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Abstract
Application of the ring-type plasma actuators for passive control of laminar-turbulent transition in a swept-
wing boundary layer is investigated thorough direct numerical simulations. These actuators induce a wall-
normal jet in the boundary layer and can act as virtual roughness elements. The flow configuration resem-
bles experiments of Kim et al.,10 performed within EU project BUTERFLI. The actuators are modelled by
the volume forces computed from the experimentally measured induced velocity filed at the quiescent air
condition. The natural surface roughness and unsteady perturbations are also included in the simulations.
The interaction of generated vortices by the actuators with these perturbations is investigated in details. It
is found that for a successful transition control the power of the actuator should be increased to generate a
jet velocity one order of magnitude higher than that in the considered experiments.

1. Introduction

Turbulent friction drag on swept wings of modern aircraft accounts for a large proportion of the total drag.23 Thus,
it is desirable to delay transition from laminar to turbulent flow for both environmental and economical reasons. In
swept-wing flows, the so called crossflow instability typically dominants the transition process. This instability leads
to growth of both streamwise orientated steady and travelling crossflow vortices depending on the external disturbance
environment (see reviews by Bippes1 and Saric et al.20). Non-stationary disturbances may dominate the route to
transition in environments with rather high levels of freestream turbulence, e.g. wind tunnels. At free-flight cruise
conditions, characterised by rather low levels of freestream turbulence, steady crossflow vortices excited by natural
surface roughness prevail. Irrespective of the disturbance environment, crossflow vortices generate localised high-
shear layers which trigger strong secondary instabilities prior to transition.25, 26

Several approaches to control transition in boundary-layer flows have been proposed in the literature. The review
by Saric et al.19 summarises the main passive laminar-flow control techniques for swept-wing boundary layers. An
encouraging method to control crossflow instabilities is the application of spanwise-periodic distributed micron-sized
roughness (DMSR) elements placed near the leading edge of the swept wing. Such elements spaced narrower than
the spanwise wavelength of the naturally most amplified mode, excite steady subcritical mode, commonly called the
’control’ mode, and induce a useful mean-flow distortion. As a consequence, the growth of the naturally most unstable
mode is attenuated and transition to turbulence is delayed. The application of DMSR elements for transition delay have
been successfully shown in wind tunnel experiments,8, 21 free-flight experiment3 and numerically confirmed through
direct numerical simulations (DNS)6, 18 and through nonlinear parabolised stability equations (PSE).13, 16

In a recent experimental investigation,10 studied the application of ring-type DBD plasma actuators, acting as
virtual roughness elements, for transition delay on a swept-wing boundary layer. The ring-type plasma actuators gener-
ate a wall-normal jet while the afformentioned works were based on actuators inducing a wall-parallel jet.10 used rows
of actuators with different spanwise spacing and chordwise locations. They observed that the actuators successfully
excite the modes corresponding to their spanwise wavelength. However, they were not effective for transition delay
and in some actuator configurations transition was promoted by 1.5% chord-length.

This study aims to numerically investigate the experiment of Kim et al.10 in order to gain a better understanding
of the transition process and the role of plasma actuators. First, we study the effect of plasma actuators on the evolution
of the primary steady crossflow modes. Then, unsteady disturbances are introduced in the simulations and the evolution
of the primary and secondary modes is studied with and without active plasma actuators.
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Figure 1: Swept ONERA-D airfoil with sweep angle φ∞ and the total incoming velocity of Q∞. (x, y, z) and (ξ, η, z)
denote the cartesian and the curvilinear coordinate systems respectively. c denotes the chord length normal to the
leading edge. The wing is under an angle of attack α = −8◦.

2. Flow configuration & numerical setup

The wing geometry used in the present investigation is a swept ONERA-D airfoil with a chord length of c = 0.35m
normal to the leading edge. The geometry is invariant in the spanwise direction. The flow configuration follows
experiments by,10 performed within the European project BUTERFLI in ONERA TRIN1 wind tunnel, where a sweep
angle φ∞ = 60◦ and an angle of attack α = −8◦ has been used. The unit Reynolds number is ReL = Q∞L/ν = 4.4×106,
with L = 1m being the reference length scale, Q∞ = 70m/s the total incoming freestream velocity and ν the kinematic
viscosity. Q∞ is used to normalise velocities in this work. The ring-type plasma actuators with spanwise spacing of
Lpa = 3.5mm and diameter dpa = 1mm are placed in the leading-edge region of the swept wing at the chordwise
location of x/c = 0.019 in the experiments. This location is too close to the stagnation point, x/c = 0.013, and does not
allow for introduction of stationary and non-stationary disturbances upstream of the actuators in the numerical setup.
Therefore, center of the actuators are shifted to the chordwise location of x/c = 0.05 which is slightly downstream
of the neutral point of stationary crossflow modes. Boundary layer is more receptive to the plasma actuators at this
location, thus, increasing the effect of the actuators on the evolution of the disturbances.

Figure 1 shows the airfoil shape and the coordinate systems used in this study. The Cartesian coordinates (x, y, z)
denote the chordwise, normal-to-the-chord and spanwise directions and the corresponding velocity components are
denoted as (u, v,w). The body-fitted curvilinear coordinates (ξ, η, z) define the tangential, wall-normal and spanwise
directions with the corresponding velocity components denoted as (uξ, vη,w).

2.1 Direct numerical simulations

We consider incompressible Navier-Stokes equations subject to constant fluid properties together with the continuity
equation,

∂u
∂t

= −u · ∇u − ∇p +
1

Re
∇2u + f, ∇ · u = 0, (1)

where u = {u, v,w}T is the vector of velocity components in the x- ,y- and z- directions, p represents the pressure
and f is the body force term. Equations (1) are integrated in time using Nek5000 code developed by Fischer et al.4

Nek5000 is based on spectral element method (SEM) proposed by17 which combines geometric flexibility of finite
element method with spectral accuracy. The physical domain in SEM is decomposed into spectral elements where
the local approximation of flow field is obtained as a sum of Lagrange interpolants defined by an orthogonal basis
of Legendre polynomials up to degree N. Polynomial order N is the same in all spatial directions. Following the
PN–PN−2 spatial discretisation14 , N + 1 Gauss-Lobatto-Legendre (GLL) nodes are used to build velocity Lagrange
polynomial interpolants and N − 1 Gauss-Legendre (GL) nodes for pressure Lagrange polynomial interpolants (two
orders less than the velocity field) in every spectral element. Here we have used N = 11 for most of the simulations.
The equations are advanced in time using a third-order conditionally stable backward differentiation and extrapolation
scheme (BDFk/EXTk), employing an implicit treatment of the diffusion term and explicit treatment of the advection
term. Nek5000 is highly parallelised and scalable on thousands of threads.24 Current results are obtained using up to
4096 processors.

Several sets of simulations have been carried out in this work; (I) laminar base flow is computed through a
two-dimensional simulation in which the spanwise velocity component is computed using the temperature equation,
(II) steady crossflow vortices are excited by means of natural surface roughness, (III) natural transition is triggered by
introducing non-stationary perturbations inside the boundary layer, and (IV) change of transition location due to the
action of distributed ring-type plasma actuators is studied.
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Figure 2: Pseudocolors of streamwise velocity component obtained from RANS solution of the entire wind tunnel test
section. The black solid and dashed lines show boundaries of the DNS domain for laminar base flow and receptivity
computations, respectively.

2.2 Computational domain & boundary conditions

Prior to performing DNS computations, a complementary RANS solution is obtained around the same geometry with
identical flow configuration, depicted in figure 2. The computational domain in the RANS computation includes the
side walls of the experimental test section. Two different numerical domains are used in the DNS computations, the
boundaries of which are shown in figure 2. The larger domain with two outflow boundaries is used for the laminar
base flow computation. Although we are only interested in the flow field on the upper wing side, base flow domain
extends to the lower wing side to account for the asymmetry of the configuration. The lower wing part and the leading
edge region are discarded in the simulations of the perturbed flow which are performed in the smaller domain plotted
with dashed line in figure 2. This is possible since the disturbances are introduced locally within the boundary layer
and freestream disturbances, such as sound waves or freestream turbulence, are absent. The inflow and freestream
boundary conditions of the perturbed flow are of Dirichlet type and taken from the laminar base flow solution. The
outflow boundary conditions are the natural boundary conditions ([1/Re(∇u)− pI] ·n = 0) derived from the weak form
of the Navier-Stokes equations. The boundary conditions for the base flow computation are described in the following.
Dirichlet boundary conditions are set at the inflow plane using the RANS solution

{u, v,w}T = {urans, vrans,wrans}T on ∂Ωinflow. (2)

The outflow boundary conditions are a modified version of the natural boundary conditions

1
Re

∂u
∂x
− p = −pa,

∂v
∂x

= 0,
∂w
∂x

= 0 on ∂Ωoutflow. (3)

Here, pa stands for the ambient pressure and pa = 0 results to the standard natural boundary conditions which is used
in the perturbed flow simulations. The freestream boundary conditions are of Dirichlet type in the streamwise and
spanwise directions along with the modified natural condition normal to the surface

u = urans,
1

Re
∂v
∂y
− p = pa, w = wrans on ∂Ωfree-stream. (4)

The ambient pressure at the free stream is set to pa = prans − Re−1∂yvrans to account for the non-zero pressure gradient
around the wing. In all the simulations except the base flow computation, sponge regions are inserted in the vicinity of
the outflow boundaries to avoid numerical instabilities.

The base flow domain extends from x/c = 0.018 on the lower side of the wing to x/c = 0.5 on the upper wing
side. The domain for receptivity computations extends from x/c = 0.01 − 0.35 on the upper wing side. The 2D mesh
for the base flow and the receptivity computations consists of 6300 and 6210 spectral elements respectively.

In the experiments by Kim et al.,10 an spanwise array of ring-type plasma actuators is inserted near the leading
edge of the swept wing as a passive control mechanism to delay transition. The spacing between the actuators is
Lpa = 3.5mm which corresponds to approximately 2/3 of the wavelength of the naturally most unstable stationary
crossflow mode.6, 21 In order to excite the most unstable stationary mode and the control mode (induced by wall-
normal jet of the plasma actuators) simultaneously, a spanwise length of Lz = 3 × 3.5 = 10.5mm is considered which
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dictates a fundamental spanwise wavenumber β0 = 2π/Lz = 598rad/m. We mimic the actuator row by prescribing
spanwise periodic boundary conditions. 36 spectral elements are uniformly distributed in the spanwise direction to
resolve a span of length Lz. The total number of three-dimensional spectral elements amounts to 223560 and using a
polynomial order of N = 11 for the velocities results to ≈ 386 × 106 grid points.

2.3 Stationary perturbations

In the experimental studies, stationary crossflow vortices including the naturally most unstable one are excited due to
the presence of the natural surface roughness in the leading edge region of the wing. In this work, the natural surface
roughness which is localised along the chord and periodic in the spanwise direction is modelled by

h(x, z) = εhhx(x)hz(z), (5)

where εh is the maximum amplitude of the roughness bump and hx(x) and hz(z) are shape functions in the streamwise
and spanwise directions. The shape function hx(x) is described by

hx(x) = S (
x − hs

hr
) − S (

x − he

h f
+ 1), (6)

where S is a smooth step function defined in Schrader et al.22 The roughness bump in the streamwise direction starts at
x = hs, rises smoothly along the distance hr and ends at x = he with a falling distance of h f . The center of the roughness
is located at xr = (hs +he)/2. This shape of roughness contains a broad spectrum of streamwise wavenumbers including
the unstable ones. In this study, the natural surface roughness is centred at x/c = 0.015 with a total width of 1mm. The
rise and falling distances are equal and set to hr = h f = 0.2mm. The spanwise periodic shape function hz(z) is defined
as

hz(z) =

5∑

n=1

sin(nβ0z + φrand
n ), (7)

where φrand
n are random phases and β0 = 2π/Lz with Lz = 10.5mm.

The natural surface roughness is not meshed but modelled by inhomogeneous boundary conditions at the wall.
The no-slip conditions along the roughness h(x, z) are projected from the bump surface to the wall via a Taylor series
expansion,

{u, v,w}Twall = {−h(x, z)
∂U
∂y

, 0,−h(x, z)
∂W
∂y
}Twall, hs ≤ x ≤ he, (8)

where U and W are the laminar base flow velocities. Since the roughness height εh is assumed to be small, the Taylor
series is truncated at the first order. The roughness height εh is chosen such that the r.m.s. value of the h(x, z) at the
roughness centre is matching the reported r.m.s. roughness height of 1µm in the experiment.

2.4 Non-stationary perturbations

The growth of unsteady instabilities, both primary and secondary, requires the presence of unsteady disturbances such
as acoustic noise or freestream turbulence. In this study, non-stationary perturbations are artificially induced inside
the boundary layer by employing a weak randomly pulsed volume force. The forcing acts only in the wall-normal
direction and reproduces the same effect that tripping strips have in wind-tunnel experiments. The forcing is located
downstream of the natural surface roughness at x/c = 0.024 and its shape is attenuated by a Gaussian in the streamwise
and wall-normal directions. The specific form of the forcing is given in Hosseini et al.7 The spectral content of
the forcing is defined by two parameters, the temporal and the spanwise cut-off scales. The temporal cut-off scale
corresponds to an angular frequency of ≈ 7000Hz and the spanwise cut-off scale corresponds to 30β0. The amplitude
of the forcing is chosen such that the transition is obtained at ∼ 20% chord, similar to the transition location observed
in the experiments.

2.5 Plasma actuator body-force field

The ring-type DBD plasma actuator produces a wall-normal jet in the experiments which acts as a virtual roughness
element. The action of the actuators in the numerical simulations is incorporated by a body force which corresponds to
the velocity field produced by an actuator in quiescent air. Such a velocity field is provided by9 who placed an actuator
sheet on a flat plate and measured the induced velocity field by the actuators in quiescent air. The actuators were
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Figure 3: Radial and wall-normal velocity components from experiments (a,b) and computed ones (c,d). All the planes
are at x = 0. 32 equispaced contours in the range [−0.25, 0.25] and [−0.3, 0.1] are shown for the radial and wall-normal
velocity components, respectively.

active under 5.8 kV power supply and at 40 kHz frequency. The measured velocity field is averaged in time and space
which results to a steady body force in the numerical simulations. For a ring-type plasma actuator the induced velocity
field is symmetric in the radial direction around the center of the actuator. Figure 3(a,b) shows the experimental radial
and wall-normal velocity fields induced by the ring-type plasma actuator. In this section, velocity and body force are
presented in dimensional values.

Nek5000 is used to calculate the body force from experimentally measured velocity field induced by a ring-type
plasma actuator in quiescent air. The steady body force can be obtained by evaluating

−f = −u · ∇u − ∇p +
1

Re
∇2u, (9)

where u and p are the experimental velocity and pressure fields. Figure 3(a,b) shows the experimental radial and wall-
normal velocity components in the wall-normal spanwise plane at x = 0. The computed force field is validated by
performing a simulation in quiescent air and comparing the induced velocity field by the body force with the original
velocity field. Figure 3(c,d) shows the steady state solution resulting from the plasma actuator body force in quiescent
air.

3. Results

3.1 Effect of control on stationary disturbances

In this section we investigate the control capability of ring-type plasma actuator by studying its effect on primary
stationary crossflow disturbances. To this end, two setups are considered. In the first setup, stationary crossflow
vortices are excited by means of natural surface roughness only and in the second case, plasma actuator body force is
activated in the presence of natural surface roughness. In the following these two cases are referred to as the ’natural’
and the ’controlled’ case respectively.
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Figure 4: Amplitude evolution Au of the stationary modes for (a) natural and (b) controlled case in the absence of
unsteady perturbations. Solid lines represent DNS amplitudes, dashed lines and (◦) symbols show the amplitude
evolution predicted by linear and nonlinear PSE respectively.

In order to compare the natural and the controlled case quantitatively, amplitude of individual crossflow modes
is obtained by means of Fourier transformation in the spanwise direction, i.e.

uξ(ξ, η, z) =

N∑

n=0

ûξ(ξ, η, nβ0)einβ0z. (10)

Here, β0 = 2π/Lz is the fundamental spanwise wavenumber dictated by the spanwise length of the domain. Amplitudes
of individual modes for both the natural and the controlled case are plotted in figure 4 as

Au(x) = max
η

|ûξ |
Q∞

, (11)

where, ûξ is the Fourier amplitude of the tangential velocity and Q∞ denotes the total freestream velocity. Linear
stability analysis of the underlying base flow predicts that the most unstable stationary crossflow mode is the 2β0
mode. However, for both cases, amplitude of the fundamental β0 mode dominates the amplitude of its superharmonics.
Although all the excited modes by natural surface roughness have identical amplitudes at the roughness location, the
fundamental mode is the most receptive to the surface roughness. This is due to the fact that the neutral point of
stationary modes is located around x/c ≈ 0.04 and the surface roughness is positioned upstream of this location at
x/c = 0.015. Therefore, the modes excited by the natural roughness first decay in amplitude, with different decay rates,
until they reach their corresponding neutral point and then grow and evolve moving downstream. The growth rate
(slope of the amplitude curve) of the 2β0 mode is however larger than the fundamental mode, conforming the linear
stability prediction.

Figure 4 also shows the amplitude evolution of different modes obtained by linear and nonlinear PSE computa-
tions on the underlying base flow. The initial amplitude of modes for nonlinear PSE computations are extracted from
DNS solutions at x/c = 0.03 and x/c = 0.075 for the natural and controlled case respectively. Despite slight discrep-
ancies between nonlinear PSE and DNS, the overall agreement is found to be very good. For both natural and control
cases, the β0 mode shows linear growth up to x/c ≈ 0.25 and the 2β0 mode behaves linearly up to the chord length
x/c ≈ 0.20. No nonlinear amplitude saturation is observed through the computational domain.

3.2 Unsteady disturbances and secondary instabilities

In the previous section we showed the effect of control on evolution of primary stationary crossflow disturbances in
the absence of unsteady perturbations. Because of the high accuracy of the DNS code, there were no background
noise in the simulations, thus, flow did not transition to turbulence. In this section a more realistic setup is considered.
Unsteady perturbations are introduced in the boundary layer by means of random volume force described in section
§2.4. The amplitude of the random force is chosen such that transition is obtained close to the experimental transition
location. Similar to the previous section, we study a natural and a controlled case. In the former setup, steady crossflow
disturbances are excited by the surface roughness model while unsteady disturbances are introduced by employing
random volume force. In the controlled case, plasma actuator body force is added to the natural setup in order to excite
the steady control mode.
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Figure 5: Isosurfaces of instantaneous spanwise velocity field (a) natural and (b) controlled case. For better visualisa-
tion, domain is duplicated in the spanwise direction.
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Figure 5 shows isosurfaces of instantaneous spanwise velocity for both the natural and the controlled case. Sim-
ilar to the experimental observations, it is apparent that employing the control by plasma actuators have promoted
transition. A quantitative measure for transition location is obtained by evaluating wall-friction coefficient. A break-
down to turbulent flow is accompanied by a strong increase in this coefficient. Figure 6 shows time-averaged friction
coefficient C f = 2µ(∂us/∂η) for both the natural and the controlled case where us = uξ cos(φ∞) + w sin(φ∞) is the
velocity in the direction of incoming free-stream. The time averaging is required due to unsteadiness of the transition
location for both cases (±3% chord-length). In the natural case, transition starts at x/c ≈ 0.175 with appearance of tur-
bulent spots and flow becomes fully turbulent at x/c ≈ 0.22. In the controlled case, transition location moves upstream
to x/c ≈ 0.11, with a fully turbulent flow at x/c ≈ 0.16.

In order to characterise the disturbance environment and the transition mechanism, the total velocity filed is
decomposed into time-periodic Fourier modes. This will allow us to capture the evolution of both steady and unsteady
perturbations. Additionally, the onset of secondary instabilities can be identified by an explosive growth of high-
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Figure 7: Amplitude evolution of steady and unsteady disturbances for (a) natural case and (b) controlled case. The
gray lines represent unsteady disturbances plotted at a constant frequency step of 730Hz.
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Figure 8: Contours of modified mean flow (tangential component) in black and distribution of the production term
−ũξw̃∂Uξ/∂z for the high-frequency mode with frequency 14600Hz. (a) natural case and (b) controlled case. The
wall-normal plane is chosen at x/c = 0.09, located upstream of the transition location in both cases. Contour levels are
identical in both cases.

frequency modes similar to the observations in previous studies.6, 16, 25–27 To this end, amplitude of individual crossflow
modes is obtained by means of Fourier transformation in time, i.e.

uξ(ξ, η, z, t) =

M∑

m=0

ũξ(ξ, η, z,mω0)eimω0t. (12)

Amplitudes of individual modes for both the natural and the controlled case are plotted in figure 7 as

Au(x) = max
η,z

|ũξ |
Q∞

, (13)

where, ũξ is the time Fourier amplitude of the tangential velocity and Q∞ denotes the total freestream velocity. Am-
plitude of steady disturbances is obtained by subtracting the mean flow, i.e. the (0,0)-mode, from the zero-frequency
mode. Owing to the complexity of the set up, the amplitude evolution of disturbances is rather complicated. Both
steady and unsteady disturbances grow throughout the domain. The amplitude of steady and low-frequency distur-
bances are of similar order and in the controlled case, low-frequency disturbances exhibit even higher amplitudes than
the stationary disturbances. Complimentary linear PSE computations suggests that the most unstable crossflow dis-
turbance has angular frequency of ω ≈ 800Hz and spanwise wavelength of β ≈ 7mm. Therefore, the low-frequency
disturbances can be associated with unsteady primary crossflow disturbances.

In both cases, high-frequency disturbances are excited and just upstream of the transition location they undergo
sudden amplification and reach the amplitude of primary modes within few percent chord length. This is a char-
acteristic behaviour of secondary instabilities; once the primary crossflow waves reach high amplitudes, secondary
instabilities are destabilised and grow to large amplitudes over a very short streamwise distance and lead to breakdown
and turbulence.27 Here, the amplitudes of primary disturbances, both the steady and unsteady ones, reach ∼ 10% of
the total freestream velocity prior to transition. Due to complex disturbance environment in our setup, it is not easy
to isolate the secondary instability mechanism. Under more controlled conditions, it has been shown that transition
is induced either by stationary or travelling saturated crossflow disturbances.5, 16, 25, 26 Moreover, in works by Lerche
and Bippes11, 12 it was observed that a superposition of both stationary and travelling primary modes can destabilise
the secondary instability, while individually they are not strong enough to produce sufficient mean-flow deformation
and trigger the secondary instability. In this case, transition is induced by co-existing steady and unsteady crossflow
disturbances which exhibit similar amplitudes.

Based on disturbance energy production, secondary instabilities are often categorised into two types;15, 16 z-
and y-type modes that are produced by the spanwise and wall-normal gradients of the mean streamwise velocity,
respectively. Figure 8 shows streamwise velocity component of the modified mean flow along with the distribution of
the energy production term associated with a z-type mode, −ũξw̃∂Uξ/∂z, for the high-frequency mode with frequency
14600Hz. The sign of the production term indicates whether the local transfer of kinetic energy associated with it
acts as stabilising (negative) or destabilising (positive). The wall-normal plane (η, z) is chosen at x/c = 0.09, an
upstream position of the transition location for both natural and controlled cases. Although, the crossflow vortices
are not saturated in either case, the mean-flow modification by the control mode has resulted in formation of stronger
crossflow vortices. The maximum of the production is located on the updraught side of the primary vortices with
slightly larger values in the controlled case. Therefore, the secondary instabilities are destabilised earlier than the
uncontrolled case which is followed by promotion of transition to turbulence.
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Figure 9: (a) Time averaged friction coefficient for the natural and the improved controlled case. (b) Amplitude
evolution of steady and unsteady disturbances for the improved controlled case with higher plasma actuator body
force. The gray lines represent unsteady disturbances plotted at a constant frequency step of 730Hz.

3.3 Improved control & transition delay

In this section we aim to improve the control and delay transition using ring-type plasma actuators investigate here.
There are several design parameters in this control technique which could be investigated for improvement, i.e. the
streamwise location or the spanwise spacing of plasma actuators and the strength of actuators in terms of magnitude
of the induced velocity (which corresponds to the height of a roughness element). Actuators should be located at
streamwise locations where the boundary layer is more receptive to the excitation of the control mode. Here we have
positioned the actuators slightly downstream of the neutral point of the stationary crossflow vortices. The spanwise
spacing of the actuators is chosen smaller than the spanwise wavelength of the naturally most unstable mode so that
the control mode is subcritical with respect to the most amplified mode and decays far downstream. Following the
suggestion by,21 we have spaced the plasma actuators with a spanwise wavelength equal to 2/3 of the wavelength of
naturally most unstable mode.3 placed roughness elements at 1/2 of the wavelength of the most unstable crossflow
mode in their free-flight experiments which was found to be effective in delaying transition. Choosing higher harmonics
of the most unstable mode is also possible but the control mode may become too damped and therefore not effective.

In the successful applications of this control technique, Wassermann and Kloker,25 and Hosseini et al.6 have
shown the amplitude of control mode is around one order of magnitude larger than the most unstable stationary mode
in the upstream regions of their flow cases (e.g. see figure 3 of the latter study). Furthermore, Wassermann and Kloke25

show that increasing the amplitude of control mode results in further suppression of the most unstable stationary
modes and hence a more effective control (e.g. see their figure 24). Moreover, suppression of unsteady disturbances by
nonlinear steady crossflow modes have been shown by Bonfigli and Kloker.2 In our flow case, the amplitude of control
mode, shown in figure 4(b), is one order of magnitude smaller than the amplitude of the most unstable mode and it is
too weak compared to the cases in which the control have successfully delayed transition. Therefore, among the design
parameters mentioned, we choose to investigate the plasma actuator strength for improvement of the control. To this
end, plasma actuator body force is increased by a factor of 100 which corresponds to increasing the magnitude of the
induced jet velocity by one order of magnitude from ≈ 0.2m/s to ≈ 5.0m/s.

In order to evaluate the control capability of the plasma actuators with stronger body force in a realistic more
complex disturbance environment, unsteady perturbations are introduced in the domain. Figure 9(a) shows the time-
averaged friction coefficient for both the natural and the controlled case. It is clear that the new control has delayed
transition to turbulent flow by about 3% chord-length. Fourier transform of flow field snapshots in time, characterises
the disturbance environment into steady and unsteady parts. Amplitude of the individual modes, as defined in equation
(13), for the controlled case are plotted in figure 9(b). The steady disturbances are clearly dominant in this controlled
case. The initial amplitude of unsteady perturbations, both primary and secondary, are similar to the uncontrolled case
up to the location of plasma actuators at x/c = 0.05. Thereafter, they experience a sharp decay up to x/c ≈ 0.1 where
they start to grow again. However, the unsteady disturbances are attenuated compared to the natural case. Furthermore,
the sudden growth of high-frequency disturbances is shifted downstream which corresponds to the beginning of the
transition location in the friction coefficient curve.

In order to understand further the mechanism of secondary instabilities, transfer of energy between the base flow
and high-frequency modes is investigated. To this end, spatial distribution of energy production term associated with
z-type modes, −ũξw̃∂Uξ/∂z, for the high-frequency mode with frequency of 14600Hz along with contours of modified
mean flow is shown in figure 10. The wall-normal plane is chosen at x/c = 0.17, prior to the transition location in
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Figure 10: Spatial distribution of the production term −ũξw̃∂Uξ/∂z for the high-frequency mode with frequency
14600Hz along with contours of modified mean flow (tangential velocity component). (a) natural case and (b) con-
trolled case. The wall-normal (η, z) plane is located at x/c = 0.17.
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Figure 11: Amplitude evolution of primary modes for (a) natural case and (b) the controlled case, obtained using
spatio-temporal Fourier decomposition of disturbances.

both controlled and uncontrolled cases. The maximum production is located on the upwelling zone of the stationary
crossflow vortices where the shear is strong. The destabilising energy production is clearly weaker in the controlled
case as compared with the natural case. Although figure ??(a) shows dominance of the control mode in the absence of
unsteady disturbances, the mean flow structure in both natural and controlled cases is dominated by the most unstable
2β0 mode in the presence of unsteady perturbations. In order to investigate this behaviour, disturbances are assumed to
be spanwise- and time-periodic and may be decomposed into Fourier components of the form

uξ(ξ, η, z, t) =

M∑

m=0

N∑

n=−N

ũξ(ξ, η, nβ0,mω0)ei(nβ0z+mω0t). (14)

Amplitudes of individual modes for both the natural and the controlled case are plotted in figure 11 as

Au(x) = max
η

|ũξ |
Q∞

. (15)

In the following individual Fourier modes with a spanwise wavenumber nβ0 and a frequency mω0 are represented
by (m, n). The fundamental frequency resolved here is 730Hz. In the natural case, steady and unsteady disturbances
exhibit similar amplitude levels with the (0,1)-mode being dominant up to x/c ≈ 0.13 where the (0,2)-mode becomes
dominant. In the controlled case, excitation of the control mode clearly attenuates the unsteady modes as well as the
(0,1)-mode. The dominant mode throughout the domain is the (0,2)-mode in contrast to dominance of the control
(0,3)-mode in purely steady disturbance environment. This demonstrates the significant effect of unsteady disturbances
in the receptivity process.

4. Conclusions

Passive control of a swept-wing boundary layer using ring-type plasma actuators is investigated thorough direct nu-
merical simulations. The flow configuration conforms to experiments by Kim et al.,10 performed within EU project
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BUTERFLI. Such actuators generate a wall-normal jet and act as virtual roughness elements to excite subcritical
stationary control modes. The action of actuators are incorporated in the numerical simulations by including the cor-
responding body force of the induced velocity field by actuators. Steady crossflow disturbances are excited using a
simplified model of natural surface roughness on the wing surface.

First, the effect of control on the evolution of stationary crossflow disturbances in the absence of unsteady per-
turbations is investigated, i.e. transition is not studied. Excitation of the control mode attenuates the amplitude of most
unstable mode as well as the total amplitude of stationary disturbances. The amplitude of dominant mode in both the
natural and the controlled case is rather low and not saturated within the computational domain. In the next step, a
more realistic disturbance environment is considered by adding unsteady disturbances in the leading edge region using
random volume force in the wall-normal direction. The amplitude of unsteady perturbations is adjusted such that the
transition location is close to the experimental one. Employing control in this setup leads to promotion of transition
which is in qualitative agreement with the experimental observations. The breakdown from laminar to turbulent flow
is caused by explosive growth of secondary instability modes. In both the natural and the controlled case, stationary
and travelling crossflow modes exhibit similar amplitudes and a combination of both modes triggers the secondary
instabilities.

An improvement in the control is demonstrated by employing stronger plasma actuators with one order of mag-
nitude larger jet velocity. In the absence of unsteady perturbations, the amplitude of control mode for such plasma
actuator initially dominates the amplitude of the stationary modes and decays far downstream. This behaviour is in
qualitative agreement with previous studies.6, 25 It is shown that employing stronger plasma actuators in a disturbance
environment with both steady and unsteady perturbations successfully delays transition. Amplitude of unsteady distur-
bances, both primary and secondary, is attenuated when control is applied. However, the modified mean flow is still
dominant by the naturally most unstable crossflow mode. This is confirmed by spatio-temporal Fourier decomposition
of disturbances. The results of the simulations show a complex interaction between stationary and unsteady vortices
indicating the importance of unsteady crossflow vortices in transition for the case under consideration.
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