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      The Lorentz force acting on an electrostatically charged spacecraft may provide a 

useful thrust for controlling a spacecraft’s orbit and attitude control. In this work, the Lorentz 

force has been developed for two terms, a) first term which experienced with magnetic field in 

the case of absolute charging of the spacecraft; b) the second term which is experienced with 

electric field in the case of electric charging of the spacecrfat. The orbital perturbations of a 

charged spacecraft by Lorentz force in the Earth’s magnetic field, which is modeled as a titled 

dipole is investigated using the Gauss variation of the Lagrange planetary Equations. The 

perturbations in the orbital elements depend on the value of the charge to mass ratio (q/m). The 

dynamical models of the Relative motion are developed that leads to approximate analytical 

solutions for the motion of a charged spacecraft subject to Lorentz force.  The modeled derived 

when the chief spacecraft’s reference orbit is either circular or elliptical, and the deputy 

spacecraft is capable of established electrostatic charge.  The numerical results show that the 

effects of the Lorentz force on the spacecraft are to change in track position or/and plane orbit. 

The results investigated the approximation of the trajectory an estimate the reachable of the 

Lorentz spacecraft for short time intervals with different ration (q/m) for different orbits in 

LEO. 
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1. Introduction 

Spacecraft charging is a naturally phenomenon which occurring in the space plasma 

environment. Based on the fundamental physical principle that a moving charged particle 

experiences the Lorentz force in a magnetic field, one can deduce that an electrostatically 

charged spacecraft in Earth orbit is subjected to the Lorentz force in the Earth’s magnetic field. 

Early studies of spacecraft charging conclude that the Natural spacecraft charging level may 

reach to about 10-8 C/kg and the induced Lorentz force with such charging level is insufficient 

to perturb the orbit and attitude of satellite significantly. The concept of Lorentz-augmented 

DOI: 10.13009/EUCASS2017-530



orbits is analogous to the motion of charged dust grains in planetary magnetic fields. After the 

launch of artificial satellites, the phenomenon of spacecraft surface charging was discovered 

and found to be omnipresent, and therefore the motion of electrically charged artificial satellites 

affected by the Lorentz force. However, much research relating to charged spacecraft are 

conducted by space-plasma physicists, and the primary purpose of their research is to attenuate 

the hazardous electromagnetic radiation effect caused by surface charging. 

Contrary to previous studies that concentrate on passive mitigation of the charge, a new concept 

of active application of the charge of spacecraft has been proposed by Peck (2005). Such 

conception spacecraft is referred to as Lorentz spacecraft, an artificially charged space vehicle 

that intentionally generates net charge on its surface to induce Lorentz force via interaction with 

the planetary magnetic field. If the charging level is several orders of magnitude larger than 

natural charging level or even higher, the induced Lorentz force could be utilized as propellant 

less electromagnetic propulsion for orbital maneuvers and attitude control.  

 

Relative motion between a chief and a chaser spacecraft has been extensively studied over 

past several decades. The well-known Clohessy-Wiltshire (CW) equations [1] originally known 

as Hills equations [2] used to study the linearized equation of motion around the orbit of the 

chief satellite, which is circular and subject to the Keplerian motion only. Other models have 

been introduced in which the chief orbit is eccentric subject to the non-Keplerian perturbation 

forces [3], [4], [5], [6], [7], [8].  

The Lorentz spacecraft is a nascent concept that artificially generates a net electrostatic 

charge on a spacecraft to provide propulsive accelerations for orbit control. Therefore, the 

Lorentz force can be used to change and control the orbit of the spacecraft without consuming 

propellant (Peck 2005). Abdel-Aziz and et al.[8-14] studied the effects of an Lorentz force on 

the orbital motion in Low Earth Orbit (LEO) and on the attitude control of spacecraft . 

Streetman & Peck (2005) investigated the Lorentz-augmented orbits and used them to 

accomplish a variety of complex orbital behaviors for new types of geosynchronous orbits. 

Pollock et al. (2011) studied the relative motion of a charged spacecraft subject to perturbations 

from the Lorentz force due to interactions with the planetary magnetosphere. In the present 

paper, the total Lorentz force is developed in two cases: (1) the Lorentz force experienced by a 
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geomagnetic field and (2) the Lorentz force experienced by an electric dipole moment in the 

presence of an electric field. The numerical results show that the effect of the Lorentz force due 

to its magnetic component is greater than the effect of the Lorentz force due to its electrical 

component. In addition. The results confirm that the magnitude of the Lorentz force depends 

on the charge to mass ratio. This means we can use artificial charging to create a desired force 

which is needed to control the attitude and orbital motion of a spacecraft. In Section 2 we 

develop the relative motion of formation flying consisting of two Satellites and describes 

Lorentz force perturbations. Section 4 introduces numerical results, which show the effects of 

the Lorentz force for two different satellites. 

2. Nonlinear Equations of Relative Motion 

Recall the nomenclature used to distinguish the satellites: one is often called the chief, and the other is 

referred to as the deputy. Note that the chief satellite is not necessarily a physical object; in the case of 

a satellite formation, it could be a useful reference point to describe the relative motion. The relative 

motion equations developed in this section utilize a Cartesian local-vertical, local-horizontal (LVLH) 

frame attached to the chief satellite, as shown in Figure1.  This coordinate frame rotates with the chief’s 

radius vector and is a convenient reference frame to describe the relative motion10. This reference frame 

is also sometimes referred to as the Hill frame or the CW frame. In this coordinate frame, x lies in the 
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chief’s radial direction, z lies in the direction of the chief’s orbital angular momentum, and y completes 

the right-handed orthogonal triad. Note that the x and y directions correspond to the in-plane motion, 

and z corresponds to the out-of-plane motion. In the chief’s LVLH frame, the position of the deputy 

satellite is given by the following. 

      

 Figure 1: Local-vertical local-horizontal (LVLH) coordinate frame 
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The angular velocity and acceleration of the LVLH frame are given by 
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respectively. In the subsequent discussion, the subscript c will be omitted from r and f. From kinematics, 

the equation of motion for the deputy in the chief’s frame is given by the following. 
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allows the chief’s acceleration to be written as the following. 
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Substituting Equation (2) into Equation (3) gives the following 
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    
T

L Lx Ly Lz m ea a a a a a                                                                                                   (6) 

Where La  is total Lorentz force, am is the Lorentz force due to the geomagnetic field and ae is 

the Lorentz force. 

The only assumption made in deriving Equation (6) was that both satellites obeyed Keplerian motion, 

i.e. the only force acting on each satellite was gravity. 

3. Lorentz Augmented Orbit (LAO) 

The propellant less propulsion technique discussed herein allows one to realize 

a Lorentz Augmented Orbit (LAO). An LAO-capable Spacecraft carries a net electrostatic 

charge, either an excess of electrons or ions. Such a spacecraft behaves as charged particle 

subject to interactions with a planetary magnetic field. We begin with a summary of the 

elementary electrodynamics involved. The total Lorentz force experienced by a particle of 

charge q (Coulombs) moving through a magnetic field B is given by 

  ( )     L e mq E qE q
r r

F v ×B v ×B F F                                                                         (7)        

where vr is the particle velocity with respect to the magnetic field, Fm is the Lorentz force due 

to the geomagnetic field and Fe is the Lorentz force electric field. 

 

 

 

 

 

 

 

Figure 3: Spherical coordinates used in the derivation of the equations of motion. 
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3.1. Equations of Motion of Lorentz force 

We describe the motion of a spacecraft in an LAO in the spherical coordinate 

the frame shown earlier in Fig. 3 The acceleration of the spacecraft including two body gravity 

and the Lorentz force (per unit mass) in these (inertially referenced) coordinates is given by 

   ˆ ˆ        L
m E E

F q
a B B

m m
  v n r v n r                                                            (8) 

where 
q

m
 is the charge-to-mass ratio of the satellite in Coulombs per kilogram 

(C/kg), and n̂  is a unit vector in the direction of the true north pole. 
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Fig. 2. Definition of angles 

 

DOI: 10.13009/EUCASS2017-530



Expressing the Lorentz acceleration in the spherical, inertial frame yields 
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Hence, by substituting Eq. (7) and Eq. (9) into Eq. (8), the expressions of Lorentz acceleration in 

RM frame can be derived as 
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According to Ulaby (2005) and Heilmann et al. (2012), we can write the electric force as the 

following: 
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where P is the electric dipole moment, d is the distance vector from charge +q to charge -q and 

 12 2 2

0 8.85 10  C N m  is the permittivity of free space. 

Then the final form of the Lorentz force experienced by an electric dipole moment in the presence 

of an electric field is   
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Hence, by substituting Eq. (14) and Eq. (16) into Eq. (16), the expressions of Lorentz acceleration 

in RM frame can be derived as 
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4. NUMERICAL RESULTS  

In this section, we consider the numerical simulation for verification of the derived 

perturbations in the orbital motion of a spacecraft due to the Lorentz force, using Equations (5), 

(13) and (19). We can apply those equations to get the perturbation in the separate magnetic and 

electric components of the Lorentz force. These numerical simulations were performed using 

MATLAB©. The nonlinear differential equations of motion were solved using 4th/5th order 

Runge-Kutta method. We note that the components of the Lorentz force due to the magnetic and 

electric fields are proportional to the charge to mass ratio. This means that with this ratio we can 

control the orbital motion of a satellite.  
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4.1 Spacecraft Physical Parameters 

In order to perform numerical simulations, values of spacecraft physicals. For this study take  

two actual formation flying designs, The GRACE twin satellites, launched 17 March 2002, are 

making detailed measurements of Earth's gravity field changes , using program code to compute 

the orbital elements by MATLAB© packages from initial values TLE (Tow Line Element) 

for satellites, these parameters will now be presented in table (1) . 

 

Table (1) Spacecraft Physical Parameters 

GRACE 1 

1 27391U 02012A   13004.06903455  .00003939  00000-0  92932-4 0  2814 

2 27391 089.0194 188.7270 0016414 086.1402 274.1671 15.41455555604430 

GRACE 2 

1 27392U 02012B   13004.00374406  .00004041  00000-0  95309-4 0  2835 

2 27392 089.0168 188.7633 0017245 087.8210 272.5036 15.41454357604428 

Name Satellite GRACE 1 GRACE 2 

Inclination (deg) 89.0194 89.0168 

Eccentricity 0.0016414 0.0017245 

Ascending node (deg) 188.7270 188.7633 

Argument of perigee (deg) 86.1402 87.8210 

Mean motion (rev /day) 15.41455556 15.41454358 

Mean anomaly (deg) 274.1671 272.5036 

Semi major axis (km) 6819.95385 6819.9573847 

r (km) 6819.158694091 6819.46388 

r (vector km) [-6740.15 -1034.88 14.24] [ -6739.798  -1039.21  15.13] 

v (vector km/s) [ 0.048   -0.125   7.644  ] [  0.049   -0.125  7.644  ] 

Relative motion (km) [0.259   0.963   -4.295] 

Norm relative (km) 4.4093197 
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Figure (4): compare   relative position of two Satellites at three different value of the charge to 

mass ratio (q/m) for magnetic case 
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Figure (5): compare positive and negative value of the charge to mass ratio 

 q/m (0.03) and  (-0.03) and dipole magnetic (𝛼 = 0°) 
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Figure (6): change in the relative position of formation flying at q/m (0.1) 

 and dipole magnetic (𝛼 = 0° − 11.3°) 
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Figure (7): compare positive and negative value of the charge to mass ratio 

 q/m (0.01),  (-1.5) and (1.5) for electric case. 
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Figure (8): compare magnetic and Electric effects on relative position 

 at q/m (0.1),  and study optimal case 
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The results shown in Figure (4): compare three different value of the charge to mass ratio q/m 

(0.03),(0.5), and (1.5) C/kg for magnetic field only and dipole magnetic (𝛼 = 0°), and 24 hour 

period These results are representative of magnetic force effects in the relative position of 

formation flying consisting of two LEO Satellites, It should be noted that there the change of 

Redial and cross track are increase after 10 hour for q/m (1.5) but change of value (0.5)is small 

but value is decrease in- track coordinate . 

The total effects of norm relative position at q/m =1.5 about 80 km but decrease to half value at 

q/m= 0.5 and very small value at the Natural charging q/m = .03c/kg. 

In Figure (5) compare positive and negative value of the charge to mass ratio q/m (0.03), and                    

(-0.03) C/kg for magnetic field only and dipole magnetic (𝛼 = 0°), and 24 hour period from these 

case It should be noted that the change of total effects of norm relative position at positive q/m 

same negative q/m but increasing in case positive and decrease in case negative value. 

Figure (6) study case of change in the relative position of formation flying of two Satellites at 

constant value q/m (0.1) and change dipole magnetic 𝛼 (0°)and (11.3°), It should be noted that 

there no visible effect on norm relative position but visible on  the in-plane (x-y) motion, out-plane 

(z-y)motion and trajectory motion in this case. 

Figure (7) study different value of the charge to mass ratio q/m (0.01), (1.5), and (-1.5) C/kg for electric 

field only for 24 hour period. It should be noted that effect of electric force at q/m = .01 is very 

small and increasing with negative value of q/m but value decreasing with positive q/m, and total 

effect on one day about 2 km. 

In Figure (8) study two case first compare the charge to mass ratio q/m (0.01) C/kg for magnetic field 

with the same value of electric filed the results show that after 24 hour period effect of electric 

case 500 m but magnetic 2km, second case study the optimal value of q/m to electric field (-1.5) 

c/kg   to equal q/m (.01) in case magnetic field.  

Conclusion  

The Lorentz acceleration has been developed for two terms, a) first term which experienced with 

magnetic field in the case of absolute charging of the spacecraft; b) the second term which is 

experienced with electric field in the case of electric charging of the spacecraft. We have checked 

the effects of the Lorentz fore on relative motion of chaser spacecraft. The results confirm that 
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charge to mass ratio q/m can play the control key for correction in the drift of relative position. In 

the future work we are going to use feedback control for optimal control of spacecraft formation 

flying. 

The modeled derived when the chief spacecraft’s reference orbit is either circular or elliptical, and 

the deputy spacecraft is capable of established electrostatic charge.  The numerical results show 

that the effects of the Lorentz force on the spacecraft have a significant change in cross and along 

track position or/and plane orbit. In the other hand results investigated the trajectory an estimate 

the reachable of the Lorentz spacecraft for short time intervals with different ration (q/m) in case 

of magnetic or electric part of Lorentz acceleration and the comparable trajectory depend on the 

optimal q/m for electric part to reach the effects of magnetic part of Lorentz force. 

References 

 [1] Hill, G., Researches in Lunar Theory, American Journal of Mathematics, Vol. 1, 1878, pp.5-

26 

[2] Wiesel, W.E., Relative Satellite Motion About an Oblate Planet, Journal of Guidance, Control, 

and Dynamics, Vol. 25, No. 4, 2002, pp. 776-785. 

[3] Melton, R., Time-Explicit Representation of Relative Motion Between Elliptical Orbits, Journal 

of Guidance, Control, and Dynamics, Vol. 23, No. 4, 2000, pp. 604-610. 

[4] Tschauner, J., Hempel, P., Rendezvous Zu Einem In Elliptischer Bahn Umlaufenden Ziel, 

Astronautica Acta, Vol. 11, No. 2, 1965, pp. 104-109 

[5] Inalhan, G. ,Tillerson, M. and How, J. P. Relative Dynamics and Control of Spacecraft 

Formation in Eccentric Orbits, Journal of Guidance Control and Dynamics Vol. 25, No. 61, 

PP. 48-59 

[6] Gurfil, P., Relative Motion Between Elliptic Orbits Generalized Boundedness Conditions and 

Optimal Formation keeping, Journal of Guidance, Control, and Dynamic Vol. 28, No. 4, 2005, 

pp. 761 -767 

[7] Palmer, P.L., Imre, E., Relative Motion Between Satellites on Neighboring Keplerian Orbits, 

Journal of Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 521-528. 

[8] Abdel-Aziz, Yehia, Lorentz force effects on the orbit of a charged artificial satellite: New        

approach, Journal of Applied Mathematical Sciences Vol 1, No 31, pp. 1511-1518, 2007.  

 

DOI: 10.13009/EUCASS2017-530



[9] Abdel-Aziz, Yehia and M. Shoaib, Attitude dynamics and control of spacecraft using 

      geomagnetic Lorentz force. Research in Astronomy and Astrophysics (RAA) Vol 15 No. 1,  

       127-144, 2015.  

[10] Abdel-Aziz, Yehia  and M. Shoaib, ”Attitude stabilization of a charged spacecraft subject       

to  Lorentz force”, Advances in the Astronautical Sciences 153, 399-412, 2015.  

  

[12] Abdel-Aziz, Yehia, and M. Shoaib, Numerical analysis of the attitude stability of a        

charged  spacecraft in the Pitch-Roll-Yaw directions. International Journal of        Aeronautical 

and Space Sciences, Vol. 15, No.1, pp. 82-90, 2014.  

[13] Abdel-Aziz, Yehia, and KH. I. Khalil, Electromagnetic effects on the orbital motion of a           

charged spacecraft. Research in Astronomy and Astrophysics (RAA) Vol. 14, No. 5,         pp. 

589-600, 2014 .  

[14] Abdel-Aziz, Yehia, and M. Shoaib, (2014), Equilibria of a charged artificial satellite      

subject to gravitational and Lorentz torques. Research in Astronomy and Astrophysics        

(RAA) Vol. 14, No. 7, pp.891-902, 2014.  

 

[15] Peck, M. A. 2005, in AIAA Guidance, Navigation and Control Conference (San Francisco: 

CA, AIAA) 2005– 5995 Pollock, G. E., Gangestad, J. W., & 271 

[16] Streetman, B., & Peck, M. A. 2007, Journal of Guidance Control Dynamics, 30, 1677 Ulaby, 

F. T. 2005, Electromagnetics for Engineers (Pearson/Prentice Hall) 

[17] Heilmann, A., Ferreira, L. D. D., & Dartora, C. A. 2012, Brazilian Journal of Physics, 42, 55 

Juhasz, A., & Hor ´ anyi, M. 1997, J. Geophys. Res., 102, 7237 ´ 

[18] Ulaby, F. T. 2005, Electromagnetics for Engineers (Pearson/Prentice Hall) 

 

 

DOI: 10.13009/EUCASS2017-530


