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Abstract 
Nitrous oxide as an oxidizer in liquid rocket engines is considered. General characterization of 

propellant is performed. Theoretical calculations for such system are made with help of small 

experimental liquid rocket engine preliminary design as an example. That includes thrust chamber, 

cooling, feed system and injector design. Comparison is made with other high-energy propellants.  

Unique factors and design problems that arise are addressed with possible solutions. Review of recent 

advancements is attempted with vision of further investigations and future applications. 

 

Nomenclature 

 
     = Specific impulse [s]    = Nozzle throat area [m^2] 

   = Actual exhaust velocity [m/s]   = Chamber cross-section area [m^2] 

   = Characteristic velocity m/s]    = Nozzle throat diameter [m^2] 

   = Nozzle exit pressure [Pa]   = Specific gas constant [J/kg K] 

   = Chamber pressure [Pa]    = Liquid density [kg/m^3] 

   = Chamber temperature [K]     = Adiabatic wall temperature [K] 

   = Combustion gases density [kg/m^3]      = Gas-side wall temperature [K] 

   = Chamber volume [m^3]     = Liquid-side wall temperature [K] 

 ̇ = Propellants mass flow [kg/s]      = Coolant free stream temperature [K] 

 ̇  = Fuel mass flow [kg/s]     = Coolant critical temperature [K] 

 ̇  = Oxidizer mass flow [kg/s]     = Coolant initial temperature [K] 

   = Discharge coefficient    = Specific heat capacity [J/kg K] 

 

1. Introduction 

This paper is the result of experience gained by an author in AGH Space Systems student‟s society, where main 

propulsion project is small liquid rocket engine able to launch a rocket up to the Karman line. An author, on basis of 

previous experience with small hybrid rockets researched a concept of bi-propellant liquid rocket engine with NOx.  

Although, entire propulsion team is involved in this project, sole author of this paper performed presented work. 

Moreover, broad scope of the subject caused that only theoretical part is discussed, which happens to be an author‟s 

domain. Experimental part of Zawisza rocket engine project is not introduced, against initial thoughts, for project is 

still on-going and some experiments are either not ready or still inconclusive. Additionally, experimental design 

merits separate discussion and it would render this paper extensively large. 

Last decade brought significant advancement into the hybrid rocket engines, especially those utilizing nitrous oxide 

(NOx) as an oxidizer. However, it has not been used extensively in liquid rocket propulsion to this date. This paper is 

intended to be the generalized case study in order to diagnose unique properties and design problems. In some issues, 

author recalls mentioned engine project as an example. Consecutive chapters discuss all aspects of liquid propulsion 

revealing problems with application of NOx and proposing solutions focused mostly on bi-liquid rockets. Since this 

paper covers such vast subject its intention is not to be in-depth analysis, but rather highlighting review for further 

investigations.   
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2. Theoretical considerations 

2.1 Physics of nitrous oxide 

 
In room temperature NOx is in subcritical state having critical point at 36.37°C, 7.24MPa. In consequence, 

NOx can be stored in closed tank with coexisting both liquid and gaseous phases. Favourably, vapour provides high 

pressure when stored in wide range of temperatures, as shown on Figure 1. What is more, that close to critical point 

yields NOx with useful behaviour when subjected to pressure drop. After closed tank is opened liquid boils off 

rapidly producing large amount of vapour, thus supplies extra pressure for the tank. This phenomenon called self-

pressurization can be used for feeding oxidizer into the combustion chamber [1].  

 

`  
Figure 1: Saturated vapour pressure of stored nitrous oxide in wide range of temperatures 

 

Nitrous oxide is mostly combined out of nitrogen by mass. Therefore, it appears that mixture ratio for NOx as 

oxidizer should be much higher than ratios for typical LOX, RFNA, nitrogen tetroxide or HTP oxidizers. Moreover, 

liquid density in near room temperatures is not imposing as given on Fig. 2. 

 

 
Figure 2: Saturated liquid density of stored nitrous oxide in wide range of temperatures 

 

Material compatibility, non-toxicity and room temperature application promotes NOx as a highly storable oxidizer. 

In fact, it may be most suitable liquid oxidizer for long term storage, when compared to cryogenic LOX, toxic 

nitrogen compounds or unstable hydrogen peroxide (HTP). With relative small effort NOx can be kept in pressure 

vessels in stable conditions and readily operated. Moreover, NOx can be safely used with most materials involved in 
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rocket propulsion, especially materials for tanks, feed system, injector and launch pad infrastructure. This includes 

metals, plastics and composite materials. Special care must be taken when operating with copper, gold and its 

compounds, which exhibit catalytic properties. [2] Particular safety precautions must be paid to cover all hazards of 

storing and handling. Compared to other energetic propellants like HTP, nitrous oxide is relatively safe, but 

eventuality of deflagration and detonation is present [3]. Accidents with sudden nitrous oxide decomposition were 

reported [4] [5]. 

On the other hand, controlled process of decomposition promises to be useful enough to merit serious investigation. 

Decomposition of NOx results in hot mixture of oxygen and nitrogen reaching ~1650°.  Use of catalyst can 

accelerate decomposition, by lowering the activation energy barrier of approximately 250kJ/mole [6]. In general, this 

enables use of nitrous oxide as monopropellant in various aerospace applications, which are discussed later.   

 

2.2 Combustion 
 
2.2.1 Propellant performance 

In order to characterize efficiency of combustion using nitrous oxide, three fuels were chosen: ethanol (ethyl 

alcohol), RP-1 and ethylene. Other fuels such as liquid hydrogen or hypergolic hydrazine were not considered in this 

analysis, because NOx advantageous storability logically imposes that requirement. That being said, it is believed 

that in some circumstances LH and hydrazine would go well with nitrous oxide. 

 

From application of energy equation for ideal rocket [7]: 
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Expressing ratio of specific heats    in terms of k, the universal gas constant  ̅, and the molecular weight of gases  ̅ 

we have:  
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NASA CEA [8] has been used to determine product composition, specific heats ratio, combustion temperature and 

molecular weight. Equilibrium product composition is presented in Table 1.  

 
Table 1: Equilibrium gas composition for different propellants given in mole fractions 

Propellant 

NOx - 

Ethanol 

NOx – RP1 NOx - 

Ethylene 

   0.453    0.518    0.446 

    0.248    0.167    0.206 

   0.143     0.154     0.145 

    0.074     0.061    0.092 

   0.065    0.047     0.050 

  0.011    0.025   0.031 

   0.007   0.018    0.024 

     0.007    0.013 

     0.004   

    0.002   

 

Knowing parameters of chemical equilibrium of combustion, the specific impulse can be calculated using Eq. (2) and 

nominal value of nozzle pressure ratio. Resultant characteristic parameters of various propellants and mixture ratios 

are given in Fig. 3. 
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Figure 3: Calculated specific impulse and flame temperature in combustion chamber of different propellants and mixture ratio 

 

2.2.2 Optimal chamber volume for bi-propellant 

In order to achieve combustion with near-equilibrium product composition, thus attain calculated specific impulse 

for given mixture ratio, the size of the combustion chamber must be taken into the consideration. For that purpose the 

transit time    can be defined as: 

 

    
    

 ̇
                                                                         (3) 

 

If volume of combustion chamber is too small, then transit time    will not be enough to accomplish propellant 

mixing, vaporization and chemical reaction and some of the propellant will be carried away through the nozzle 

unburned. On the other hand, if combustion chamber is excessively large, it will result in redundant mass, increased 

heat transfer to the chamber walls and significant losses due to friction. To compare different engine designs 

chamber size is described by the characteristic length   , defined as: 
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and related to transit time    by [9]:  
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It can be seen from that equation that optimal chamber size depends strongly on the transit time   . Although in 

practice L* is often based upon previous successful engine designs, that were similar in operation, there are some 

approaches to determine minimum acceptable chamber volume. 

Spalding [10] considered processes in liquid-propellant combustion chamber that contributes to value of the 

time   . He based upon assumption that the slowest is vaporization of the liquid drops and formulated one-

dimensional model to analyse behaviour of propellant in the chamber. For dimensionless axial distance from the 

injector   he obtained such value      , at which propellant droplet vanishes (droplet radius reaches 0). 

Theoretically, at this point complete combustion is attained and further increase in chamber size will result in 

lowered performance. For   , Spalding obtains: 

 

    
   

 

  

   
,     (6) 

 

where    is ratio of initial droplet velocity (injection velocity) to final gas velocity in the chamber and   is droplet 

drag. This drag can be expressed by: 
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where,    = Prandtl number of the gas,    = specific heat of the gas,    = gas stagnation temperature,    = saturation 

temperature of liquid,   = heat of vaporization of the liquid. Finally, for the characteristic length of the chamber 

[11]: 
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In this equation,    = Mach number of fully burned gases in combustion chamber. Now, Spalding states that    can 

be evaluated and it strongly depends on injection velocity    and inlet drop size   . This model comes to agreement 

with other empirically determined values for typical propellants given for example by Altman, et al. [12]. 

 This analysis assumes that chemical reaction takes place sufficiently fast, so when vaporization of 

propellant is over (     ), combustion is already complete. Nitrous oxide, however, needs time to decompose into 

nitrogen and oxygen beforehand. This process will take place after vaporization and before reaction with fuel gases 

and in general goes by this equation: 

 

       
 

 
        (10) 

 

Since this reaction is exothermic, the speed of vaporization should actually increase locally and mitigate additional 

effect on    of decomposition reaction.  

 
Table 2: Typical values for combustion  

chamber characteristic length for various propellants 

Propellant combination L* [cm] 

LOX / RP-1 100 - 130 

LOX / LH2 75 - 100 

LOX / GH2 55 - 75 

LOX / Ammonia 75 - 100 

LOX / alcohol 120 - 150 

Nitrogen tetroxide / hydrazine 75 - 90 

Nitric acid / hydrazine 75 - 90 

 

Two cases of propellant combinations of NOx/RP-1 and NOx/Ethanol were considered for L* calculations using 

Spalding‟s model. Combustion pressure assumed is 2 MPa. Results are presented in Table 3. In general, results are in 

fine agreement with comparable values for LOX given by Huzel and Huang [13] and Sutton et al. [14]. Spalding‟s 

theory is therefore good starting point for preliminary design of the bi-liquid rocket engine using nitrous oxide as an 

oxidizer. 

 
Table 3: Calculated values of characteristic length for combustion pressure = 2MPa 

Propellant combination L* [cm] 

NOx / RP-1 114.3 – 132.8 

NOx / Ethanol 125.6 – 167.8 
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2.3 Cooling 
 
2.3.1 Convective heat transfer 

If a rocket engine is to be used longer than few seconds appropriate cooling is required to prevent engine failure. 

With NOx as an oxidizer well known principles apply when it comes to various cooling systems like ablation or 

radiation. Regenerative cooling is the mostly used cooling system in rocket propulsion and can be applied in all sorts 

of the propulsion systems. Therefore, this part will cover mostly regenerative cooling and problems that arise with 

design and application of this system when utilizing nitrous oxide. 

 

The convective heat transfer, which states between 70 – 90 % of total heat transfer in a regeneratively cooled thrust 

chamber, can be described with following equations: 

 
 

 
 

 

  
 

 

  
 
 

 
 , (11)  

 

    (         )    (         )   (         ),  (12) 

 

where:   = overall heat transfer coefficient,    = gas side heat transfer coefficient,    – coolant (liquid) side heat 

transfer coefficient,   = chamber wall thickness,   = thermal conductivity of chamber wall material and    heat 

flux. These factors impose severe limitations upon configuration of cooling system and thrust chamber design. 

Overall schematic of convective heat transfer is given in Figure 5. 

Additional strongly limiting factor is total heat capacity of the coolant. It performs crucial role in design of cooling 

system. 

 

       ̇  (       ) (13) 

 

In order to cool down hot gas side wall to a safe temperature,   must be kept as low as possible and at the same time 

   must be sufficiently high. Then, coolant is able to take the excess heat from the combustion chamber walls. 

Usually, there is not much to do with   , unless we employ some other kind of cooling, like ablation or film cooling. 

To alter coolant side heat transfer coefficient   , changes have to be made to coolant passage configuration like 

pressure and velocity distribution. There has been significant progress in optimization of liquid side using high 

aspect ratio fins as passages cross-section [15] [16]. 

 

Nevertheless, as shown by Eq. (13), there is certain level of heat flux up to which it can be tolerated by the 

coolant and which is governed by coolant mass flow.  

 

 
        Figure 4: Comparison of fuel available for cooling as fraction  

of total mass flow with LOx and NOx oxidizers to attainable specific impulse  

 

It can be clearly seen from Fig. 4, that use of nitrous oxide leaves very small part of total mass flow for the fuel, 

which in most cases is the coolant. Therefore, maximum heat capacity becomes problematically small and there is a 

substantial risk of coolant vaporization and forming a vapour film on the wall, which drastically reduces heat transfer 

Figure 5: Heat transfer schematic in 

regenerative cooling in liquid rocket engine  
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coefficient. In fact, failure of wall material occurs even before coolant is able to reach its critical temperature, 

whereas temperature of the coolant near wall is higher than bulk coolant temperature. Although, forming of vapour 

bubbles in coolant passages, which is known as „nucleate boiling‟, significantly increases heat flux, exceeding certain 

level will lead to rapid failure. [17]  

 

2.3.2 Heat capacity issue 

 

 

As a part of preliminary design of the thrust chamber 

of experimental liquid rocket engine Zawisza the heat transfer 

analysis was performed for various scenarios of operating 

points. For purpose of this paper, this analysis will serve as a 

case study. Combustion chamber of Zawisza engine is made 

of copper with thermal conductivity   about 350 W/(m K). As 

a cheap and readily available alternative material carbon steel 

is fine proposition with its    40 W/(m K), but much larger 

allowable wall temperature. As the fuel in Zawisza ethanol is 

employed, which has relatively good cooling capabilities, 

namely heat capacity and thermal conductivity. Calculated 

fuel mass flow and estimated total heat capacity dependent 

upon mixture ratio are shown in Table 4 and chamber 

geometry is given in Figure 6.  

 
Table 4: Fuel mass flow and maximum total heat capacity 

available for cooling with varying mixture ratio for Zawisza rocket engine 

      (    )      (  ) 

1.0 1.00 493.0 

1.5 0.80 394.4 

2.0 0.67 328.7 

2.5 0.57 281.7 

3.0 0.50 246.5 

3.5 0.44 219.1 

4.0 0.40 197.2 

4.5 0.36 179.3 

5.0 0.33 164.3 

5.5 0.31 151.7 

6.0 0.29 140.9 

 

Two cases of co-axial cooling passages configuration were taken into the account and are given in Fig. 7. First was 

annular jacket at which whole fuel is passed into one single passage around chamber. Only ribs in a form of thin rods 

brazed to the chamber in the axial direction are present in the passage, but serves solely structural role as separation 

of external shell from the chamber. Second configuration removes ribs and implements helical copper coil around 

perimeter of the chamber going from nozzle exit to the injector assembly. In general, coil arrangement exhibits 

enhanced liquid side coefficient   , thanks to increased flow velocity and proves to be more flexible in design. 

 

 

 
 
 

Figure 7: Two cooling arrangements for Zawisza thrust chamber schematically showed nearby nozzle throat 

a) Annular arrangement with axial flow of coolant 

 
b) Coil arrangement with radial flow of coolant 

 

Figure 6: Experimental liquid rocket engine Zawisza 

1B preliminary design thrust chamber geometry 
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For numerical analysis of convective heat transfer, calculation of hot gas side coefficient   is crucial. Bartz [18] 

gives following equation: 
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in which:    = Prandtl number,   = throat radius curvature and   is correlation factor defined as: 
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Using Bartz correlation to find heat transfer from the hot gases, heat flux and gas side wall temperature were found 

over distance from the nozzle exit, where fuel is fed. To attain high specific impulse mixture ratio of 4.5 was 

assumed, as shown on Fig. 3, which corresponds to 0.36kg/s of fuel mass flow. 

 

 
 

Figure 8: Results of heat transfer analysis for Zawisza rocket engine and mixture ratio = 4.5 presented along chamber axial 

distance. Nozzle exit is at 0, throat at around 90mm and chamber starts at 150 mm. For clarity, graphs are limited to nozzle 

section and surroundings. 

 

Wall temperatures on the Figure 8a corresponds to the hot gas side wall temperature, where it will be the highest. 

Calculated temperatures mostly exceeds allowable material temperature (Cu: 475-675K, Steel: 850-1000K) 

especially at the nozzle throat, which is located at around 90 mm from the fuel inlet. Another issue is that total heat 

absorbed is far above 179.3kW, that were set as maximum for given coolant mass flow. Results for different cooling 

passage cofigurations presented on Fig. 8 describes general corellations between heat flux, wall temperature, total 

heat absorbed and coolant side configuration. Increasing liquid side coefficient    significantly reduces wall 

temperature, but at the obvious cost of absorbed heat. Increasing resistance of heat transfer through the wall by 

changing material from copper to steel increases wall temperature, but reduces heat flux. It appears that not much can 

be done to design proper cooling system with such mixture ratio. Changing    and     either way, will meet one of 

two outcomes: too much heat flux or too large wall temperature. Obvioulsy, modifying    by adding film, 

transpiration or ablative cooling or some protective coatings may result in a successful cooling system. However, 

these add another level of complexity to the rocket engine. 

 

2.3.3 Regenerative cooling alteration  

 There are some ways to alter this behaviour of regenerative cooling. Perhaps use of high temperature graded 

wall material may permit finding such liquid side arrangement to meet all cooling requirements [19]. Another 

interesting choice is nitrous oxide as coolant itself [20]. Still, it has not been thoroughly investigated. Both this 

methods were not studied further. 

a) Heat flux distribution along nozzle axis 

 
a) Maximum wall temperature along nozzle axis 
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 Table 4 shows that for lesser mixture ratio, more heat capacity is available, at the cost of performance. 

Figure 3 demonstrate that anywhere between fuel rich ratio 2.25 and optimal 4.5 specific impulse is still above 200 

seconds. That requirement is taken as performance check for Zawisza rocket engine. It seems that within range of 

acceptable drop of specific impulse, meaningful value of heat capacity can be gained. Further analysis of heat 

transfer behaviour revealed promising dependency upon mixture ratio. As with mixture ratio goes down, combustion 

goes more and more fuel rich, which significtanly reduces flame temperature. This effect, combined with enchanced 

total heat capacity provides interesting results. Figure 9 presents relation of wall temperature and heat flux with 

mixture ratio for previously discussed cooling arrangements. Consulting Figure 9b with Table 4 we can notice that 

starting from mixture ratio of 3.5 and going down, there are configurations that do not exceed maximum heat 

capacity. Still, most of them reaches higher that allowable wall temperatures. Although, these temperatures were 

calculated for the nozzle throat, for which heat flux is few times larger than at the rest of the thrust chamber, where 

temperatures will surely be lesser, that fact cannot be neglected. Even with this conditions, starting from mixture 

ratio 2.5 both conditions are met.   

 It can be observed, that for qualified mixture ratios and configurations there is substantial reserve of heat 

capacity, but wall temperature requirement is hardly met. That is the case, when     has to be enchanced, so that 

there is satisfactory margin on both temperature and heat capacity conditions. That was the conclusion from 

preliminary heat transfer analysis for Zawisza rocket engine. From this point, it is matter of optimization of liquid  

side, which is broadly described in the literature. 

 

 

Figure 9: Performance comparison of liquid side cooling arrangements for various  

mixture ratios measured by total heat absorbed and wall temperature 

 

2.3.4 Semi-dump cooling  

Reduced mixture ratio solution may be satisfactory, but additional method of achieving regenerative cooling 

was proposed and shortly studied. Concept of semi-dump cooling derives directly from previously discussed idea. 

Dump cooling is similar to regenerative cooling, since forced convection in cooling passages is used to keep wall 

temperatures low [21]. After passage run, coolant is not passed to combustion chamber, but dumped overboard. 

Usually in such cooling only limited amount of fuel is used for this process [22].  

However, we can consider semi-dump cooling, which feeds all available fuel flow to cooling passages, but 

then dumps only some amount of it. Most part of fuel is passed to the combustion chamber and burned with oxygen. 

This solution has clear application for NOx regeneratively cooled engine, where high mixture ratio entails 

insufficient coolant heat capacity. Semi-dump includes enough fuel for the cooling process and then provides precise 

part of it for high efficiency combustion with optimal mixture ratio. Rest of the coolant is discarded.  

Short analysis of semi-dump cooling application for Zawisza was carried out. Liquid side coil cooling 

arrangements were enhanced with increased    to take advantage of excessive heat capacity. Fig. 10 gives example 

results of semi-dump.  

 

 

a) Maximum wall temperatures at the nozzle throat 

 
b) Total heat absorbed during coolant passage  
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Figure 10: Semi-dump cooling results for two different coil arrangements demonstrating wall temperature and heat 

capacity margin as a function of additional fuel mass in the system 

 

Downside of this solution is reduced overall performance resulting from ejecting unburned fuel. Specific impulse 

describing performance of such system may be defined as: 

 

    
                 

 ( ̇   ̇   ̇ )
,  (16) 

 

where  ̇ = additional fuel mass flow that do not take part in combustion and      = thrust attained from 

discharging dumped fuel at given velocity.  

      contribution is strongly dependant on type of fuel and cooling configuration. Principal advantage of 

dump cooling is parallel connection with injector feed system. This feature provides that coolant pressure drop is 

independent from injector requirements, thus ejected coolant can be superheated and discharged at a reasonably high 

velocities [23]. Semi-dump whereas, is constrained with injector requirements. This renders dumping thrust minor. 

However, this requirement should not affect cooling passages much more than in typical regenerative cooling. 

Specific impulse as a function of additional fuel mass is presented on Figure 11. Thrust from dumping was neglected. 

 

 
Figure 11: Loss of specific impulse due to addition of fuel mass for cooling  

which is to be dumped not taking part in combustion process.  

 

Deprivation of specific impulse is substantial, but within range of operating regimes of low thrust liquid rocket 

engines. For example, semi-dump configuration for Zawisza would result in    of about 190 seconds.  

Semi-dump may be enhanced with alternative cooling patterns. Proposed idea assumes that entire coolant 

mass could be fed near nozzle throat and passed upwards to the injector assembly. Fuel mass part would go to the 

combustion chamber and dumped mass part could be passed further to expanding nozzle section cooling passages. 

a) Maximum wall temperatures at the nozzle throat 

 
b) Fraction of maximum heat capacity used  
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This way, remaining coolant may be superheated and discharged as in standard dump cooling, so contributed thrust 

can no longer be neglected. When fully exploiting dumped mass little to no performance loss can be attained [24] 

[25]. 

 

2.4 Feed system  
 
2.4.1 Vapour pressurization  

High vapour pressure of nitrous oxide provides that gaseous phase can be used as 

the pressurant. This kind of feed system is called VaPak (vapour pressurized) [26]. 

Vapor pressurization has been investigated since early 60s and it is well known 

phenomenon. VaPak compromises propellant in a saturated state stored in the 

closed container. When liquid is extracted from the container, vapour expands and 

resultant pressure drop causes flash vaporization of small part of a liquid. This 

way, internal energy of a liquid is used to expel propellant mass and restore 

pressure to stable condition.  In a process, liquid losses temperature, thus 

equilibrium pressure of the system is usually lowered in time. Simplified schematic 

of VaPak is presented on Fig. 12. 

 

 

Vapor pressurization can be compared to traditional blow-down system, in which prescribed amount of pressurant is 

closed with propellant in the container. After vessel opening, gas expands and performs work needed to expel 

propellant mass. However, there is no feature that would attempt to restore lost pressure during expansion, so blow-

down systems cannot maintain high pressure throughout the engine burn. VaPak compromises simplicity of blow-

down feed system, but at the same time prospects high performance of turbo-pump or external gas pressurization. 

Nitrous oxide is explicitly used in hybrid propulsion, by both amateur and professionals [27], due to that 

advantageous feature. Bi-propellant liquid rocket requires little more control over mass flow of the propellant in 

order to maintain certain level of performance and stability. Since VaPak feed system is natural choice for NOx, the 

question is what method should be used for feeding fuel. 

Nitrous oxide behaviour in VaPak system can be determined knowing initial conditions and system characteristics. 

Still, VaPak is somehow unpredictable regarding the path it follows till fully expelled state [28]. Typical pressure 

curve of full expulsion is given by Fig. 13. In order to increase performance, as much NOx mass should be drawn as 

a liquid with as little pressure drop as possible over expulsion time. More than 90% of NOx liquid mass can be 

drawn with no less than 70% of initial pressure at the liquid depletion point. 

 

 

 
 

 

Pressure history in the NOx tank can be determined by strict initial setup. Such properties as volume, initial pressure, 

initial temperature, initial liquid mass fraction and mass flow impacts NOx tank state during the expulsion. For 

example, if ratio of mass flow to initial liquid mass is high, system will produce more steep pressure loss curve and 

more liquid will be used as pressurizing vapor, what will result in extended gaseous phase of expulsion. If a liquid 

rocket engine is to work in narrow pressure operating regime, this ratio should be kept small, so to minimize pressure 

change during liquid depletion.  

 

Figure 12: VaPak feed system 

Figure 13: Typical pressure tank history in VaPak NOx expulsion 
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2.4.2 NOx - fuel feed systems coupling 

Coupling of NOx VaPak feed system with fuel blow-down system would result in serious OF shift during the engine 

burn, which is not desirable, as it will reduce performance. What is more important, engine stability could be thrown 

off balance due to drastic change of operating conditions. One can freely assume that running on optimal mixture 

ratio for entire burn with that kind of coupled feed is not attainable. However in some cases, system can be optimized 

to provide best performance for a given purpose. For example, Zawisza uses blow-down for fuel, but with large 

amount of pressurizing gas. Essentially, we use one big tank for many tests in which there is maximum 40% of the 

fuel by volume. During test few percent is removed and after that gas pressure is restored. Following this example, 

coupled blow-down can be calibrated with feed system and injector for running at average optimal mixture ratio and 

maintaining combustion stability. Still, blow-down coupling will produce significant decrease in performance and 

tuning of such a feed system to maintain stability may be out of reach.  

Alternative is to use classic external gas pressurization, in which inert gas like helium or nitrogen from another 

vessel is used. It appears, however like a step backwards, since VaPak characteristic property is no external tanks and 

devices, while gas pressurization requires vessel, regulator and often heat exchanger to improve expansion 

efficiency. This makes system more complex and with all these features onboard a rocket it seems that there is no 

real gain from having NOx with VaPak. One have to remember that 

VaPak have its downsides. If external pressurization is present in the 

rocket, NOx can be supercharged with inert gas, so VaPak is no longer 

needed. 

 

Ewig [29] considered use of separate VaPak systems for each propellant 

for bi-liquid engine. Fuel candidates for VaPak include hydrogen, 

methane, ethylene and so on. Ewig identified fundamental problems with 

this solution, namely different mass expulsion ratio (due to pressure 

difference) in consequence of different physical characteristics of each 

propellant and mismatch of liquid – gas transition. The latter would result 

in highly unstable OF shift. Ewig proposed few solutions including 

electrical or physical links between propellant tanks with some sort of 

closed-loop controller. 

 

Similar solution is to use NOx vapor to pressurize also the fuel. That will 

include coupled tanks with a diaphragm to separate propellants as 

presented on Fig. 14. It is believed, that such solution would result with 

equal pressure in the tanks and similar response of propellant flow 

characteristics to the system state. Nature of that response is not well 

known, since there is little flight tests done with VaPak. Therefore, some 

sort of controller probably should be introduced to correct for any deviation. It appears that this feed coupling could 

result with maximum simplicity. Similar system to given on Fig. 14 is prepared for Zawisza rocket flight model and 

conclusion is that bi-propellant VaPak is optimal solution between blow-down and external gas combinations. That 

said, system coupling still merits serious research.  

 

2.5 Injection 
 
2.5.1 Two-phase mass flow estimation 

Since nitrous oxide is stored in saturated state in the tanks, drawing saturated liquid results in two-phase flow 

downstream. All feed system components like valves, bends and joints will result in pressure drop and given that it 

falls sufficiently below saturation pressure, flash vaporization will take place and flow may contain gas bubbles. 

Even more drastic vaporization can occur at the injector, which should permit right amount of NOx flow through the 

orifices, while atomizing the liquid into small droplets. However, proper injector design is especially hard due to 

two-phase flow, compressible liquid and high vapour pressure of nitrous oxide. Some work has been done to 

characterize the flow in injector orifices, presented on Fig. 15. 

Dyer et al. considered flow through the orifice of the injector and proposed following equation for predicting nitrous 

oxide mass flow [30]: 

 

 ̇     (
 

   
 ̇    (  (

 

   
) ̇   ), (17) 

 

Figure 14: Single VaPak feed system   

              for bi-propellant rocket 
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where,  ̇    is mass flow predicted by Homogeneous Equilibrium Model and  ̇    is mass flow predicted by 

Single-Phase Incompressible model. It can be seen, that this equation is trade-off between both these models. HEM 

assumes thermodynamic equilibrium of the liquid and vapour phases in the orifice. However, it has been noticed that 

HEM does not predict mass flow well. Dyer et al. proposed explanation that residence time in orifice inflicts that 

prediction, so flow has virtually no time to reach equilibrium, due to limited mass transfer rate between the phases. 

They reasoned that the flow depends on ratio of vaporization time and residence time and should fall between 

entirely liquid SPI prediction and two phases in equilibrium HEM prediction. They proposed parameter   to be: 

 

   
  

  
 √

     

     
,  (18) 

 

where:     vapour bubble growth time,   = residence time,           upstream, downstream and vapour 

pressures respectively. Authors report very good agreement of mass flow prediction with collected results from static 

test stand. 

 

2.5.1 Atomization and mixing 

Key to optimal injector design is to fully understand jet forming accompanied by droplet atomization, vaporization 

and mixing. Waxman et al. conducted series of tests with carbon dioxide as NOx analog with high speed video in 

order to investigate atomization and mechanical breakup of NOx jet [31]. They noticed that use of impinging injector 

significantly increases atomization. This conclusion is not so obvious, as one may assume. Since nitrous oxide can be 

injected with flashing or non-flashing mode, which refer to rate of vaporization that can be modified by 

supercharging. In non-flashing mode, corresponding to supercharged NOx (or chamber pressure above saturation 

pressure) mechanical breakup of droplets dominate flash atomization. Waxman et al. also noticed correlation 

between     ratio of orifice and atomization performance. That fact somehow corresponds with previously 

discussed mass flow prediction model. Also experience from NOx used in hybrid rockets states that high     and 

small orifice diameter promotes vaporization and increases   .  

 

Little has been done with other injector 

arrangements and influence of NOx jet on fuel 

jet and vice versa. Popular unlike-impinging 

and coaxial elements merit research. It is worth 

to mention, that on preliminary stage, hybrid 

(pintle type) injector was tested for Zawisza 

engine. Although initial cold flows promised 

good operation, engine was unable to attain 

proper combustion and exhibited highly 

unstable injection. Problem was not easy to be 

identified, due to limited resources. Cold flow 

tests were not performed in operating regime of 

pressure drop. Moreover, series of detrimental 

factors were discovered in the feed system, so 

it may not be entirely injector problem. Still, 

cause of this malfunction remains unknown 

and will be addressed in the future.  

 

 

3. Application 

 
Previous chapters discussed properties of nitrous oxide, brought up problems with integration or compared with other 

propellants. Important part was also to propose solutions to specific problems and highlight advantages of NOx in 

particular situations.  

Decomposition was mentioned before, but it is better to discuss it in terms of particular application. Similarly to 

hydrazine, nitrous oxide is able to decompose on various catalysts such as iridium, cobalt, gold, platinum and copper. 

Popular catalysts for hydrazine such as Shell 405 were successfully tested [32]. Exothermic reaction given by        

Eq. (10) can be used for ignition of another propellant. Decomposed mixture rich with free oxygen will ignite all 

sorts of fuel including hydrocarbons or even solid block of hybrid rocket [33]. Catalytic decomposition can be used 

in monopropellant or bi-propellant propulsion. Highly storable and compatible with common structural materials 

NOx is attractive propellant for long term space missions. Successful on orbit storage has been reported with no 

problems [34]. Non-toxicity reduces cost, safety precautions and improves integration. In the same time self-

Figure 15: Two-phase flow of nitrous oxide through the injector orifice  

DOI: 10.13009/EUCASS2017-474



Tomasz Palacz 

     

 14 

pressurization can be leveraged to drastically simplify feed system and storage. Putting these factors together and 

basing on comparison with other space propellants made by Zakirov et al. [35], we can conclude following 

applications: 

 

 low thrust bipropellant propulsion - i.e. upper stages 

 storable military units 

 small lifting rockets 

 propulsion for small satellites – i.e. resistojets 

 reaction control systems (RCS) – cold gas thrusters 

 orbital maneuvering systems (OMS) – mono- or bi- propellant 

 auxiliary power units – gas generators (APU) 

 orbital station keeping 

 

Although nitrous oxide as propellant offers lower performance, overall system efficiency (measured as payload mass 

on orbit or    for manoeuvres) can be better, thanks to significant decrease of complexity. Power savings can be 

made, for example with resistojets, when compared to traditional thermal decomposition. What is more, combining 

three applications, namely cold gas thruster, monopropellant and bipropellant, a multi-mode space application 

(Figure 16) can be achieved with even more simplification to space propulsion system. NOx is low-energetic 

propellant and due to low density it is rather not suitable for heavy lifting rockets. Self-pressurization however, may 

permit for efficient small lifters and upper stages. Also VaPak makes sense only with use of relatively low chamber 

pressure. 

 

 
Figure 16: Multi-mode space propulsion system based on nitrous oxide 

4. Conclusion 

Nitrous oxide promises to be useful propellant in particular applications, especially for space propulsion. Although it 

does not offer best performance as other high-energy oxidizers, it may bring improvement for overall system. There 

are however, few issues that need to be investigated in order to make NOx applicable in liquid propulsion. 

Laboratory research followed by flight testing could result in efficient alternative for low thrust, multi-purpose 

propulsion. Next years may see increased interest in that propellant, especially in terms of commercialization of 

space linked with cost reduction and reusability. 
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