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Abstract 
The problem of optimal control by the thrust vector of spacecraft (SC) with electric ramjet (ER) to 
change the orbital parameters is considered. Optimal control is determined by solving the problem on 
the conditional maximum of the local (at the current point) impact of the perturbing acceleration on the 
functional, assuming the perturbations' smallness compared to gravity.  
An approximate synthesis of the optimal thrust vector is obtained. The investigation results are given 
depending on the available capacity of the power source, parameters of the SC with ER and initial 
orbit. 

1. Introduction 

Electric ramjets (ER) are among upcoming trends in the long-term low-orbit spacecraft (SC). The ER use 
atmospheric air as the working fluid (WF) and offer a number of feasible advantages, such as long-term operation on 
the low and extremely low orbits, reduced energy consumption at insertion due to the low orbit and no need for the 
initial SC propellant margin.  
The atmospheric air has long been discussed as a working fluid (see [1], [2]). Nowadays, both Russian and 
international researchers proceed with studies into the feasibility of electrojet engines ingesting atmospheric air [3], 
[4]. There are papers dwelling upon optimal control of low-orbit spacecraft with ER. Papers [5], [6] analyzed ER 
thrust vector optimal control based on the Pontryagin principle maximum aimed to maintain a circular SC orbit and 
optimal orbit parameters.  
This paper presents results obtained from the studies into ER thrust optimal control aimed at the fastest change of the 
SC orbital parameters (the apogee altitude and inclination) with regard to the limited powerplant (PP) power. The 
initial stage of this research was presented in the work [7].  
 

2. Electric ramjet scheme 

The ER diagram is shown in figure 1. The atmospheric air passes through the air intake (1), accumulates in the WF 
chamber (2) and then gets to the ion-production chamber (3). The ionized gas speeds up within the accelerator (4) to 
be neutralized by a flow of electrons (5) and then injected through the nozzle (6) thus generating exhaust thrust. The 
required power supplies from the PP, either an electric battery, nuclear reactor, or a solar cell battery. Within the 
present problem statement, it is of crucial importance whether the PP consumes energy or fuel reserved before the 
launch, or refills energy from practically inexhaustible outsourcing, although under certain limitations. 
 

 

Figure 1: Electric ramjet diagram 

Copyright  2017 by First Author and Second Author. Published by the EUCASS association with permission. 

DOI: 10.13009/EUCASS2017-498



Alexander Filatyev, Olga Yanova 
     

3. Spacecraft low-orbiting conditions 

Let’s employ the momentum conservation law in order to estimate the orbit altitude range available for ER-power 
compensation of the aerodynamic drag [8]: 

 ,VmсmVM inexh   (1) 

where M is SC mass, mexh is mass of particles exhausted from the engine nozzle, min is mass of particles captured in 
the WF chamber, c is exhaust velocity. 
Let , where  is the WF mass utilization factor. From (1) then follows the necessary condition 

for the SC low orbiting ( ) 
inexh mkm 1 10 1  k

0V

 1kVc . (2) 

Beside condition (2), the long-term ER-powered SC low orbiting requires admissible thermal fluxes and PP energy. 
The power generated to accelerate the WF to the velocities sufficient to maintain a circular orbit with regard to 
condition (2) is determined by 
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where  is the ER efficiency factor,  is the atmospheric density. The SC sectional area is assumed equal to the 
intake inlet , while the SC solid length is negligible compared with the receptor module. inS

As it follows from the Kemp-Riddle formula, the minimum apogee altitude  where thermal fluxes are within the 

admissible margin is determined by 
Th

   62  VqhT , (4) 

where q  is the maximum admissible thermal flux related to , a thermal flux at a certain characteristic circular 

orbit (CCO) with a radius  and an altitude , 

q

R h  VVV , V  is the CCO velocity,      hh  , . 

With regard to the weak dependence of the orbital velocity on the orbit altitude as compared to the exponential 
relationship of the atmospheric density, it follows from (3) and (4) that the minimum altitude is determined by the 
PP-generated energy and thermal flux limitations: 

   1,2min 2
1

2
min qWkqh e  , 

where  WWW ee , .   3
  VShW in

The dependence of atmospheric density versus altitude represented by 

    32 lnlnln  cbahh    (5) 

with km141198.0,km00283361.0,km55421.4  cba

minh

 is a decent approximation of the Standard 

Atmosphere [9] within the altitude range of 80  300 km. Approximation (5) enables construction of the minimum 
apogee lines  on the plane of parameters qlg  and  (figure 2), where  wlg

 eWkw 12  (6) 

Bearing this dependence in mind the minimum-altitude circular orbits are derivable for the long-term operation of the 

ER-powered SC with an assigned power. Thus with We=500 W, ,  we obtain 

lg w=-2.52 and find  from figure 2. Inversely, derivable is the power necessary to maintain the SC 

assigned orbit parameter, e.g. for  it follows from figure 2 lg w=-1.42 and then determine the required 

power for the same flight conditions We=6.3 kW, which is an order higher than the value of the previous example 
with the orbit altitude of 155 km. 

2m1inS ,9.01  k km120Th

m155min kh 
h km120min 
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Figure 2: ER-powered SC orbit minimum apogee lines on the plane of parameters  and wlg qlg  characteristic of the 

PP-generated energy and maximum admissible thermal flux 

4. Optimization problem statement 

The motion of the SC centre of gravity (c.g.) is described in the inertial Cartesian coordinates Oxуzс with the origin 
in the centre of the Earth. The Oxz  coordinate plane coincides with the plane of the SC initial orbit. The Oy axis is 
directed to the perigee of the initial orbit (in case of a circular orbit it is the SC initial radius vector), the Ox axis is 
directed along the initial velocity vector, the Oz axis is aligned with the SC initial angular momentum vector.   
Let’s write the SC c.g. motion equations in dimensionless form: 

 









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 


,
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,Vr
3
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where r is the radius-vector related to the CCO radius, V is the velocity vector related to the CCO speed, m  is WF 

mass related to the SC initial mass , iM APa   is the disturbing acceleration vector,  is the thrust-

generated acceleration vector,  is the thrust unit vector,  is the aerodynamic acceleration vector, 

pPeP 

Pe A   is the WF 

rate of change related to the characteristic parameter   Rgmi ,  is the CCO gravitational acceleration, t is  

time related to the characteristic time 

g

  gRT 2 ,  is the CCO orbit time, T   dtd() . 

There are a few assumptions: 
1. The SC mass variation is negligible. 
2. If the normal air force is negligible, then VDeA  , where , 25.0 VSCD inx  VV Ve  , and  

 VP DP eea  . (7) 

3. , . constW e constc 
The thrust vector P is used as a control. 
The WF rate of change  is determined by the difference between the WF rate of arrival to the WF chamber 

VSk inin  1  and the WF discharge rate through the nozzle : . This discharge rate exh exhin   cPexh   

is limited by value of in  and the PP power We (3): 

  2
max 2,min0 сWeinexhexh   . (8) 

Based on (8), the thrust limit can be written in the following form: 

 . (9) cPP exh maxmax0 
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Two optimization problems are under consideration: SC thrust vector P control bounded with condition (9) in order 
to maximize variation of the apogee radius  (Problem I) or inclination 

 
(Problem II) within the orbital 

period T. 
r orbi

In view of the negligible disturbing acceleration, let’s replace the above-mentioned problems with finding a 
maximum for the local efficiency of the osculating orbit instant variation, i.e. solution to the thrust vector P control 
with regard to (9) enabling: 
Problem I.  maximum variation of the apogee radius  r

 
P

max
constr

I dt

dr



 , (10) 

Problem II.  maximum variation of inclination  orbi

 
P

max




constr

constr

orb
II dt

di





. (11) 

Noteworthy, that this simplified problem statement does not involve the motion equations, but representation of the 
functional only. The approximately optimal solutions we thus obtain are less than strictly optimal ones of the original 
problem statement in terms of the functional; whereas the approximately optimal solutions have a smaller domain of 
existence than those in the original statement. Because of this, the below analytical solutions can serve an applicable 
math tool for the lower-bound estimates of the original problems functional, while analytical synthesis of the 
approximately optimal control is that, which ensures feasibility of such lower estimates.  

5. Maximizing the apogee radius variation 

The radii of apogee , perigee , and SC orbit inclination 
 
are determined by the following equations [10]:  r r orbi

  ,,arccos,
1

,
1

22

Corbi
e
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e

C
r ee 





   (12) 

where vrC C , e is the orbit eccentricity, CC Ce  ,  is the unit vector of the angular Earth velocity. e

Let us find the thrust vector  for the fastest rate of increasing the osculating orbit radius 
optP

 
P

max
constr

I dt

dr



 .  (13) 

With the  we obtain from (12): constr 
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 (14) 

where    rVrVn ,22  rr ,  rVrVrCu ,2  r . 

Two conditions are analyzed: 1) , 2) . DP max DP max
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b)а) 

Figure 3: Optimum control for conditions а) 
 
and b)  DP max DP max

Condition 1) is shown in figure 3а. The velocity vector V is drawn in-plane from the reference point O in the 

spacecraft c.g., and the drag vector D is drawn contrariwise. The circumference P of center OP and radius Pmax drawn 

about the tip of vector D is the boundary for the vector a tolerance region according to (7) for the current values of D 
and Pmax. The orthogonality condition (14) reduces the a tolerance region down to the secant line AB perpendicular to 
vector n. Points А and В correspond to the maximum AO   and minimum BO   projections of vector а on vector u. 

As it follows from (13) and (14), the optimal vectors  and  arrive at point А. 
optP 

opta

For the second condition 2) (see figure 3b), solutions obey the same requirements however they do not necessarily 
exist: the domain of existence for the allowable vectors a (7) is shown in figure 3b with a chain-dotted line at an 
angle adm 2  with vector D. The boundary of the adm  angle is also shown with a chain-dotted line. The 

solution exists at  
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U

r

VnD

P 1cos,
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22
max 








Vn

,  (15) 

where  is angle of projection,   is angle between vectors n and V,    2222 sincos1  rU , rrr  . 

The optimal vectors  and  also correspond to the maximum projection of vector а on vector u, however 

here  decreases at a minimum rate rather than increases. 


optP 

opta

r

Based on (14) and from figure 3 we obtain synthesis of optimal control for Problem I (10) for the case (13) 
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e
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 (16) 

where rr re  , Ur  cossinsin 2  . 

The local efficiency of the apogee radius variation in the dimensionless form is obtained from (14) with regards to 
(16):  

   Ue

VCa

dt

dr opt
22

4

1

sin4




 
. (17) 

Formulae (15)-(17) contain singularities in the orbit perigee which can be removed if expressed by the true anomaly 
function  
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where cos21 2 eeY  ,         22 cos12cos14cos11  eeZ . 

As is seen from (17), (18) the ER effectiveness depends on the SC orbital position and varies within the following 
range: 

,
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where the extremes are reached in the apogee and perigee accordingly. 

The thrust vector  for the fastest decrease in the apogee radius of an osculating orbit 
optP
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is obtained similar to functional (13) (see figure 3):  
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Thus obtained optimal control effectiveness is worth comparing with the extreme event of the apogee radius 

variation  due to the optimal thrust impulse. The impulse of velocity impr V  is determined by Tsiolkovsky 

formula, where the mass flow is taken equal to the WF mass hypothetically accumulated over an orbital period T on 
the original orbit: 

 mc
m

cV 



1

1
ln , (19) 

where .   
T

in

T

exh VdthSkdtm
0

1
0



impr  is determined by formula 
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
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1

2

1
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222 






 . 

The effectiveness of the optimal pulse variation in the apogee radius is accordingly expressed as Tr impimp
r  . 

The optimal pulse moment and direction are to be obtained from the above relations as they are based on the local, or 
de facto, pulse optimization. In particular, the optimal pulse moment for functional (10) is applied in the orbit 

perigee, while its optimal direction is tangent to the trajectory (for  it is along the velocity vector, and for  it is 

directed contrariwise).   


IΦ


IΦ
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6. Maximizing the rate of change of the orbit inclination 

Let us write statement of Problem II (11) with regard to (12): 

 
 
 

 
P

re
ee

ra
max,

,1

,

2






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






C

Cconstr

constr

orb sign
Cdt

di
. (20) 

Under condition (11) it follows from (14) that Vana  , , which means that 

 , (21) Cea ||

and according to (7), the optimal thrust vector  lies within the plane of vectors  and V , and can be expressed 

in the following way 
optP C

 CVopt P eeP   sincosmax ,  

Where  is the angle between vectors 
 
and V, optP  VoptP ee ,cos  ,  CoptP ee ,sin  . 

Considering for (21),  Copt ea , can be expressed as  

   sin, maxPaoptCopt ea  (22) 

and setting this equal to the expression obtained from (7) 

 cos2 max
22

max DPDPaopt  , (23) 

we thus design control for problem (11) 
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22
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22
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CCopt

CCopt

signDP

signDP

erea

DereP







  (24) 

According to (20) and (24), the maximum efficient rate of inclination increase is reached on the nodal line [2] at 
  ,2  ( is the perigee argument), and the minimum efficiency is reached at   2,23 : 

 


2

22
maxmax DP

C

r

dt

diorb , 0min 
dt

diorb


. 

A change in inclination 
 
due to the thrust pulse application at the maximum efficiency point (on the nodal line) 

depends on the velocity impulse (19) in the direction orthogonal to the orbital plane. Taking in mind that

imp
orbi

VV  , 

we find VViimp
orb   and the corresponding efficiency of the optimal pulse change of inclination as 

Tiimp
orb

imp
i  . 

7. Numerical results 

Computational investigation has been performed for the electric ramjet, spacecraft and orbit parameters given in 
Table 1. 
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Table 1: ER, SC and orbit parameters 

Parameter Variation range 

ballistic coefficient mSCx in , m2/kg 0.0022 

Vc  1.3 

h , km [100, 200] 

h , km [100, 240] 

orbi , degree 51.6 

 = k1 1 

R , km 6371.25 
We, W [200, 1200] 

 
Figure 4 presents data on the angle opt between the optimal thrust vector  and velocity vector as well as the 

efficiency of the apogee radius rate related to its pulse change  obtained for the same orbits with the apogee 

altitude of  = 200 km: 

optP

imp
rΦ

h
imp
rΦdt

dr

dt

dr  

__

. Figure 5 shows angle opt between the thrust vector  and orbital 

plane as well as the efficiency of the inclination rate of change  related to the inclination pulse change efficiency 

 for the same orbit: 

optP

imp
iΦ

imp
i

orborb Φ
dt

di

dt

di


__

 . The thrust optimal manoeuver is obviously independent of the 

perigee altitude  within this range of variation, whereas efficiency of change in these parameters drops over two 

times with the increase in  from 100 to 200 km due to the higher flight altitude. Data shown in figures 4 and 5 are 

obtained without regard to the PP power limitation. 

h

h

           

а) b)

Figure 4: Optimal angle opt and the efficiency of apogee radius change 
dt

dr
__

 versus true anomaly  and perigee 

altitude  in orbits with the apogee altitude  = 200 km h h

The efficiency of the apogee radius change over the orbital period versus the dimensionless PP power parameter w 
(6) is given in figure 6 for orbits with the perigee altitude of   km200,100h  and apogee altitude of  =240 km.  h
The envelope of points of leaving the power restriction indicates the minimum power necessary to accelerate all 
working fluid incoming the WF chamber for the orbit with аn assigned perigee altitude. Increments in the apogee 

radius are related to its change  in the orbit with h = 100 km and  = 240 km: 100
r h

100
__

 rrr  . 

When the PP power is insufficient to accelerate the entire mass incoming the WF chamber, it is suggested that the 
accumulated WF at such orbital sections is available for other orbital sections where PP has a power We exceeding 
the required one

 
for the WF acceleration. Figure 7 shows results obtained for the SC flight with the ER thrust optimal 

control and WF accumulation with the aim to maximize the apogee radius. The SC optimal thrust related to the 
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maximal thrust maxPPP optopt  (see(9)) is given versus the SC orbital position (true anomaly) with and without 

regarding the power constraint. Sections marked red are those where the WF is accumulated; this mass is the 
difference between the WF incoming the WF chamber and that exhausted thru the nozzle in order to generate jet 
thrust. The green sections are those where the accumulated WF is consumed along with the WF mass currently 
incoming from the intake. The apogee radius increments are related to its change without WF accumulation. It is 
obvious that accumulation of the WF mass leads to over two times higher efficiency of the apogee radius change.  

        

b)а) 

Figure 5: Optimal angle opt between the thrust vector  and orbital plane & dimensionless inclination change 

efficiency 

optP

dt

diorb

__

 versus true anomaly  and perigee altitude h in orbits with the apogee altitude h  = 200 km 

Conclusions 

Optimization of the ER thrust vector control has been considered with the purpose of changing a spacecraft orbit 
apogee radius and inclination.  
The proposed analytical approach to the electric ramjet control makes it possible to design analytical relations and 
estimate control efficiency for the orbit apogee and inclination depending on the spacecraft orbital position and 
powerplant available power.  
 

 

Figure 6: The apogee radius change  versus dimensionless parameter w (6), characterizing the PP power We, and 

perigee altitude  at = 240 km 
r

__

h h
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 10 

 
Figure 7: The apogee radius change r  with the ER thrust optimal control and WF accumulation at the orbit with 

 = 180 km and  = 240 km h h
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