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Abstract 

The present paper deals with the analysis of the aerodynamic damping of a fragment of a space 

launcher during a free fall phase. The work is focused on the estimation of the so called aerodynamic 

pitch damping coefficient, one of the most important quantity to be determined for the prediction of 

the spatial evolution and dynamics of a rigid body under free motion in the low altitude Earth 

atmosphere. A literature survey of the most important theories is presented as well as the general 

mathematical approach that starts from the governing equations of a 6dof rigid body and provides their 

simplified version for the purposes of engineering applications. According to classical approaches, in 

particular dealing with the application of the slender body theory, a discussion concerning the 

theoretical grounds of the software DATCOM shall be presented and its applicability limits outlined. 

A most reliable CFD methodology has been applied for a VEGA C LV fragment, in a phase where the 

motion is close to a stable attitude. In this configuration the body is subjected to damped oscillations 

associated to a periodic temporal evolution of the angle attack (t), around the equilibrium position 

eq. 

1. Introduction 

The estimation of aerodynamic coefficients has been the subject of several theoretical, numerical and experimental 

studies, given the enormous importance in the field of fluid dynamics and flight dynamics. Attention has been 

focused on the study and analysis of the aerodynamic pitch damping coefficient of objects moving in a fluid, an old 

problem that has been faced since the early studies in the field of aviation at the beginning of the last century (e.g. 

Bryan, 1911). Fundamental theories can be found in reference textbooks treating aircraft flight mechanics (such as 

Etkin and Reid 1996) and dealing with missiles aerodynamics and design (e.g. Nielsen 1988, Chin 1961). To this 

extent, the most used approximation is the so-called Slender-body Theory, a simplified theoretical approach used for 

missile and airship design and a large body of literature has been devoted to this subject (including, among many, 

Munk 1924, Tsien 1938, Adams and Sears, 1953). More recent researches in literature, show that CFD is 

increasingly being used to create an aerodynamic database for aircraft configurations and axisymmetric flight bodies. 

It provides an accurate and efficient way to estimate the static stability derivatives since this involves steady-state 

simulations for a fixed geometry. The situation is different regarding the evaluation of dynamic derivatives since this 

involves unsteady simulations and/or moving geometries, thus decreasing the computational efficiency. However 

there is a strong need to improve CFD techniques for predicting dynamic derivatives, mainly for two reasons: a) 

wind tunnel tests are very expensive, time consuming  and difficult to perform with the possible occurrence of 

blockage, scaling and Reynolds number effects; b) semi-empirical codes although having a low computational cost,  

provide reliable results only in a limited range of flow conditions. Navier-Stokes CFD solvers have reached a level of 

robustness and maturity to support the use of routine on relatively inexpensive computer clusters. The prediction of 

dynamic derivatives requires the ability to compute the aerodynamic response to time-dependent prescribed motions, 

which are used to excite the aerodynamics of interest. CFD has potential for complementing experimental testing 

techniques for obtaining these aerodynamic parameters. The physical limitations and kinematic restrictions of wind 

tunnel testing including model motion as well as the interference effects of the model support are not factors in the 

computational analysis. Physical effects can be separated from the CFD solutions in a way that can be difficult from 
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wind tunnel or flight test data. The purpose of this activity is to numerically evaluate the pitch damping coefficients 

in subsonic conditions for a fragmented configuration of Vega C.  CFD analyses (using ANSYS Fluent) have been 

performed by simulating an unsteady pitching motion of the body around its center of gravity through the use of 

transient boundary conditions. This motion consists of small forced oscillations around a given equilibrium 

configuration. When this motion deals with large angles of attack and/or high frequencies   the use of semi-empirical 

codes like MISSILE DATCOM (based on the “slender body theory”)  provide unreliable results, so CFD analyses 

are required. A mesh sensitivity analysis  has been performed in order to check the grid independence as well as 

simulations to study the influence of the time step size.  A parametric analysis has been performed to study the 

influence of  motion frequency on damping coefficients: this is  important  because it is hard to know the exact initial 

conditions for the free fall motion.  The knowledge of aerodynamic damping coefficients  is a key point  to determine 

the stages’ re-entry trajectory  in ordinary  and extraordinary conditions (for example an unexpected explosion 

occurring during the lift-off phase). 

2. Governing Equations 

The definition of pitch aerodynamic damping  derives from the mathematical model of governing equations for a 6 

d.o.f. rigid body. These equations are relative to an inertial frame of reference but usually they are written in a 

moving frame of reference which is solidal with the body (“Body Frame of Reference”, BFR, see Figure 1). This is 

because in such reference system the moments of inertia are not depending on time, that is a clear advantage for 

calculations. Stability derivatives can be written in this frame of reference whose orientation with respect to a fixed 

system is given by  Euler angles. The governing equations  written in the BFR are: 

 

{
  
 

  
 

𝑋 = 𝑚(𝑢̇ + 𝑞𝑤 − 𝑟𝑣)

𝑌 = 𝑚(𝑣̇ + 𝑟𝑢 − 𝑝𝑤)

𝑍 = 𝑚(𝑤̇ + 𝑝𝑣 − 𝑞𝑢)

𝐿 = 𝐼𝑥 𝑝̇ + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟 − 𝐼𝑥𝑧(𝑝𝑞 + 𝑟̇)

𝑀 = 𝐼𝑦 𝑞̇ + (𝐼𝑥 − 𝐼𝑧)𝑟𝑝 − 𝐼𝑥𝑧(𝑝
2 − 𝑟2)

𝑁 = 𝐼𝑧𝑟̇ + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞 − 𝐼𝑥𝑧(𝑞𝑟 + 𝑝̇)

  

 

where (u, v, w, p, q, r) and ( u̇, v̇, ẇ, ṗ, q̇, ṙ) represent  the velocity and acceleration components respectively  while 

forces and moments are given by (X, Y, Z, L,M, N) .  

 

 

Figure 1: (B.F.R.  and inertial frame of reference) 

 
Such a model is simplified since it does not take into account the following effects: Coriolis force, Earth’s surface 

curvature and density variation with altitude. Since the aim of this work is to consider a body of revolution (that is 

axi-symmetric), the model described in previous equations can be reduced to a 3 d.o.f. system where only the c.o.g. 

(center  of gravity) motion is considered . Furthermore, it is assumed that the pitching motion is independent from 

the c.o.g. motion (this hypothesis is acceptable when the frequency of pitching motion is high with respect to the 

c.o.g. velocity). In conclusion the only (scalar) equation that must be taken into account is the following one related 

to pitching motion:  
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𝑀 = 𝐼𝑦𝜃̇ = 𝐼𝑦 𝑞 

 

It is worth to underline that spin and “Magnus” effects are neglected as well as the presence of lateral forces, wind 

and gusts. The change of position of the center of pressure  is not taken into account as well. 

As a further clarification, in the following the theory of small perturbations around an equilibrium configuration is 

presented; the aim is to link the concepts of aerodynamic damping and dynamic stability. A Taylor series expansion 

truncated at first order is carried on, keeping in mind that aerodynamic forces are functionals depending not only on 

the actual value of state space variables but also from their time history. For slow motions it is reasonable to assume 

that forces and moments are a function only of the instantaneous dynamic state (represented by the components of 

velocity  u,v,w,p,q,r), discarding accelerations. 

For low values of α an expansion around t can be carried out: 

 

𝛼(𝜏) = 𝛼(𝑡) + 𝛼 ̇ (𝑡)(𝑡 − 𝜏) +
1

2
𝛼̈(𝑡)(𝜏 − 𝑡)2 + 𝐻.𝑂. 𝑇.   

So the pitching moment  is: 

 

𝑀(𝑡) = 𝑀[𝛼(𝑡), 𝛼̇(𝑡), 𝛼̈(𝑡) … . . ] 
 

If  M(t) is not a multivalued function , it is possible to expand in Taylor series around t=0. Then truncating at first 

order one obtains : 

 

𝛥𝑀 ≔ 𝑀(𝑡) − 𝑀(0) ≅ 𝑀𝛼[𝛼(𝑡) − 𝛼(0)] + 𝑀𝛼̇[𝛼̇(𝑡) − 𝛼̇(0)] + 𝑀𝛼̈[𝛼̈(𝑡) − 𝛼̈(0)] 
where : 

𝑀𝛼 ≔ 
𝛿𝑀

𝛿𝛼
  at 𝛼 = 𝛼(0) 

𝑀𝛼̇ ≔ 
𝛿𝑀

𝛿𝛼̇
  at 𝛼̇ = 𝛼̇(0) 

𝑀𝛼̈ ≔ 
𝛿𝑀

𝛿𝛼̈
  at 𝛼̈ = 𝛼̈(0) 

 

If the body motion is slow enough, as said before, the third contribution related to the acceleration of α can be 

neglected, thus leading to this simple relationship: 

 

𝛥𝑀(𝑡) ≅  𝑀𝛼Δ𝛼+𝑀𝛼̇∆𝛼̇+ 𝑀𝑞 

 

where the contribution provided by pitch rate is also included. It is important to underline that ΔM is the perturbation 

term with respect to the reference condition and  Mq ≔
∂M

∂q
. In the hypothesis of small perturbations the pitching 

equation can  then be written as: 

Iy∆θ̈ = ΔM = MαΔα+Mα̇∆α̇+ MqΔq 

 

By introducing the definitions of  Mα , Mα̇ , Mq as well as the definition of moment coefficient, it is obtained: 

 

Iy∆θ̈ = q0SREFLREF
δCm
δα

Δα + q0SREFLREF
δCm
δα̇

∆α̇ + q0SREFLREF
δCm
δq

Δq 

 

Where SREF and LREF are reference surface and length respectively. It is then possible to introduce the definitions of 

𝑞̂ ∶=  
𝑞 𝐿𝑅𝐸𝐹

2 𝑉0
 and 𝛼̂̇ ≔  

𝐿𝑅𝐸𝐹 𝛼̇

2 𝑉0
  (respectively non-dimensional pitch rate and non-dimensional angle of attack) in order 

to render non dimensional all the derivatives that appear in: 

 

Iy∆θ̈ =  q0SREFLREF
δCm

δα
Δα +

q0SREFLREF
2

2V0

δCm

δα̂̇
∆α̇ +

q0SREFLREF
2

2V0

δCm

δq̂
Δq 

 

The following quantities can be defined: 

 

Cmα: =  
δCm
δα

 

Cmq: =  
δCm
δq̂
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Cmα̇: =  
δCm

δα̂̇
 

 

By simply grouping the common terms at the right hand side, it becomes eventually: 

 

Iy∆θ̈ = q0SREFLREFCmαΔα +
q0SREFLREF

2

2V0
(Cmα̇∆α̇ + CmqΔq) 

 

It is fundamental to notice that the two quantities q , α ̇ are different because they are related to two different type of 

motions. However in many applications where the trajectory of the body remains linear the condition q=α ̇   is 

verified. Nevertheless the two quantities Cmq and Cmα̇ are not coincident also in rectilinear flight since they are 

stability derivatives and the physical interpretation remains different.  

2. Datcom Approach 

The “Slender Body Theory” was originally formulated by Munk [1] and Tsien [2] in order to evaluate the 

aerodynamic actions on bodies of revolution under the following basilar assumptions: “Slender” bodies and small 

angles of attack. The theory was then extended first by Multhopp [3] including the aerodynamic interaction with 

fuselage and then by Allen [4] who introduced the viscosity effects. First of all it is important to explain more clearly 

the meaning of the term “slender”. Tsien stated that the theory is suitable for sharp projectiles in supersonic 

conditions. In fact the meaning of “slender” is deeply related to the flow regime conditions. 

For supersonic flows a body is said to be “slender” if it “lies well” within the Mach cone that originates from the 

body’s tip (see Figure 2): 

 

Figure 2: (Mach cone for a sharp projectile) 

Such a definition apparently seems to restrict the range of application of the theory only to those bodies which own a 

sharp tip.  Actually also “blunt bodies” can be regarded as “slender” for low supersonic regimes (so that the Mach 

cone span is large enough to contain the body). For subsonic regimes, as Mach number increases from 0 up to 1, the 

term “slender” becomes less restrictive until, for Mach=1, all bodies are slender independently from the geometry. 

In summary the slender body theory works well for bodies of revolution whose longitudinal dimension L is much 

larger than the transversal one D (see Fig.3): 

 

 

Figure 3: Example of a Slender Body with L>>D 

 
Or, equivalently speaking,the slenderness ratio defined as L/D is much greater than one: 

 
L

D
≫ 1           SLENDERNESS RATIO  

DOI: 10.13009/EUCASS2017-550



F. Paglia, D. Schiariti, R. Camussi, M. Gennaretti, F. Stella, M. Carta, R. Mancini 

     

 5 

The starting point of the slender body theory is the potential equation written for compressible flows, both subsonic 

and supersonic. Since the flow is compressible such equation is not linear: 

 

[𝑎2 − (𝑉0 +
𝛿𝜙

𝛿𝑥
)
2

]
𝛿2𝜙

𝛿𝑥2
 +[𝑎2 − (

𝛿𝜙

𝛿𝑦
)
2

]
𝛿2𝜙

𝛿𝑦2
− 2(𝑉0 +

𝛿𝜙

𝛿𝑥
))

𝛿𝜙

𝛿𝑦

𝛿2𝜙

𝛿𝑥𝛿𝑦
= 0      

 
Where: 

 

𝑎:    𝑆𝑃𝐸𝐸𝐷 𝑂𝐹 𝑆𝑂𝑈𝑁𝐷 

 

𝜙:   𝑃𝐸𝑅𝑇𝑈𝑅𝐵𝐴𝑇𝐼𝑂𝑁 𝑃𝑂𝑇𝐸𝑁𝑇𝐼𝐴𝐿 

 

The potential equation is then linearized in the hypothesis of small perturbations since, in the framework of the 

theory, the body is “slender” and the angle of attack is small. The linearized equation is:  

 

(1 − 𝑀∞
2)
𝛿2𝜙

𝛿𝑥2
+
𝛿2𝜙

𝛿𝑦2
= 0 

 

For slender bodies it is then possible to assume that , for an observer who is solidal with the body, the flow is the 

same on each plane orthogonal to the longitudinal axis x (see Figure 4): 

 

 

Figure 4: (Body cross plane) 

 

So the following Laplace equation is valid on each plane yz:  

 

𝛿2𝜙

𝛿𝑦2
+
𝛿2𝜙

𝛿𝑧2
= 0 

 
In order for this simplification to be valid the body must have a high slenderness ratio but it is also required that the 

longitudinal component of flow velocity is not subject to strong variations, therefore  abrupt geometries are not 

allowed. The knowledge of the potential on each YZ plane allows to compute the velocity and the local force 

(“potential force”) 𝐹𝑝(𝑋) along the body [1]: 

 

𝐹𝑝(𝑥) = (𝑘2 − 𝑘1)𝑞0
𝑑𝑆

𝑑𝑥
𝑠𝑒𝑛(2𝛼) 

 

This force, for what said before, is only a function of the longitudinal dimension of the body and its dimensions are 

force per unit length. S(x) is the cross-section area of the body while k1, k2 are the longitudinal and transversal 

apparent mass coefficients. Since 𝐹𝑝(𝑥) derives from the potential theory it does not include the contribution of 

viscosity. It is then possible to add the effect of viscosity by including the force 𝐹𝑣(𝑥) [4]: 

 

𝐹𝑣(𝑥) = 2𝜂 𝑟(𝑥)𝐶𝐷𝑞0𝑠𝑒𝑛
2𝛼  
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where 𝑟(𝑥) is the body radius at any station 𝑥, 𝐶𝐷 is the drag coefficient of an infinite circular cylinder  as a function 

of Reynolds number, 𝜂 is a correction factor that takes into account the body’s finiteness. Finally also an axial 

viscous force can be added, 𝐹𝐴(𝑋) given by: 

 

𝐹𝐴(𝑋) = 𝐶𝐷𝛼=0𝑞0𝐴 𝑐𝑜𝑠
2𝛼 

 

where A is the reference area for 𝐶𝐷𝛼=0.  In summary the global force acting on the body is given by: 

 

𝐹𝑇𝑂𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑋) = 𝐹𝑃⃗⃗⃗⃗ (𝑋) + 𝐹𝑉⃗⃗⃗⃗ (𝑋) + 𝐹𝐴⃗⃗⃗⃗ (𝑋) 
 

In Figure 5 it is reported a sketch of the body with the contribution of each force: 

 

 

Figure 5: (Forces acting on the body) 

By correctly projecting and integrating these contributions it is possible to compute drag, lift and moment (with 

respect to an arbitrary abscissa 𝑥𝑚) : 

 

𝐷 = (𝑘2 − 𝑘1)𝑞0𝑠𝑒𝑛(2𝛼) sen (
𝛼

2
)∫

𝑑𝑆

𝑑𝑥
𝑑𝑥

𝐿

0

+ 2𝜂 𝑞0𝑠𝑒𝑛
2(𝛼)𝑠𝑒𝑛(𝛼)∫ 𝑟(𝑥)𝐶𝐷𝑑𝑥

𝐿

0

+𝐶𝐷𝛼=0𝑞0𝐴 𝑐𝑜𝑠
2(𝛼) cos (𝛼) 

𝐿 = (𝑘2 − 𝑘1)𝑞0𝑠𝑒𝑛(2𝛼) cos (
𝛼

2
)∫

𝑑𝑆

𝑑𝑥
𝑑𝑥

𝐿

0

+ 2𝜂 𝑞0𝑠𝑒𝑛
2(𝛼) cos(𝛼) ∫ 𝑟(𝑥)𝐶𝐷𝑑𝑥

𝐿

0

−𝐶𝐷𝛼=0𝑞0𝐴 𝑐𝑜𝑠
2(𝛼) sen(𝛼) 

𝑀 = (𝑘2 − 𝑘1)𝑞0𝑠𝑒𝑛(2𝛼) cos (
𝛼

2
)∫

𝑑𝑆

𝑑𝑥
(𝑥𝑚 − 𝑥)𝑑𝑥

𝐿

0

+ 2𝜂 𝑞0𝑠𝑒𝑛
2(𝛼)∫ 𝑟(𝑥)𝐶𝐷(𝑥𝑚 − 𝑥)𝑑𝑥

𝐿

0

 

 

Before proceeding with calculations it is worth reminding that this formulation is valid only for low angles of attack 

(in particular α<10°); furthermore the viscous term is only related to friction. Pressure drag is not included in the 

model and thus the contribution of flow separation to total drag cannot be considered.  

For the purpose of the present work it is interesting to develop a simple expression for the aerodynamic moment by 

introducing two approximations: 

 

(𝑘2 − 𝑘1) ≅ 1      𝑓𝑜𝑟         
𝐿

𝐷
≅ 10 

 

The physical interpretation of coefficients k1, k2 is related to the flow mass that is moved ( both longitudinally and 

transversely) by the body during its motion. In other words a certain amount of energy is required to move the body 

as well as the flow around it. In particular below are reported the definitions of k1and k2, where 𝑉𝑏 is the body 

volume : 

 

𝑘1 =
𝐹𝐿𝑈𝐼𝐷  𝑉𝑂𝐿𝑈𝑀𝐸 𝑀𝑂𝑉𝐸𝐷 𝐿𝑂𝑁𝐺𝐼𝑇𝑈𝐷𝐼𝑁𝐴𝐿𝐿𝑌

𝑉𝑏 
 

 

𝑘2 =
𝐹𝐿𝑈𝐼𝐷 𝑉𝑂𝐿𝑈𝑀𝐸 𝑀𝑂𝑉𝐸𝐷 𝑇𝑅𝐴𝑁𝑆𝑉𝐸𝑅𝑆𝐸𝐿𝑌

𝑉𝑏
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In addition : 

𝛼 𝑠𝑚𝑎𝑙𝑙 →  {
𝑠𝑒𝑛(𝛼) ≅ 𝛼
cos (𝛼) ≅ 1

 

The integrals that appear in the previous formula can be developed as follows: 

 

A) ∫
𝑑𝑆

𝑑𝑥
𝑑𝑥 = 𝑆𝑅𝐸𝐹

𝐿

0
 

B) ∫
𝑑𝑆

𝑑𝑥
(𝑥𝑚 − 𝑥)

𝐿

0
dx= 𝑉𝑏 − 𝑆𝑅𝐸𝐹(𝐿 − 𝑥𝑚) 

By introducing the moment coefficient 𝐶𝑚 based on the body length L one obtains: 

 

𝐶𝑚 ≅
2𝛼

𝑆𝑅𝐸𝐹𝐿
[𝑉𝑏 − 𝑆𝑅𝐸𝐹(𝐿 − 𝑥𝑚)] + 𝑜(𝛼

2) 

 

It is evident how this theory allows to obtain a simple analytical expression for the functional relation 𝐶𝑚(𝛼). By 

deriving with respect to 𝛼 it is possible to obtain an expression for the derivative 𝐶𝑚𝛼 (based on 𝑆𝑅𝐸𝐹 , 𝐿):  
 

𝐶𝑚𝛼 = 2 [
𝑥𝑚
𝐿
+

𝑉𝑏
𝑆𝑅𝐸𝐹𝐿

− 1] 

 

In a similar way an analytical expression for  𝐶𝑚𝑞  and 𝐶𝑚𝛼̇  can be found: 

 

𝐶𝑚𝑞 = 2 𝐶𝑚𝛼 [
(1 −

𝑥𝑚
𝐿
)
2

−
𝑉𝑏

𝑆𝑅𝐸𝐹𝐿
(
𝑥𝑐
𝐿
−
𝑥𝑚
𝐿
)

(1 −
𝑥𝑚
𝐿
) −

𝑉𝑏
𝑆𝑅𝐸𝐹𝐿

] 

 

𝐶𝑚𝛼̇ = 2 𝐶𝑚𝛼 [

𝑉𝑏
𝑆𝑅𝐸𝐹𝐿

(
𝑥𝑐
𝐿
−
𝑥𝑚
𝐿
)

(1 −
𝑥𝑚
𝐿
) −

𝑉𝑏
𝑆𝑅𝐸𝐹𝐿

] 

 

It is important to underline once again that these formulas lose validity for high angles of attack but also for high 

frequencies of motion since in this case the contribution of high order terms in reduced frequency cannot be 

neglected. These relations are actually the same used by DATCOM software to compute the damping coefficients . 

 

3. Forced oscillations around an equilibrium position 

Since the motion consists of small forced oscillations around an equilibrium configuration, the dynamic linear 

approach is suitable. This method, named Forced Oscillation Approach, has ben extensively used in the past (see 

among many [7], [8], [9]) and is briefly worked out in the following. The problem can be studied as a classic forced 

harmonic oscillator; the body is forced to oscillate around an equilibrium angular position, in which: 𝛼 =
𝛼𝐸𝑄𝑈𝐼𝐿𝐼𝐵𝑅𝐼𝑈𝑀 . 

In the following analyses it is assumed that: 

 

𝑞 = 𝛼̇ 

 

The oscillatory motion is imposed according to the following time-law: 

 

{
𝛼(𝑡) = 𝛼𝐸𝑄 + 𝛼0 sin𝜔𝑡

     𝑞(𝑡) = 𝛼̇(𝑡) = 𝜔𝛼0 cos𝜔𝑡
 

Where: 

 

𝛼(𝑡)  ∶    instantaneous angle of attack 

𝛼𝐸𝑄   ∶    equilibrium angle of attack     
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𝜔      ∶    pitch frequency 

𝛼0      ∶   oscillations amplitude 

 

It is then possible to define the “reduced frequency” as follows: 

 

𝑘 =
𝜔 𝐿𝑅𝐸𝐹
2 𝑉0

 

 

The linearized expression for the moment coefficient around  𝛼𝐸𝑄 is 

 

𝐶𝑚(𝛼(𝑡)) = 𝐶𝑚(𝛼𝐸𝑄) + 𝐶𝑚𝛼∆𝛼 +
𝐿𝑅𝐸𝐹
2𝑉0

(𝐶𝑚𝑞 + 𝐶𝑚𝛼̇)𝛼̇ 

 

Defining: 

 

  𝐶𝑚𝑆𝑇 ≔ 𝐶𝑚(𝛼𝐸𝑄) + 𝐶𝑚𝛼∆𝛼 

 

and introducing 𝐶𝑚𝐸𝑄 , one obtains: 

 

𝐶𝑚(𝛼(𝑡)) = 𝐶𝑚𝑆𝑇 +
𝐿𝑅𝐸𝐹
2𝑉0

𝐶𝑚𝐸𝑄𝛼̇ 

 

It is possible to assume that 𝐶𝑚𝐸𝑄  is constant in a period so the previous equation can be integrated with respect to 

the angle of attack: 

  

𝐶𝑚𝐸𝑄 =
2 𝑉0
𝐿𝑅𝐸𝐹

∫𝐶𝑚(𝛼(𝑡))𝑑𝛼 − ∫𝐶𝑚𝑆𝑇𝑑𝛼

∫ 𝛼̇ 𝑑𝛼
 

 

Since the integral of 𝐶𝑚𝑆𝑇  in one period is zero, that is: 

 

∫ 𝐶𝑚𝑆𝑇𝑑𝛼 = 0
𝑇

0

 

then : 

𝐶𝑚𝐸𝑄 =
2 𝑉0
𝐿𝑅𝐸𝐹

∫𝐶𝑚(𝛼(𝑡))𝑑𝛼

∫ 𝛼̇ 𝑑𝛼
 

 

It is convenient to change the integration variable, switching from 𝛼 to 𝑡, and keeping in mind that: 

 

{
𝛼(𝑡) = 𝛼𝐸𝑄 + 𝛼0 sin𝜔𝑡

𝑑𝛼 = 𝜔 𝛼0 cos𝜔𝑡  𝑑𝑡
 

Finally one obtains: 

 

𝐶𝑚 𝐸𝑄 =
2 𝑉0

𝐿𝑅𝐸𝐹  𝜋 𝛼0
∫ 𝐶𝑚(𝑡) 𝑐𝑜𝑠 𝜔𝑡 𝑑𝑡
𝑇

0

 

 

The integral can be evaluated numerically once the solution has reached a periodic steady-state condition. The time 

history of the moment coefficient can be easily obtained as an output of CFD analyses. This set must be referred to 

an entire period of oscillation, identified by a specific value of 𝑘 through the following relation: 

 

𝑇 =
𝜋

𝑘
 

 

In a similar manner it is possible to compute the other longitudinal derivative 𝐶𝑁 𝐸𝑄𝑈𝐼𝑉𝐴𝐿𝐸𝑁𝑇 , defined as: 

 

𝐶𝑁 𝐸𝑄𝑈𝐼𝑉𝐴𝐿𝐸𝑁𝑇 ≔ (𝐶𝑛𝑞 + 𝐶𝑛𝛼̇) 
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and evaluated through: 

𝐶𝑁 𝐸𝑄 =
2 𝑉0

𝐿𝑅𝐸𝐹  𝜋 𝛼0
∫ 𝐶𝑛(𝑡) 𝑐𝑜𝑠 𝜔𝑡 𝑑𝑡
𝑇

0

 

4. VEGA C CFD Analyses 

Table 1 summarizes the input parameters for the CFD analyses in terms of frequency of motion, Mach number and 

corresponding reduced frequency: 

 

Table 1: Angular velocity, Mach number and  reduced frequency 

ω(rad/s) 𝑴∞=0.6 

0.1 K=0.048 

0.25 K=0.119 

0.5 K=0.239 

1.0 K=0.478 

1.5 K=0.718 

2.0 K=0.957 

 

This parametric analysis is necessary because it is quite difficult to determine the exact initial conditions for the free 

fall motion. The pitching motion is simulated by using transient boundary conditions in which the angle of attack is 

changing in time. This relation can be written in terms of reduced frequency as follows: 

 

𝛼(𝑡) = 𝛼𝐸𝑄 + 𝛼0 sin(2𝑘𝑡) 
 

In Tab. 3.2 are reported the values of 𝛼𝐸𝑄 and 𝛼0 used for the analysis: 

 

Table 2: Input values for oscillating motion 

𝜶𝑬𝑸 𝜶𝟎 

120 10 

 

The value of 𝛼𝐸𝑄   is a fixed input parameter for the current analysis. In Figure 6 is reported the α=0° direction as 

well as the current angular equilibrium position. 

 

 

Figure 6: (Reference system for AoA) 

4.1 Mesh Global features 

The mesh used for calculations has been created with the software Gambit and its topology is reported in Figure 7. 

Only half body is built in the model in order to limit the computational cost; an appropriate symmetry plane  
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(symmetry boundary condition) is therefore included.  The external domain is made up of four concentric semi-

spheres whose radii ranges from 50 to 500m. The mesh is un-structured in the whole domain. 
 

 

Figure 7: (Mesh topology) 

4.2 Mesh Sensitivity 

In order to check whether the results are grid independent it is essential to perform a mesh sensitivity analysis. Four 

progressively finer meshes have been created starting from the coarsest one (mesh A).  Mesh refinements in the 

region around the body have been performed and their entity is qualitatively illustrated in Figure 8. 

 

 

Figure 8: (Example of mesh refinement) 

In Figure 9 is depicted the mesh in proximity of the body, pointing out the local cell size: 

 

 
 

Figure 9: (Mesh size nearby the body wall) 
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Definitely, the global features of the four different meshes (mesh A, mesh B, mesh C, mesh D) are reported in Table 

3.  

Table 3: Global Mesh characteristics 

Mesh Cells Min cell Size 

(mm) 

A 884625 0.2 

B 2612638 0.1 

C 3775933 0.05 

D 5002578 0.025 

 

Once the solution is converged, it is important to focus on the last cycle of oscillation of the moment coefficient; this 

information is useful to compute the damping coefficients and  to build  a hysteresis loop by plotting such period as a 

function of the angle of attack. Hysteresis cycles are frequent phenomena in unsteady aerodynamics, especially when 

pitching oscillations are performed around the center of gravity. The presence of hysteresis cycles is linked to the 

combined effects of pitch rate q and 𝛼̇.The basic concept is that aerodynamic forces depend not only from the actual 

value of state variables (for example the angle of attack) but also from their time history. Hysteresis is, by definition, 

a dynamic lag between an input and an output. The presence of this “lag” is evident because the values of CA, CN and 

Cm at the same instantaneous angle of attack, between the downstroke and upstroke motions, are different. Hysteresis 

loops have been computed for both moment and normal force coefficients. In Figure 10 and Figure 11 are reported 

the hysteresis loops of moment coefficient and normal force coefficients evaluated referring to the last period of 

oscillations and  for all  the meshes considered in the analysis: 

 

 

Figure 10: (Mesh sensitivity for moment coefficient hysteresis loop) 

 

 

Figure 11: (Mesh sensitivity for normal force coefficient hysteresis loop) 
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The loops obtained with Mesh C and Mesh D present a very similar shape and a crossing point that occurs for α 

slightly greater than 120 ° (that is the equilibrium configuration). The other two loops are very different, proving that 

those results are far from being grid independent. 

 

4.3 Time Step Sensitivity Analysis 

A sensitivity analysis with respect to time step size is important in order to evaluate whether the aerodynamic time-

dependent phenomena are adequately represented by CFD.  The input parameters (that is motion frequency and 

Mach number) are the same used for the mesh sensitivity analysis, with the exception of time step size which is 

varied; MESH C is adopted for calculations.  The cases investigated are reported in Table 4. 

 

Table 4: Adopted time step sizes, ω=0.5 rad/s,  M∞=0.6 

Case dt (s) 

A 0.1 

B 0.01 

C 0.001 

 

For each case the time histories of the aerodynamic coefficients are compared as well as the hysteresis loops, as 

reported in Fig. 12 and 13.  

 

 

Figure 12: Time step sensitivity for Cm hysteresis loops for ω=0.5 rad/s,  M∞=0.6, MESH C 

 

 

Figure 13: Time step sensitivity of normal coefficient for ω=0.5 rad/s,  M∞=0.6, MESH C 

 

The sensitivity analysis with respect to the time step shows that the differences between CASE B (dt=0.01 s) and 

CASE C (dt=0.001 s) are very small: the hysteresis loops are very similar and the difference in terms of the 

computed dynamic derivatives is less than 1%. 
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4.4 Aerodynamic damping evaluation by means of CFD 

A parametric analysis with respect to angular velocity  𝜔  has been performed , keeping the Mach number fixed.  The 

aim is to understand how the aerodynamic damping  is influenced by the frequency of motion. All simulations have 

been performed using the Fluent setup illustrated in Section 3.4 , MESH C (3.8 million cells) and time step size equal 

to 0.01 s. Figure 14 (a) reports the dependence of 𝑪𝒎𝑬𝑸 on frequency for a fixed M and Figure 14 (b) includes in the 

same plot the hysteresis loops at different frequencies but at the same M.  

It is clearly observed that the aerodynamic damping 𝐶𝑚𝐸𝑄 is strongly influenced by the frequency of motion. A peak 

(in absolute value) is present in the range in between 0.1 𝑟𝑎𝑑/𝑠 and  0.5 𝑟𝑎𝑑/𝑠 , while, as 𝜔 increases,  the damping 

shows an asymptotic trend, settling around a value of about -20 𝑟𝑎𝑑−1. The hysteresis loops for Cm become larger as 

the frequency increases, engulfing the ones corresponding to slower motions. All the hysteresis loops (relative to 

moment coefficient) are run counter-clockwise, confirming that the damping is negative in the sense that energy is 

being dissipated. This can also be explained analytically [5]: for sinusoidal oscillations the plot of 𝛼̇(𝑡) vs. 𝛼(𝑡) is a 

clockwise loop since it is just like the plot of cos𝜔𝑡 vs. sin𝜔𝑡. As immediate consequence the plot of −𝛼̇(𝑡) vs. 

𝛼(𝑡) is counterclockwise. The pitch moment coefficient can be written as  

 

𝐶𝑚 = 𝐶𝑚(𝛼) + 𝐶𝑚𝑞𝑞̂ + 𝐶𝑚𝛼̇ 𝛼̂̇ 

 

With the assumption that 𝑞 = 𝛼̇ and introducing the definition of 𝐶𝑚𝐸𝑄 one obtains: 

 

𝐶𝑚 = 𝐶𝑚(𝛼) + 𝐶𝑚𝐸𝑄 𝛼̂̇ 

 

If 𝐶𝑚𝐸𝑄 is negative, for what was said above the resulting hysteresis loops are necessarily  counter-clockwise. It is 

then possible to notice how the shape of the loops is also deeply influenced by the frequency: for intermediate 

frequencies (around 1 rad/s) the loops are “ eight shaped” whereas for higher or lower frequencies they resemble 

ellipsis.  This can be explained if one considers the time histories of aerodynamic coefficients corresponding to 

intermediate, a secondary frequency appears in addition to the main one determining more irregular oscillations of 

the coefficients.  

 

 

Figure 14: (a) Dependence of 𝑪𝒎𝑬𝑸 on frequency for M=0.6, (b) Dependence of moment coefficient hysteresis loops 

on frequency , M=0.6 

4.4 Aerodynamic damping evaluation by means of Datcom 

MISSILE DATCOM is a widely-used semi-empirical code for the preliminary design of missile and aircraft 

aerodynamic performance. It is able to provide accurate results in terms of aerodynamic coefficients  for several flow 

conditions and body geometries. The code is also able to compute longitudinal stability derivatives according to the 

Slender Body Theory discussed above. It is therefore interesting to compare CFD results with DATCOM predictions. 

In order to have coherent results the reference quantities in the DATCOM input file must be set equal to the ones 

defined in Fluent, that is the body base diameter and cross section. 

The computed derivatives do not depend upon the angle of attack as expected since DATCOM method is based on 

slender body theory. In particular  DATCOM computes the derivatives in conditions of angle of attack near zero [6]. 

Another important limitation is that the dependence of pitch damping coefficients on reduced frequency cannot be 
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predicted: the method used by DATCOM for calculating dynamic derivatives can be applied only to slow time 

dependent motions.  

The derivatives computed with DATCOM are summarized in Table 5, and it is shown that differences with respect to 

CFD results (performed with ω (rad/s)=0.25, αmean=120° and M=0.6) reaches values of about 96%. 

 

Table 5: Dynamic derivatives computed with MISSILE DATCOM 

Derivatives 

(1/rad) 

DATCOM 

𝐶𝑚𝐸𝑄 -4.64 

 

Nevertheless when the angle of attack is close to zero DATCOM should instead represent an accurate way to 

estimate the pitch damping coefficient. The comparison between DATCOM results and CFD predictions at small 

angles of attack has been evaluated through a another CFD simulation. The study has been carried out by imposing a 

sinusoidal motion around αmean=0° instead of αmean=120°, and keeping Mach number constant and equal to 0.6. 

The frequency of motion is equal to a relatively small value, here set to 0.25 rad/s (~ 15 deg/s). In this 

configuration, the hypothesis of slender body theory are certainly respected . Table 6 reports the difference between  

CFD and Datcom results whereas the hysteresis loop and Mach contour plot computed for αmean = 0 are reported in 

Figure 15. 

 

Table 6: Dynamic derivatives computed with MISSILE DATCOM 

Derivatives 

(1/rad) 

DATCOM CFD Difference 

(%) 

𝐶𝑚𝐸𝑄 -4.64 -4.31 7% 

 

 

Figure 15: Hysteresis loop and Mach contour plot for  αmean = 0 and M=0.6. 

5. Conclusions 

3D unsteady CFD simulations have been performed with the aim of evaluating the pitch damping aerodynamic 

coefficients in a free fall condition. Forced oscillations around an equilibrium position (αmean=120°) have been 

imposed to the body. The Mach number has always been set equal to 0.6. A mesh sensitivity analysis has been 

conducted and revealed that using a mesh made up of 3.8 million cells and containing a minimum cell size (close to 

the body surface) of 0.05 m leads to accurate results, with a difference lower than 2% on the computed quantities. A 

sensitivity analysis with respect to the time step has been performed as well and proved that a time step size of 

10−2 s is adequate to correctly reproduce the unsteady phenomena. No appreciable difference is found in the 

comparison with the same analysis using a time step equal to 10−3 s: the difference in terms of pitch damping 

coefficient is less than 1% and the shape of hysteresis loops results very similar. 

The functional trend of pitch aerodynamic coefficients with respect to reduced frequency in the range k= [0.048 ; 

0.957] has been investigated: a peak in absolute value is found for a value of reduced frequency equal to 0.119 

(ω=0.25 rad/s) and an asymptotic trend as ω increases. This analysis has shown a strong influence of motion 

frequency on damping coefficients, this mainly due to non linear aerodynamics at high angles of attack.  
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As a further element of discussion, comparisons with MISSILE DATCOM have been made. Large differences (up to 

90%) have been found for the case with αmean=120° due to the fact that DATCOM method is based on the slender 

body theory, thus it is not able to provide reliable results for high angles of attack and high frequencies of motion.  

However, for low angles of attack and relatively slow time-dependent motions DATCOM predictions are found to be 

in good agreement with CFD results and literature reference outcomes. 
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