

100 0.771100
100 0.421100

100 0.382100
100

3 0.821100
100 0.807100

100 0.804100
100 0.755100

100 0.687100
100

(b)
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5.2 Computational time on the BeagleBone Black

This section addresses the assessment of the required computational effort of the DA-based HNEKF on the BeagleBone
Black (BBB) Single Board Computer, based on an ARMv7 processor (Cortex A8) @ 1GHz with 512Mb of RAM. The
BBB is deemed to be representative of the limited computational capability available on onboard space processors. The
filter is entirely compiled out of C11 code directly on the target ARM platform, which is running a tailored Linux 4.9
kernel and proper GCC compiler.

In order to asses the feasibility of the developed filter on the embedded hardware, a Real-Time Operative System
(RTOS) should have been employed, allowing the real time scheduling of the filter task at the desired frequency. How-
ever, the filter does not really acquire measurements since those are generated in advance by the dynamics simulator.
Therefore, an accurate real time scheduling is not strictly required. Indeed, the computational time required by each
step of the filter can be measured and compared to the time step at the desired frequency, checking that it is smaller.

To this aim, the duty cycle concept is introduced. The duty cycle represent the fraction of the available sampling
time which is used by the filter task, as shown in Fig. 7. Therefore, given the execution time texec and defining the
sampling time as:

ta =
1
f

(33)

the duty cycle is:

DC =
texec

ta
(34)

Figure 7: Duty cycle concept

The analysis is carried out considering different sampling frequency and processor clock frequency on the
BBB. More specifically, the sampling frequencies are f = [0.1, 0.4, 1, 3] Hz while the clock frequencies are clk =

[100∗, 275, 720, 1000] MHz
(∗ Interpolated

)
. First and second order filters are executed considering both the transla-

tional and rotational dynamics. The results of the execution time and duty cycle are reported in Table 7.

Table 7: Filter execution on BBB

Execution Time [s] - Order 1
f\clk 100 275 720 1000
0.1 0.381 0.303 0.110 0.006
0.4 0.115 0.091 0.035 0.004
1 0.062 0.049 0.018 0.002
3 0.026 0.021 0.008 0.001

Duty Cycle [%] - Order 1
f\clk 100 275 720 1000
0.1 3.8% 1.2% 0.1% 0.0%
0.4 4.6% 0.4% 0.0% 0.0%
1 6.2% 0.3% 0.0% 0.0%
3 7.8% 0.2% 0.0% 0.0%

Execution Time [s] - Order 2
f\clk 100 275 720 1000
0.1 1.342 1.072 0.413 0.043
0.4 0.426 0.339 0.129 0.014
1 0.25 0.199 0.077 0.011
3 0.124 0.099 0.039 0.007

Duty Cycle [%] - Order 2
f\clk 100 275 720 1000
0.1 13.4% 14.4% 5.9% 0.3%
0.4 17.0% 5.8% 0.7% 0.0%
1 25.0% 5.0% 0.4% 0.0%
3 37.2% 3.7% 0.1% 0.0%

It is clear that both first and second order filters are always feasible, as the duty cycle remains always well
below the 50%, thus allowing for the filtering and also other necessary tasks. Not surprisingly, the duty cycle increases
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when reducing the clock frequency as the processor is capable of executing less operation per seconds. Moreover, at
constant clock frequency, the duty cycle reduces when reducing the sampling frequency, demonstrating that the longer
propagation time span, needed for computing the expectations, is not highly influencing the overall computational time.
Concentrating on the lower clock frequency, it is possible to see how the second order filter is more feasible at lower
sampling frequencies, that are the cases in which this filter outperforms the first order version.

6. Conclusion

The work investigated the possibility and assessed the advantages of onboard 6DoF state estimation using DA tech-
niques. The problem of real-time relative pose estimation during proximity operations has been considered as target
application, using the e.deorbit mission with the target Envisat as reference scenario. To attain this goal, a DA-based
HNEKF has been developed and implemented on a BeagleBone Black platform, which is deemed to be representative
of the limited computational performance available on current onboard space processors. The results show that using
orders greater than two does not improve the accuracy of the estimation provided by the Kalman filter, which has been
proven to be related to the hypothesis of the filter that all random distributions are Gaussian and, then, completely
described by their mean and covariance. In addition, the second order filter tends to outperform the classical first order
counterpart either for relatively large initial errors and uncertainties, or for relatively low acquisition frequencies. Nev-
ertheless, the second order filter outperforms its first order version in terms of final error dispersion and robustness to
failure. Finally, the tests have demonstrated that the second order filter can be run on an ARM processor @ 100 MHz
for the target application.
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