Active Slosh Control and Damping - Simulation and Experiment

Martin Konopka¹, Francesco De Rose Airbus Safran Launchers GmbH, Airbus-Allee 1, 28199 Bremen, Germany

Hans Strauch², Christina Jetzschmann Airbus DS GmbH, Airbus-Allee 1, 28199 Bremen, Germany

Nicolas Darkow³, Jens Gerstmann German Aerospace Center (DLR), Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen

Abstract

Future reignitable cryogenic upper stages perform long ballistic coasting phases in earth orbit. During those coasting phases, the tanks are loaded with liquid propellants and propellant sloshing occurs due to external disturbances or attitude change maneuvers. The sloshing propellant motion induces reaction forces and torques acting on the space vehicle structure, e.g. rocket upper stages. To keep the upper stage at the desired target attitude, the guidance, navigation, and control (GNC) algorithm commands thruster firings to counter the fluid forces. At Airbus Safran Launchers (ASL), the Final Phase Simulator FiPS⁴ aims at simulating the coupling between fluid mechanics, GNC, and rigid body dynamics. To validate the coupling of GNC with linear lateral water sloshing, on ground experiments at the German Aerospace Center's Hexapod sloshing facility were performed. It was demonstrated that the developed control algorithm is able to damp the linear lateral sloshing within 4 seconds. FiPS simulations of the open and closed loop sloshing experiments showed that the experimental forces are matched with an uncertainty of less then 5 % for open loop phases. For closed-loop phases the simulations match the experimental damping intervals with an accuracy of better than 5 % and the force amplitude with an accuracy of about 20 %.

1 Introduction

The accurate prediction of the attitude evolution of future versatile upper stages is essential to ensure a robust mission design and an accurate delivery of the payloads to the desired target orbits. For such a prediction, it is key to consider the interaction of the propellant sloshing with the rigid body dynamics of the upper stage. To do so, the Final Phase Simulator FiPS was developed at ASL. In FiPS, the rigid body dynamics of the upper stage is coupled with the sloshing dynamics in the tanks which is computed by the commercial flow solver Flow-3D v.11.0.4. Furthermore, a control algorithm is fed with the attitude data, i.e. the software is a testbed for GNC development [1],[2]. The FiPS software is currently in use to support the GNC development for the ballistic flight phases of the Ariane 6 upper liquid propulsion module (ULPM). One of the purposes of FiPS in the framework of upper stage attitude analysis is to identify coupled modes between sloshing and upper stage attitude motion. Such a coupling might occur during the longitudinal spin phase where the propellant and oxidizer accumulates in bulges in the tanks. These results raise the question how to validate FiPS for such phenomena. The current strategy is to perform two validation steps. First, validate FiPS by on-ground sloshing experiments with control in the loop. Second, validate FiPS by in-orbit sloshing experiments using free-flying tanks aboard the international space station. The first step is presented in the current study. Therefore, the purpose of the current study is twofold. First, on-ground linear lateral sloshing experiments with closed loop control to damp sloshing are performed and the experiments are rebuild with FiPS: Second, the current active damping experiments and simulations are analyzed to show that active sloshing damping by control is feasible for future upper stages.

¹ Contact: martin.konopka@airbusafran-launchers.com

² Contact: hans.strauch@airbus.com

³ Contact: nicolas.darkow@dlr.de

⁴ FiPS: registered trademark

DOI: 10.13009/EUCASS2017-511

Martin Konopka, Francesco De Rose, Hans Strauch, Christina Jetzschmann, Nicolas Darkow, Jens Gerstmann

To perform on-ground sloshing experiments with control in the loop the hexapod sloshing system at the Cryo-Lab [6],[7] of the DLR Institute of Space Systems of the German Aerospace Center (DLR) in Bremen, Germany, is used. Using the hexapod system it is possible to simulate a 6 degree-of-freedom movement in a normal gravity environment, i.e. the system is able to replicate the upper stage motion for accelerated mission phases. In the current study, lateral linear first mode sloshing experiments are performed with sinusoidal and impulse sloshing excitation. For each excitation type, natural damping and active damping by closed-loop control is observed. That is, the experiments cover the excited phases, i.e. when the hexapod moves the 1.2 m diameter Perspex tank which is filled with water. After the excitation, natural and active damping occurs and the results are juxtaposed. Note that it was previously shown by Konopka et al. [5] that in the FiPS framework active slosh damping is feasible. However, The current study extends the previous results by experimental data with active slosh damping which was not available before. In Figure 1 a picture of the experiment during sloshing is shown. The Perspex cylinder is attached to the torispherical bottom made of steel. The tank assembly is mounted atop the hexapod system and sloshing and structure forces are recorded by the force transducers.

Figure 1 DLR hexapod with 1.2 m Perspex tank filled with water

The paper is organized as follows. First, the DLR hexapod system is described in detail including the measurement and drive systems. Next, the geometry and mass of the Perspex tank is given which is mounted aboard the hexapod system. Subsequently, the FiPS simulator is introduced including the adaptation to the current hexapod experiments. Furthermore, the Flow-3D model and control algorithm for active sloshing damping which was used in the real-time system at the hexapod is introduced. Next, the sloshing parameters of the experiments and simulations are given and in the results section the experimental results are compared with the FiPS simulations. Finally, some conclusions are drawn.

2 DLR Hexapod System

In the current section the hexapod system is described [5] which is sketched in Figure 2. The hexapod by Bosch Rexroth consists of six actuators. Each actuator contains a piston which is electrically driven by a spindle. On top of the actuators (C) is a steel frame to flange where for the current experiments an experimental platform (A) with six force transducer is attached (B). The experimental platform can be tilted up to 20° . The payload can be accelerated up to 0.6 g.

Figure 2. Hexapod system with experimental platform (A), force transducer (B) and actuators (C)

2.1 Hexapod drive system

The hexapod drive system makes a 6 degree-of-freedom movement within the limits of the acturators shown in Figure 7 possible. The forced motion can be performed with a maximum excitation amplitude of $y_e = 200$ mm and frequency $f_e = 10$ Hz. The prescribed motion and the actively controlled motion of the hexapod system is generated by the real time computer which contains the same control algorithm as the simulation software FiPS which is described in section 3.4.

2.2 Real-time system and data acquisition

To measure the status of the liquid inside the tank, a pair of six HBM U10M-5kN transducers is used. To determine the forces in all degrees of freedom, the transducers have to be pitched and yawed. The measurements of the six force transducers which are shown in Figure 2 are summarized to obtain the resulting force \vec{F}_R

$$\vec{0} \equiv \sum_{n=1}^{6} \vec{F}_n + \vec{F}_R.$$
 (1)

In case of liquid sloshing, the resulting force becomes the sum of the liquid force \vec{F}_{liq} and structure force \vec{F}_{str}

$$\vec{0} \equiv \sum_{n=1}^{6} \vec{F_n} + \vec{F}_{liq} + \vec{F}_{str}.$$
⁽²⁾

The obtained measurement data is processed and recorded by LabVIEW.

3 Description of the Perspex tank and the mounting plate

In Figure 3 a sketch of the Perspex tank which was used for the current simulations and experiments is given. The cassini-shaped tank bottom is made of stainless steel. The cassinni shaped bottom is mounted on the hexapod plate sketched in Figure 2. The cassini shape was chosen to have a similar shape compared to launcher tank geometries. The upper part of the tank is made of transparent Perspex to be able to observe the fluid motion during the tank movement. The dimensions of the tank assembly are given in Figure 3 and the height of 1800 mm is sufficient to slosh large amounts of liquid to benefit from larger times scales particularly during damping phases. The total weight of the tank assembly including the mounting plate of the hexapod above the force transducers is $m_{structure} = 700 \text{ kg}$.

Figure 3. Perspex tank setup

1. FiPS simulator description

In the current section the standard FiPS simulation environment is described. Furthermore, the stripped-down FiPS version which was used for the current hexapod validation simulations is specified.

3.1 Standard FiPS software

In Figure 4 a block diagram of the standard FiPS software is given. A detailed description of the simulator is given in [1],[2]. It is visible that the simulator consists of five main parts.

- The rigid body dynamics
- The flow simulation, i.e. the Flow-3D process modelling the fluid motion. A separate flow simulation is initiated for each tank.
- The thermal modelling of the conduction in the tank structure
- The controller
- The propulsion system

Figure 4. Block diagram showing the connectivity of the coupled simulation process

DOI: 10.13009/EUCASS2017-511

Martin Konopka, Francesco De Rose, Hans Strauch, Christina Jetzschmann, Nicolas Darkow, Jens Gerstmann

If a stage is equipped with a cold gas reaction control system which is fed by the vapor of the tanks, the propulsion system requires information on the tank pressure and the inflowing liquid or gas density as well as the controller's command to initiate reaction control system (RCS) thruster activations. The command then results in forces and torques, driven by the thrust. The complete set of forces and torques acting on the rigid body are then the sum of RCS forces / torques, the liquid's sloshing forces and torques acting on the tank structure as well as external forces / torques, e.g. residual atmospheric drag. The rigid body's acceleration, angular velocities, and mass flow rates at the gas port in the tanks are the boundary conditions for the flow simulations. The state vector of the rigid body, defining the position of the spacecraft, is used by the controller as an input, comparing this value to the target value and initiating new RCS commands, if needed. The heat transfer of the cryogenic liquid to the tank walls. For the liquid, the tank wall temperatures are prescribed at each time step and the heat transfer coefficient is computed locally in the fluid.

The simulator is realized in Matlab using the tool boxes provided by Simulink. In Figure 5 the first layer of the Simulink model is shown. The main blocks of the shown layer are numbered from 1 to 9 simplifying the description of the functionality of the simulator. The blocks of the Simulink model are the following. In block 1 the parameters of the simulation are read. Block 2 serves as an estimator for the maximum forces and torques which are available. Block 3 contains logic for longitudinal thrust generation of the RCS and in block 4 the attitude controller generates RCS commands based on the flight sequence. Block 5 contains the propulsion system and in block 6 the two-way communication routine to Flow-3D is realized. In block 7 the rigid body dynamics is computed based on the internal forces and torques from the flow simulation and external disturbances. Block 8 writes the data to disk for later post processing. Block 9 imposes an external disturbance torque onto the rigid body.

Figure 5. Matlab[®]/Simulink[®] FiPS[®] Simulator Model

3.2 FiPS adaptation to the hexapod

To utilize FiPS for the present study the Simulink model presented in section 3.1 is simplified preserving the coupling with Flow-3D. Figure 6 shows the modified Simulink model with three main modules, i.e. the controller block 4 containing the new control logic for lateral sloshing damping, the coupling block 6 where data are exchanged with Flow-3D, and the block 8 where data are sorted for later postprocessing.

Martin Konopka, Francesco De Rose, Hans Strauch, Christina Jetzschmann, Nicolas Darkow, Jens Gerstmann

Figure 6. Matlab[®]/Simulink[®] FiPS[®] Simulator Model update for Hexapod

In the framework of the current study FiPS is modified such that the rigid body dynamics (block 7) is removed since the tank is fixed on the hexapod system and cannot drift unconstrained. In the current experiments the force transducers mounted at the hexapod measure the sum of the liquid and structure forces as indicated in equation (2). For the current experiments and simulations the x Cartesian direction is considered, i.e.

$$F_{x\text{Hexapod}} = F_{x\text{Liquid}} + F_{x\text{Structure.}} \tag{3}$$

Therefore, FiPS was modified such that $F_{xHexapod}$ is computed in the new block 9 and the information is used by the control algorithm as input data.

$$F_{x\text{Structure}} = m_{\text{Structure}} \cdot \ddot{x}(t). \tag{4}$$

3.3 Flow-3D model

FiPS relies on Flow-3D to compute the flow in the tanks and to obtain the forces and torques acting on the tank walls. For the current study, Flow-3D version 11.0.4 is used. The governing incompressible Navier-Stokes equations are solved in the liquid phase. The liquid phase is identified in the multiphase flow solver by the volume-of-fluid method [8] and the gas phase is not considered in the current simulations. The solution of the pressure field is obtained using the generalized minimal residual method (GMRES). The finite difference methods employed by Flow-3D discretize the governing equations on a Cartesian grid at second order accuracy both for the inviscid and viscous terms. For the current iso-thermal computations the transport properties of water are assumed to be constant and are given in Table 1. The current unsteady, time-accurate flow computation is assumed to be laminar.

Table 1 Fluid properties of wat

Fluid	Viscosity	Density
Water @ 20°C	1.01 10 ⁻³ Pa	997.3 kg/m ³

In Figure 7 the Flow-3D model of the Perspex tank the geometry of which was described in section 3 is given. The tank is modeled using the obstacle method, i.e. Flow-3D introduces a volume fraction field with blocked and open grid cells which represent the tank structure and fluid domain. That is, the tank wall is modeled by an immersed boundary method

which cuts the grid cells. At the tank wall no-slip conditions are enforced. The origin of the Flow-3D coordinate system which is sketched in Figure 7 is at the lower bottom of the tank. The hexapod coordinate system is located $\Delta z = 329$ mm below the origin of the Flow-3D coordinate system. The initial condition of the simulations is that the tank is filled with water at 0° surface inclination at different fill levels which are indicated in Table 3.

a) Flow-3D model

Figure 7. Flow-3D model of the Perspex tank showing the origins of the Flow-3D coordinate system in the center of the tank and the hexapod coordinate system which is located in the mounting plate below the tank a) and discretized Perspex cylinder with a Cartesian grid.

The current simulations are performed on two grids the paramters of which are given in Table 2. The grid study which was performed in the results section indicated that the resolution at grid two is sufficient to match the experimental force evolution.

Table 2 Grid parameters for grids 1 and 2.

Grid	Number of cells	Minimal grid spacing
1	$N_x \cdot N_y \cdot N_z = 70 \cdot 70 \cdot 101 = 494900$	$\Delta x \cdot \Delta z \cdot \Delta z = 1.82 \text{ cm} \cdot 1.82 \text{ cm} \cdot 1.82 \text{ cm}$
2	$N_x \cdot N_y \cdot N_z = 140 \cdot 140 \cdot 203 = 39788000$	$\Delta x \cdot \Delta z \cdot \Delta z = 0.92 \text{ cm} \cdot 0.92 \text{ cm} \cdot 0.92 \text{ cm}$

3.4 Control algorithm

Propellant sloshing in space vehicles can pose different problems. It may cause instability of the closed loop system, excessive consumption in the attitude propellant or problems for engine re-ignition. Up to now the way to *actively* address these issues is only by design measures in the tank layout. On the algorithm side the instability problem is addressed by gain or phase stabilization via notch filters, which may be regarded as only *passive*. To our knowledge, no means of actively influencing the sloshing phenomenon is currently employed. The controller which has been developed in the framework of the FLPP3 program [3] is a first step towards an active handling of sloshing by increasing the knowledge concerning modeling and control design and by testing closed loop methods via experiments.

In order to be successful, various techniques must be mastered covering modelling, control design, and implementation into an embedded test system. A new element is that the sloshing has to be adequately modeled for the controller design task. Such a model is not necessarily identical to a very precise computational fluid dynamics (CFD) based model as commonly used for prediction. This activity is also a step in the validation of the CFD modeling as far as closed loop prediction is concerned. Usually the validation between CFD simulation and actual tank sloshing is done in open loop by applying, for a certain period, an excitation (forced motion) which is followed by stopping the excitation and then observing the damping. In the closed loop scenario a different pattern of excitation will be generated which is more realistic. Therefore, this kind of test will give additional insight concerning the validation of the CFD prediction capability.

Figure 8 illustrates the workflow from control design based on a spring/damper model via physical modelling of the hexapod and Flow-3D in the loop toward the final test with embedded controller implemented in the hexapod test environment of the hexapod system.

Figure 8. Workflow: Design and Test: 1) Controller design based on mathematical model 2) Controller test with physical model of the hexapod (Simmechanics) 3) Extension of the physical modeling with Flow-3D 4) Test on hexapod

A CFD model is useful for prediction of the sloshing motion, but it is not immediately useful as a controller design model. In the new model based design methods the resulting controller structure is in part determined by the choice of the design model. The purpose of the current activity is that the whole chain composed of the two models (CFD and controller design), the design method and the validation on a hexapod is mastered.

Figure 9 shows a sketch of the design model for the current control algorithm. The hexapod system generates the external force $F_{xHexapod}$ which is measured by the force transducers given in section 2 and is used for control. The liquid force F_{Iiguid} is used for providing an input for the performance weightings needed in the controller design.

Figure 9. Controller design model: Point mass representing the slosh mass m_s attached in a movable frame with mass m_r (comprising the mass of the frame as well as the non-sloshing mass of the fluid) with a spring/damper system. (The damping is omitted in the picture).

The set of differential equation of the system as depicted in Figure 9 can be derived following basic rules of mechanics. The details are reported in [4]. The core feature of the concept is the use of a force sensor which provides information on the fluid motion via the detected reaction force. The controller uses as a feedback this force measurement. When properly taking into account the reaction force from the structure which is created by the controller's own commands, the remaining force contains the information of the fluid. Commands can then be generated which will damp the motion.

DOI: 10.13009/EUCASS2017-511

Martin Konopka, Francesco De Rose, Hans Strauch, Christina Jetzschmann, Nicolas Darkow, Jens Gerstmann

Konopka et al. [5] evidenced that the match between controller design model (see Fig. 9) and the CFD model is convincing at least in an open loop condition for linear lateral sloshing. However, it is still necessary to build sufficient robustness into the controller in order to deal with uncertainties in the real fluid as well as in the un-modelled effects in the actuation chain of the Hexapod. Therefore a robust control design is needed in order to deal with expected und unexpected uncertainties. The design and analysis is based on structured singular value theory. The linear fractional transformation model is shown in Figure 10. The inputs of the model are the measurement noise *n* and the disturbance F_d . The outputs of the model are the relative velocity *p* and the control effort *e*. The controller input/output (blue) are the commanded hexapod acceleration \ddot{x}_{cmd} and the force measurement $F_{x\text{Hexapod}}$. Further elements of the model are the LP_x lowpass modelling hexapod drive and force sensor elements and the differential equation DEQ representing the system from Figure 9.

Figure 10. Linear Fractional Transformation (LFT) model with input/output for performance weighting (red).

A structured-uncertainty μ -synthesis controller has then been computed based on the modelling. The design was tested with a hexapod model established in Simmechanics. This environment allows the user to select either design model, hexapod with pendulum or, with some additon for the FIPS interface (see Figure 6), CFD in the loop.

Figure 11. Physical modelling environment with options for design model or Simmechanics hexapod in the loop

3.5 Sloshing and control parameters

The current sloshing experiments and simulations are performed at normal gravity with two different sloshing excitations, i.e. with impulse excitation and with a sinusoidal excitation. The parameters of the excitations are given in Table 3. For the sinusoidal excitations at cases 3 and 4, the linear acceleration in the Cartesian x-direction is given by

$$\ddot{x}(t) = -\omega_c^2 x_a sin(\omega_c t).$$
⁽⁵⁾

Each of the experiments and simulations at cases 1 and 3 without control are divided into an excited phase where the hexapod moves and a natural damping phase where the hexapod rests where natural damping is observed. Cases 2 and 4 are divided into three phases each, i.e. an excited phase where the hexapod moves and the sloshing motion is initiated, a natural damping phase where the hexapods rests and an active damping phase where the controller commands hexapod movements based on the force measurements to actively damp the sloshing motion. The excitation parameters at cases 3 and 4 are chosen such that the excitation frequency is below the resonance frequency of the tank of 0.87 Hz at both fill level. Two fill levels were chosen at cases 1 - 4 since at different fill levels the sloshing properties of the liquid such as the ratio of slosh mass to rigid mass differs. Therefore, at cases 2 and 4 a different set of control parameters is used in the experiment and in the simulator.

Table 3 Parameters of the current simulations and experiments.

Case	Excitation Frequency f _c	Excitation Amplitude x_a	Excitation maximi- mum acceleration \ddot{x}_{max}	Control loop	Fill level	Method
1	-	-	1 m/s^2	open	635 mm	Experiment, FiPS
2	-	-	1 m/s^2	closed	635 mm	Experiment, FiPS
3	0.74 Hz	20 mm	0.43 m/s^2	open	1200 mm	Experiment, FiPS
4	0.74 Hz	20 mm	0.43 m/s^2	closed	1200 mm	Experiment, FiPS

4 Results

The results section is split into the discussion of the results of the open and closed loop experiments and simulations for the lower fill level of 635 mm at cases 1 and 2 and for the higher fill levels of 1200 mm at cases 3 and 4.

4.1 635 mm fill level (cases 1 and 2)

In Figure 12 a) the measured acceleration of the DLR hexapod system in the x-axis direction is given for cases 1 and 2, i.e. for the open and closed loop sloshing cases. It is visible that at $t \approx 26$ s the hexapod accelerates to the target acceleration of 1 m/s² and subsequently decelerates to reach a zero velocity and after that the acceleration remains zero. At case 2 the same excitation pulse is used but at $t \approx 47$ s the controller commands lateral excitations to actively damp the sloshing motion. The corresponding force evolutions are shown in Figure 12 b). It is visible that the total hexapod force is about 1.4 kN during the excitation pulse at $t \approx 26$ s. Afterwards, lateral linear sloshing at the first mode occurs which leads to a sinusoidal force evolution with a natural frequency of f = 0.872 Hz. At $t \approx 47$ s the control algorithm kicks in and the sloshing motion is actively damped, i.e. the force amplitude is reduced from ± 650 N to about ± 80 N demonstrating that the closed-loop system is able to damp the sloshing motion within two cycles.

a) Acceleration

Figure 12 Juxtapositioning of the open and closed loop experiments at cases 1 (open loop) and 2 (closed loop) for the fill level of 635 mm.

The damping of the liquid is further characterized by the damping ratio γ which is computed from the logarithmic decrement Λ of the liquid force by

$$\gamma = \frac{\Lambda}{2\pi} = \frac{1}{2\pi} \cdot \frac{1}{i} (\ln F_o - \ln F_i), \tag{6}$$

where F_0 is the first force amplitude in the damping phase and F_i the i-th force amplitude. In the current evaluation of γ up to 40 force peaks are considered and γ is determined by a least-squares method. In Table 4 the damping ratios of the natural damping which occurs in the Perspex tank at cases 1 and 2 are given. At case 2, the damping factor γ for the natural damping phase before active sloshing reduction is computed by only 15 amplitude peaks vs. 40 peaks for case 1, explaining the difference. At active damping at case 2, the damping ratio is about 53 times higher than at case 1. However, the damping ratio at the active damping phase at case 2 can only serve as a rough estimate since it is based on four force peaks and the damping ratio is valid for non-actuated systems at the natural sloshing frequency.

T 1 1 4	a 1			
Table 4	Computed	damning	ratio 1	ù
	Computed	uamping	rano	

Case	Phase	Experiment	Experiment standard deviation	Damping ratio γ_1/γ_n
1	Natural Damping	0.00209	0.0003376	1
2	Natural Damping	0.00185	0.0002290	1.123
2	Active damping	0.1111	0.00372	53

In Figure 13 the surface inclination at t = 28 s during the excitation peak at case 1 is shown for both the simulation and the experiment. It is visible that a smooth surface occurs both in the simulation and experiment and that the first lateral mode sloshing mode is excited.

Figure 13 Maximum surface excitation during the impulse excitation at case 1.

In the current study two grids are used and both grids 1 and 2 predict the maximum amplitudes with an accuracy of 7 %. However, the finer grid 2 better predicts the natural sloshing frequency which is visible in Figure 14 a). Therefore, all subsequent computations were performed with the finer grid 2. In Figure 14 b) the hexapod force evolutions of the experiment and the simulation at case 1 are juxtaposed. It is visible that the data mathces, indicating the quality of both the experiment and the simulation.

Figure 14 Juxtaposed hexapod force evolutions for cases 1 and 2.

Figure 15 a) shows the hexapod acceleration at the simulation at case 2 and the experiment at case 2 during active damping. It is visible that movement of the hexapod starts at $t \approx 47$ s. There seems to be a large difference between simulation and experiment right at the start of the damping phase in the acceleration plot. The controller modul aims to start the commands at the moment of the zero crossing of the force measurement. In principal the damping controller will work indepently of the instant of start, but by this special timing the hexapod stroke is minimized and stays within its limit. However, when there are slight differences in the zero-crossing detection (order of 10 mseconds) the commanded acceleration from the controller are different at the beginning. This happened in the simulation where the green curve starts earlier than the blue. Yet, the subsequent damping performance is not effected and a convincing agreement between simulation and experiment is achieved. In Figure 15 b) the hexapod force evolution of the simulation and the experimented is juxtaposed. It is evident that the simulated force evolution closely follows the experiment and lateral sloshing is damped within two cycles. This indicates the correctness of the data exchange between controller, simplified rigid body dynamics, and Flow-3D simulation.

Figure 15 Acceleration and hexapod force evolution of the active damping case 2, experiment and simulation at grid 2.

In Figure 15 b) the hexapod force evolution is shown which depicts the force increase at $t \approx 47$ s when hexapod movements are commanded and the structure force adds to the liquid force. Therefore, the liquid force evolutions in the experiment and the simulation at case 2 are juxtaposed in Figure 16. It is visible that there is no liquid force increase during the active damping period 46.5 s $\leq t \leq 51$ s and the controller commands always lead to a sloshing force reduction.

Figure 16 Comparison of the numerically obtained liquid force evolution in FiPS and the liquid force deduced from hexapod force and acceleration measurements by eqn. (3).

Figure 17 shows the liquid positions at cases 1 and 2 both in the simulation and at the experiment. The numerical liquid position in the *x*-*z* plane are shown in Figure 17 a) and b) at the natural damping case 1 and the active damping case 2. It is visible that the large lateral damping motion has been eliminiated and only some irregular surface waves remain. The fluid position in the simulation at case 2 at t = 52 s after active damping is completed corresponds to the image of the experiment shown in Figure 17 c) where some residual surface waves are visible. The remaining irregular surface motion explains the residual force which is present after active damping.

Figure 17 Fluid pressure contours of the natural damping and active damping simulations at cases 1 and 2 and image of the surface shape of the experiment at case 2.

4.2 1200 mm fill level (cases 3 and 4)

In the current section the numerical results of the FiPS / Flow-3D simulations are compared with the measurements at cases 3 and 4 for the higher fill level of 1200 mm and a sinusoidal excitation. In Figure 18 the measured acceleration and the force evolutions at case 4 are compared. It is visible that during the excited phase at $t \le 272$ s the measured acceleration and hexapod force evolutions of both cases match indicating the repeatability of the experiment. Active damping occurs at $t \approx 293$ s and it is visible in Figure 18 b) that a nearly complete force reduction is reached by the control commands within two sloshing cycles. That is, the controller with the updated parameters for the higher fill level remains highly effective and robust.

In Table 5 the damping ratios γ for experiments at cases 3 and 4 are given. The reason for the difference of the damping ratio γ for the natural damping phase is that only about 15 cycles for the damping computation of case 4 vs. 40 cycles at case 3 are considered. When the sampling window at case 3 is reduced to 15 cycles, the same damping ration is obtained as at case 4. During active damping four force peaks are used to determined the damping ratio γ which is 113 times higher than at natural viscous damping indicating the quality of the control algorithm.

Table 5	Computed	damping	ratio γ
---------	----------	---------	---------

Case	Phase	Experiment	Experiment standard deviation	Damping ratio γ_3/γ_n
3	Natural Damping	0.00105	0.000030296	1
4	Natural Damping	0.002106	0.00019851	0.5
4	Active damping	0.1192	0.0010723	113

In Figure 19 the surface inclination before the end of the sinusoidal excitation at case 3 is shown in a x-z-plane for the simulation and in the image for the experiment. It is visible that first mode linear lateral sloshing occurs with a smooth liquid surface.

Figure 19 Surface inclination at the end of the excitation period at case 3 at the simulation and experiment.

The grid study at the higher fill level case 3 which is given in Figure 20 a) shows that at grid 2 the simulation data indicates a convincing agreement with the simulation data since the natural sloshing frequency of f = 0.872 Hz is matched. In

Figure 14 b) the hexapod force evolution of case 3 of the FiPS simulation is compared with the experiment at case 3 at the time when the hexapod excitation is switched off at $t \approx 272$ s. It is evident that a convincing agreement both during excitation and natural damping phases occur.

Figure 20 Juxtaposed hexapod force evolutions at case 3.

In Figure 21 a) the measured hexapod acceleration evolution at case 4 is compared with the simulation using grid 2. It is visible that the controller in the simulator commands slightly higher acceleration levels than those which occur in the experiment. The reason for the discrepancy is that the FiPS simulation environment uses a simplified hexapod model which is approximated as a point mass. However, the simulation at case 4 matches the frequency of the sloshing motion during damping at 293 s $\leq t \leq 297$ s. The hexapod force evolution in Figure 21 b) shows that in the simulation the initial force amplitude during active damping at t = 294 s is overpredicted by about 24 % which is due to the higher acceleration which is commanded by the control algorithm in the simulator. The subsequent force cyclees are closely matched in frequency with slightly higher force amplitudes occurring in the simulation. The qualitatively good match shows that at the higher fill level case 4 the information data transfer between Flow-3D, simplified rigid body dynamics, and control algorithm is correctly implemented and the sloshing dynamics with and without control is accurately captured.

Figure 21 Acceleration and hexapod force evolution of the active damping case 4, experiment and simulation at grid 2.

The liquid force evolution at the simulation and at the experiment at case 4 is juxtaposed in Figure 22. It is visible that in the experiment the liquid force decays at $t \ge 293.5$ s when active damping is initiated. In the simulation, the controller produces a slight liquid force increase which is subsequently quickly damped by controller action. That is, despite some descrepancies for the force peaks the controller behavior is similar in the FiPS simulation environment and in the real-time system of the hexapod.

Figure 22 Comparison of the liquid force evolution of the simulation and of the experiment at case 4.

In Figure 23 a) and b) the liquid surface position in *x*-*z*-planes at y = 0 is compared for the natural damping case 3 and the active damping case 4. It is visible that the controller has effectively damped the sloshing motion and the liquid surface is nearly flat. The same holds for the liquid surface of the experiment at the same time t = 295 s at case 4 at which the sloshing motion has been effectively damped by the controller and the hexapod movement.

Figure 23 Fluid pressure contours of the natural damping and active damping simulations at cases 3 and 4 and image of the surface shape of the experiment at case 4.

5 Conclusion

First mode water sloshing was investigated both in an experiment and in a simulation environment. In the experiment, a 1.2 m diameter Perspex tank was mounted aboard the DLR Hexapod system in the Cryo-Lab at the Institute of Space Systems in Bremen. The hexapod system was replicated as a point mass in the FiPS simulation environment. The FiPS simulation environment couples the rigid body dynamics of the hexapod system, the control algorithm and the sloshing dynamics of the water tanks. The flow computations within FiPS were performed using the commercial flow solver Flow-3D. The purpose of the study was to show that active damping of sloshing water in a large vessel is possible by having a controller in the real-time loop of the hexapod system and that FiPS can rebuild these experiments with a high accuracy.

To do so, four test cases were considered with two fill levels. At the lower fill level of 635 mm open and closed loop sloshing experiments with an impulse excitation were performed and it was shown that the control algorithm is able to damp the linear lateral sloshing in two cycles within four seconds. The experiments evidence that the controller produces a damping factor which is 53 times higher than at natural viscous damping. The FiPS simulations were accurate within 5 % with respect to the sloshing force during natural damping and during active damping in closed-loop control the damping period show very good agreement with an accuracy of 4 %. At the higher fill level of 1200 mm the set of open

and closed-loop experiments was repeated. The FiPS simulation force data collapses with the measurements during excited and non-excited phases of the sloshing motion. At active damping, the simulations match the damping period and the hexapod forces with an accuracy of 20 %.

The conclusion is that the model-based control algorithm is able to damp lateral linear sloshing within two sloshing cycles at different fill levels. Furthermore, the FiPS simulation environment is validated for sloshing phases with external excitation, during natural damping, and at active close-loop sloshing control.

The current experiments and simulations demonstrates that active sloshing control is a viable option for future upper stages such as that for Ariane 6 and that the currently used FiPS simulation environment is well validated for coupled sloshing simulations and the application to accelerated mission phases.

6 Acknowledgments

A part of the work has been performed in the contect of ESA's Future Launcher Preparatory Program (FLPP3) namely the study "Upper Stage Attitude Control Framework'. The authors thank the study lead an technical officers, Adriana Sirbi and Samir Bennani, for their support and encouragement.

7 References

- [1] F. De Rose, "Modeling of upper stage dynamics including fuel sloshing and utilization for future space vehicles", 6th European Conference for Aeronautics and Space Sciences (EUCASS), Paper 219, 2015
- [2] F. De Rose, P. Behruzi, "Modeling of upper stage dynamics considering the impact of fuel behavior and the cold gas RCS propulsion system", Space Propulsion 2014 Conference, Paper SP2014-2967348.
- [3] H. Strauch, K. Luig, S. Bennani, "Model Based Design Environment for Launcher Upper Stage GNC Development", Workshop on Simulation for European Space Programmes (SESP), ESA/ESTEC, Noordwijk, The Netherlands, March 2015
- [4] C. Jetzschmann, H. Strauch, S. Bennani, "Model based active slosh damping experiment", 10th International ESA Conference on Guidance, Navigation & Control Systems, ESA/ESTEC, Salzburg, Austria, June 2017
- [5] M. Konopka, F. De Rose, T. Arndt, C. Jetzschmann, H. Strauch, N. Darkow, J. Gerstmann, "Large-Scale Tank Active Sloshing Damping Simulation and Experiment", Space Propulsion 2016 Conference, Paper SP2016-3124604.
- [6] J. Gerstmann, M. Konopka, "Cryo-Laboratory for test and development of propellant management technologies", Space Propulsion 2016 Conference, Paper SP2016-3124996.
- [7] J. Gerstmann, T. Arndt, J. Klatte, P. Behruzi, "Cryo-Laboratories for Test and Development of Propellant Storage and Management Technologies", Ground-based Space Facilities Symposium, CNES, June 2013, Paris
- [8] C.W. Hirt and B. D. Nichols, "Volume of fluid (VOF) method for the dynamics of free boundaries", *Journal of Computational Physics*, 1981, Vol. 39, pp. 201, 225