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Abstract
In this paper the adaptive augmentation of the attitude control system for a multirotor Unmanned Aerial
Vehicle (UAV) is considered. The proposed approach allows to seamlessly combine a linear robust con-
troller with an adaptive one and to disable or enable the adaptive controller when needed, in order to take
the advantages of both the controllers. Furthermore, the proposed architecture allows not only to make
use of a robust controller, but any generic baseline controller that guarantees stability of the closed-loop
system in nominal conditions.

1. Introduction

The problem of attitude control law design for multirotor UAVs has been studied extensively in the literature. When
dealing with nominal operation, fixed-gain linear or nonlinear controllers typically suffice to solve the problem in a
satisfactory way. If more challenging questions such as, e.g., actuator degradation, external disturbances, parameter
uncertainties, time delays and actuator faults, are to be considered, then more advanced approaches are needed. Adap-
tive control is an attractive candidate to face the mentioned disturbances and uncertainties because of its ability to
provide high performance tracking in presence of uncertainties. Its capability of learning whilst operating, and coping
with uncertainties, made adaptive control the popular choice for fault-tolerant or reconfigurable unmanned flight. In
this paper, the adaptive augmentation of the attitude control system for a multirotor UAV platform is considered. The
proposed approach allows to seamlessly combine a linear robust controller with an adaptive one and to disable or enable
the adaptive controller when needed, in order to take the advantages of both the controllers. Furthermore, the proposed
architecture allows not only to make use of a robust controller, but any generic baseline controller that guarantees
stability of the closed-loop system in nominal conditions. The proposed modification is presented both for the direct
Model Reference Adaptive Control (MRAC) scheme and for the indirect L1 adaptive control scheme; in both cases,
it can be applied to an existing nominal controller without any knowledge of its structure. This is a major advantage
with respect to existing adaptive control schemes, which assume a fixed-structure controller, usually with proportional
and integral action. The proposed adaptive scheme exploits an observer instead of a reference model, placed where the
uncertainty lies. With respect to an indirect approach, the identifier is used as an observer, and it is therefore different
from the usual formulation that includes the nominal dynamics of the closed-loop system.

The adaptive augmentation approach has been validated both through simulations and experiments, by comparing
it to the baseline controller in nominal conditions and in case of external events. In particular, a loss of thrust was
induced so to compare the behaviour of the two control schemes. Simulations were carried out using both the direct
MRAC and the L1 adaptive control. The metric to evaluate tracking performance is the amount of time it takes for the
controller to reach the set point after the anomaly. Instead, the time delay margin was used to evaluate the robustness
of the closed-loop system. When a MRAC scheme is employed, the numerical results confirm an improvement in the
tracking performance at the cost of a reduced robustness. On the other hand, the L1 adaptive schemes provide a better
trade-off between tracking and robustness. In general, all the adaptive schemes in simulation are faster when reacting to
an induced disturbance compared to the nominal controller alone. Finally, experiments were carried out, operating the
quadrotor on a test-bed which constrains all translational and rotational degrees of freedom except for pitch rotation.
During the tests, the angular velocity and the pitch angle, measured by the on-board IMU, were logged along with
the control variable. Tests were primarily run for the L1 adaptive control system. The results show an increase of the
tracking performance when adaptive control is included.
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The paper is organised as follows: first an overview of the current state of the art is given, covering mainly
MRAC and L1 adaptive control schemes with reference to multirotor UAV systems. Subsequently the problem of
adaptive augmentation is formally stated and a solution based on L1 adaptive control theory is presented. Finally, the
results of simulations and experiment carried out to measure the improvements of the proposed adaptive control system
in presence of uncertainties are presented and discussed.

2. State of the art

In the following sections some methods described in the literature to adaptively control multirotor UAVs are presented.
Main results and techniques are shown for standard MRAC and L1 schemes.

2.1 MRAC Schemes

MRAC is the most widely known adaptive control technique and there are many interesting results in the control
of multirotor UAVs. A common characteristic of MRAC schemes is the use of a baseline controller, usually a PI
controller designed by means of LQR. In7 the controller of a small quadrotor is augmented to include both a baseline
fixed gain control and a model reference adaptive control. The whole system is equivalent to the baseline control in
the nominal case, but in the case of a failure the adaptive control plays the role to maintain stability and regain the
original performance. Although it is difficult to regain the original performance with a significant loss of thrust due
to permanent damage in one of the four propellers, the Author has demonstrated that adaptive control allows for safe
hover and return. Next a comparison with a CMRAC scheme was shown: the CMRAC controller was demonstrated to
deliver smoother parameter estimates, allowing higher adaptive gains. It was shown that CMRAC was more effective
than MRAC in learning the true value of uncertain parameters in the system, offering numerous benefits in terms of
tracking performance. An equivalent scheme8 has been proposed, which makes use of a standard baseline fixed gain
control (which is a proportional plus integral controller) together with a Direct MRAC scheme. The Authors show
how the adaptive controller is able to compensate uncertainties and provide better tracking performance than LQR in
presence of mass uncertainty. Also in6 a baseline fixed gain control and direct MRAC are used to demonstrate the
superior performance of MRAC compared to a non-adaptive scheme in case of actuator uncertainties, with a 45%
loss of thrust fault. The adaptive controller exhibits significantly less deviation from level flight. The approach was
validated using flight testing inside an indoor test facility, and the Projection Operator and the Dead Zone modifications
as robust tool modifications.

Of more interest are the adaptive schemes that make use of neural networks: the common denominator of those
design is that the neural network is added to approximate in a single term the uncertainty of the system, such as in
the L1 piecewise-constant adaptive control where all uncertainties are lumped into one parameter. Such approach is
suitable for augmenting a baseline controller because it does not require any modification of that baseline controller and
the adaptive part can be added straightforwardly. Such approach is presented for example in.3, 4, 12, 13 In,34 the neural
network augments a nominal PID controller. The peculiarity of those schemes is the use of the concurrent learning
modification, enabling a faster converge of the estimates to their true values. The control law was designed so that
an approximate inversion model is used in combination with a neural network that adaptively reduces the inversion
error. Thanks to the concurrent learning modification the parameters of the neural networks converge more rapidly
to their true values, leading to an improvement of the performance. In3 this technique is tested on two quadrotors of
different sizes: the baseline controller is tuned for the bigger quadrotor and then tested on the other one, which is half
the size in comparison. Thanks to adaptive control nominal performance is restored, although the nominal controller
was not optimised for the smaller quadrotor. The same idea is also used in12 although without using the concurrent
modification.

Instead in13 the Authors make use of a backstepping controller that exploits adaptive techniques to control a
quadrotor helicopter, successively augmented with a neural network that accounts for uncertainties. Another design
that makes use of adaptive backstepping is presented in,11 where only the mass of the vehicle is uncertain. In this
work, however, the Authors do not make use of a neural network but instead model the UAV with model parameters
uncertainties, leading to a more complex design of the adaptive controller since the backstepping design needs to be
changed. For this reason neural networks are more beneficial, since when using them the nominal control does not have
to be changed. The method in,11 is further developed in,5 where also the vehicle mass, inertia matrix, and aerodynamic
damping coefficients are assumed to be uncertain.

A different approach for approximating the uncertainty is given in.16 This approach makes use of a fixed gain
baseline controller augmented with the CMAC: a linear function approximation used to approximate the uncertainty. In
practice a CMAC is a linear combination of N functions fi, i = 1, · · · ,N, where each fi is equal to 1 inside of k square
regions of input space, randomly scattered, and 0 everywhere else. Although the method shows good performance in the
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presence of uncertainties, it is worth to point out that in comparison to neural networks, linear function approximation,
such as CMAC, show worse performance since in general results indicate that nonlinear function approximators are
more powerful for learning high-dimensional functions.

Finally, a Linear Parameter-Varying (LPV)1 has been proposed, in which the controller, synthesised by using
the structured H∞ algorithm, is based on the fact that the controller parameters can vary in a certain domain given
a set of uncertainties. Then, based on an indirect approach, by using a recursive least squares algorithm, the plant
parameters are identified and used in the LPV controller. The method shows satisfactory performance and low jitter on
the estimates, although no disturbances were introduced in the system.

2.2 L1 Adaptive Control Schemes

As for L1 adaptive control, there are some examples regarding UAVs, although most of them make use of a baseline
control law of the type ub = −kx. A different approach is shown in,14 where a nominal backstepping controller is
designed to control the attitude of the quadrotor. The baseline backstepping controller is successively augmented with
a L1 piecewise-constant adaptive controller. Performance is visibly improved with adaptation, since fast adaptation is
now possible due to the low-pass filter introduced in the L1 methodology. Further, also a scheme that makes use of
quaternions is presented that avoids all singularities associated to Euler angles.

In15 the Authors propose an L1 adaptive output feedback control design, tuned by minimizing a cost function
based on the characteristics of the reference model and the low-pass filter C(s). Flight test results show that the
augmented L1 adaptive system exhibits definite performance and robustness improvements. Furthermore, the adaptive
augmentation is shown to improve performance in aggressive flight.

L1 adaptive control has been used to control a Miniature Air Vehicle (MAV).2 One of the main challenges
for these aerial vehicles is the manufacturing process, which is not reliable enough to ensure uniform aerodynamic
properties. Hence adaptive control was used to account for those uncertainties and the effectiveness of the system was
demonstrated through simulation results. The L1 adaptive algorithm results in performance that exceeds the baseline
PID controllers and exhibits robustness to a variable sample rate for the processor, as well as the time delays introduced
by state estimation. The algorithm also appears to be robust with respect to state estimation errors.

Small UAVs which make use ofL1 adaptive control18 have also been used to collect samples of pollen, and other
biological particles, up to fifty meters altitude. More precisely, in the cited work the L1 adaptive controller makes use
of a neural network to approximate the uncertainty, with guaranteed robustness and transient performance. Simulations
illustrate the control designer’s ability to choose large adaptation gains for fast convergence without compromising
robustness and also the fact that there is no need to re-tune the adaptive gains for different reference signals.18

3. Problem statement

The problem under study is to design an adaptive controller that can be seamlessly implemented in an already exist-
ing control architecture, capable of controlling the angular velocity dynamics of a multirotor UAV. For that purpose
consider the Euler equations of rigid body angular motion, written in the principal inertial axes

Ixx ṗ + (Izz − Iyy)qr = L (1)
Iyyq̇ + (Ixx − Izz)pr = M (2)
Izzṙ + (Iyy − Ixx)pq = N, (3)

where Ixx, Iyy, Izz are the principal moments of inertia, Mext =
[
L M N

]T
represents the external moment applied on

the quadrotor vehicle and ω =
[
p q r

]T
is the body angular velocity. Letting H0 = diag(Izz − Iyy, Ixx − Izz, Iyy − Ixx)

and denoting with In the inertia matrix, the Euler equations can be written as

ω̇ = I−1
n (Mext − H0 f (ω)), f (ω) =

[
qr pr pq

]T
. (4)

Note that external moments acting on the quadrotor can be decomposed into three categories: damping moment,
moment due to propellers, and moment due to external disturbances. For what concerns the moment due to damping,
we suppose it to be proportional to the rates ω, hence let the damping moment be given by Mdamp = Aω. The moment
due to the propellers is just the control action, which will be indicated by u, hence Mprops = u. Finally, external
disturbances are represented by Md = d. Therefore we can write

Mext = Mdamps + Mprops + Md = Aω + u + d, (5)
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and by letting K = I−1
n ,H = KH0, equation (4) becomes:

ω̇ = KAω + Ku + Kd + H f (ω). (6)

When hovering, the term f (ω) is negligible, but uncertainties and disturbances are still acting on the system, which
means that the matrices K, A,H are uncertain. As for the disturbance d, in the following we will assume it to be either
constant or slowly varying. Let now the subscript 0 denote nominal values, and the subscript δ the uncertainty. Then
matrices A and H can be rewritten in the following way using the additive uncertainty form:

A = A0 + Aδ, H = K(H0 + Hδ). (7)

On the other hand, regarding K, it is usually better to express the uncertainty on the input gain in multiplicative form:

K = K0ΛK , ΛK = I + K−1
0 Kδ, (8)

so that equation (4) is rewritten as

ω̇ = K0ΛK

(
(A0 + Aδ)ω + u + d

)
+ (H0 + Hδ) f (ω). (9)

At this point suppose that for the nominal system, i.e., Aδ = 0,Hδ = 0,ΛK = I, d = 0, we design a baseline feedback
controller ub(t) = Cb(r, ω) capable of stabilizing the dynamics of ω, so that the DC-gain from the reference input r to
ω is unitary. In addition, suppose to be in hover, so that the term f (ω) ≈ 0 is negligible.

The idea behind adaptive augmentation is that we want the system to operate mainly in nominal conditions, i.e.,
to have active adaptation only when necessary. To that purpose, let the control input u be given as

u = ub + ua, (10)

where ub is the control action provided by the baseline controller, while ua is the contribution to the control action
given by the adaptive controller, to be designed based on the knowledge of the nominal one.

4. L1 augmentation design of attitude control

Based on the definition (10), consider now equation (9) and add and subtract the nominal part of the system:

ω̇ = K0ΛK((A0 + Aδ)ω + u + d) + (H0 + Hδ) f (ω) ± K0[A0ω + ub]

= K0[A0ω + ub]︸           ︷︷           ︸
Nominal part

+K0(α1ω + α2ub + ΛKua + d̃ + α3 f (ω)) (11)

where

α1 = (ΛK − I)A0 + ΛK Aδ (12)
α2 = ΛK − I (13)

α3 = K−1
0 (H0 + Hδ) (14)

σ̃ = ΛKd. (15)

To take into account actuator dynamics let G(s) represent the nominal transfer function of the actuator model,
and let gb = G(s)ub, ga = G(s)ua. Uncertainties can be included in the d̃ term.17 Further, we can make use of the fact
that the actuator can be modeled as an uncertain input gain, and thus rewrite the previous equation as

ω̇ = K0[A0ω + gb] + K0(α1ω + α2gb + λua(t) + d̃ + α3 f (ω)), (16)

where λ is a parameter used in L1 adaptive control to model the uncertain input gain.10 Notice that ΛK is included in
λ.

4.1 Design of the filter C(s)

We know10, 17 we can design the filter C(s) so that the reference system is stabilized. In our case the reference system
is given by

ω̇ = K0[A0ω + gb] + K0(α1ω + α2gb + λua(t) + d̃ + α3 f (ω)) (17)

ua(s) = −1
λ

C(s)(α1ω + α2gb + d̃ + α3 f (ω)) (18)
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and C(s) needs to be a proper stable filter with DC-gain C(0) = 1. Further, the reference system should be stable for
all the possible unknown dynamics of the actuator. Let F∆ denote the set of possible dynamics of the actuator, with
G(s) ∈ F∆, then C(s) has the following structure:

C(s) =
KF(s)D(s)

1 + KF(s)D(s)
(19)

with F(s) ∈ F∆,K > 0 user chosen and D(s) selected as

D(s) =
1
s

(20)

to satisfy the assumption of DC-gain C(0) = 1. In our case the actuator was modeled as a low pass filter, with constant
time delay and a zero-order hold

G(s) =
1

τns + 1
1 − ests

sts
e−sts , (21)

whilst the nominal control is given by the output of a PID controller RPID(s)

ub(s) = G(s)RPID(s)(ωr(s) − ω(s)), (22)

with ωr being the reference signal. Let then
R(s) = G(s)RPID(s), (23)

and
H(s) = (sI − KnAn + KnR(s))−1Kn, M(s) = 1 −C(s) (24)

from which it follows that

ω(s) = H(s)R(s)ωr(s) + H(s)M(s)(α1ω + α2R(s)(ωr(s) − ω(s)) + d̃ + α3 f (ω)). (25)

Next, define
G1(s) = H(s)R(s) + H(s)M(s)R(s)α2, G2(s) = H(s)M(s)R(s) (26)

and
G3(s) = H(s)M(s). (27)

If Gd(s)
Gd(s) = (I + G2(s)α2 −G3(s)α1)−1, (28)

is a stable transfer function for all possible values of α1, α2, then the reference system is stable. Based on the fact that
G1(s) is stable we can calculate the L1 norm of Gd(s)G1(s) and check for which K it goes to infinity. Recall that for
K = 0 the system is still stable since we are considering uncertainties that do not destabilise the system.

4.2 Predictor model and control law

To build the predictor model consider the plant model given in equation (16); based on that expression the observer-
predictor

˙̂ω = K0[A0ω̂ + gb] + K0(α̂1ω + α̂2gb + λ̂ua(t) + ˆ̃d + α̂3 f (ω)) + Le(t) (29)

is used, where α̂1, α̂2, λ̂, ˆ̃σ, α̂3 are the estimates of α1, α2, λ, σ̃, α3.
Further, let L be a Hurwitz matrix, added to increase the convergence rate of the error dynamics, where the error

is defined as
e(t) = ω̂(t) − ω(t) (30)

then, based on that, the error dynamics is modelled by

ė = (K0A0 + L)e + K0(∆α1ω + ∆α2gb + ∆λua(t) + ∆d̃ + ∆α3 f (ω)). (31)

Finally, the adaptive control law is defined as

ua(s) = −KD(s)η(s), η(s) = α̂1ω + α̂2gb + λ̂ua(t) + ˆ̃d + α̂3 f (ω), (32)

where K and D(s) are chosen as discussed in Section 4.1. On the other hand the value for L was chosen to be L = −50I,
after several simulations.
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4.3 Adaptive laws

Based on the error equation (31), the adaptive laws

˙̂α1 = Proj(α̂1,−Γ1ω(t)e(t)T PB) (33)
˙̂α2 = Proj(α̂2,−Γ2gbe(t)T PB) (34)
˙̂α3 = Proj(α̂3,−Γ3 f (ω(t))e(t)T PB) (35)
˙̂λ = Proj(λ̂,−Γ4ua(t)e(t)T PB) (36)
˙̃̂σ = Proj( ˆ̃d,−Γ5e(t)T PB), (37)

are used. The uncertain parameter λ, which is the equivalent gain of the propellers dynamics, is given initial value 1
and for simplicity its bound is λ ∈ [0.1, 2].

5. Simulation results

The considered quadrotor, see Figure 1, weights approximately 1.5 kg and has an arm length of 0.28 m. In particular,
both simulations and experiments were conducted on a single axis of the quadrotor, to control the pitch attitude. As
shown in Figure 1 all the translational and rotational DoFs were constrained except for pitch rotation.

Figure 1 – Quadrotor used for the tests.

In the simulation study two different adaptive augmentation schemes have been considered, namely the L1
adaptive scheme outlined in Section 4 and a similar MRAC adaptive augmentation scheme.17 Both augmentation
schemes have been implemented on top of a structured robust H∞ linear controller.9 To assess the performance of the
adaptive approaches, a pulse-wave step signal has been used as a reference input, with amplitude of 30°. At 7 seconds
a load of 0.5 kg has been attached to the 3rd arm of the quadrotor, acting as a disturbance to be rejected by the control
system. In Table 1 are shown some performance indicators, that are also evident from Figure 2. The reaction time is
defined as the amount of time that occurs from the beginning of the disturbance (which starts at t0 = 7) to the maximum
error peak between the desired response and Θ(t). From results the adaptive controller is about 3.3 times faster than the
nominal controller to cancel the uncertainty. Further, the maximum error peak between Θ(t) and the desired response
with MRAC is about a fifth of the peak obtained with the nominal controller. Moreover, the average error, from t0 to
t0 + 3 is dramatically decreased: the adaptive controller is able to keep the mean error to a value that is more than 10
times lower than the one of the nominal controller. Finally notice from Figure 2 that

sup
t∈[0,20]

e(t) ≈ 0.12 rad s−1.

Regarding the load disturbance the L1 adaptive control design shows comparable performance to the MRAC
scheme. Some performance indicators are shown in Table 2 and the most significant difference between the L1 and
MRAC designs is a slight increase of the average error. The adaptive control is 3.1 times faster than the nominal
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Figure 2 – Response of the system on a single axis using the MRAC scheme. At 7 seconds a load of 0.5 kg is attached
to one of the arms of the quadrotor.

Load Disturbance Reaction Time Maximum error Average error

Adaptive Enabled 0.32 s 0.91° 0.25°

Adaptive Disabled 1.07 s 4.61° 2.80°

Table 1 – MRAC - Load disturbance: Performance improvements
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Figure 3 – Response of the system on a single axis using the L1 scheme. At 7 seconds a load of 0.5 kg is attached to
one of the arms of the quadrotor.
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controller, and the maximum error peak is again about a fifth of the peak obtained with the nominal controller. The
average error, computed from t0 to t0 + 3, is still very low: the adaptive controller is able to keep the mean error to
a value that is about 7.6 times lower than the one of the nominal controller. This performance is perfectly explained
by the fact that we are using a low-pass filter to cut-off the higher frequencies of the estimates, in this way we are not
perfectly cancelling the uncertainties during the transient. Finally notice from Figure 3 that

sup
t∈[0,20]

e(t) ≈ 0.04 rad s−1,

lower than the one obtained with the MRAC controller, due to fact that the matrix L was changed so to quicken the
error dynamics.

Load Disturbance Reaction Time Maximum error Average error

Adaptive Enabled 0.35 s 0.93° 0.37°

Adaptive Disabled 1.07 s 4.61° 2.80°

Table 2 – L1 - Load disturbance: Performance improvements

The time delay margin is comparable to the MRAC design, although there are some improvements as shown in
Table 3. Compared to the nominal controller we have the same time delay margin for the nominal case, whilst when φm

is minimised the delay margin drops of about one-third. It should be noted that for different values of K different values
of the time delay margin are obtained. In fact K is the tuning knob that adjusts the trade-off between performance and
robustness.

Time Delay Margin Nominal case Min φm case

τm 0.03s 0.02s

Table 3 – L1 Time Delay Margin

6. Experimental results

The L1 adaptive control scheme was chosen to be tested on the real quadrotor.9 The quadrotor was tested mainly for
two types of disturbances: a loss of throttle in the motors, which implies a loss of thrust, and the robustness of the
adaptive control to non-linear effects, such as not being in hovering condition.

The quadrotor software architecture was designed with the possibility to virtually remove a percentage of throttle
from one or more propellers. More precisely, knowing that9 the throttle of a motor is related to its rotational speed by

Ω = mTh% + q (38)

where Th% is the throttle percentage, and q,m ∈ R are static calibration parameters,9 the on-board software of the
quadrotor actually implements

Ω = m(Th% + d) + q, (39)

where d ∈ [−100, 100] is a command, external to the control loop, given to increase or decrease the throttle. Therefore
it is a percentage value and acts as a loss or gain of thrust. Notice that in hover we have that Ω = Ω0 ≈ 387.84 rad s−1,
therefore the throttle value is

Th%0 =
Ω0 − q

m
= 50.96%. (40)

Given that thrust is proportional to the square of rotational speed

T ∝ Ω2
0, (41)

due to d we have a multiplicative uncertainty γ on the rotational speed

T ∝ (γΩ0)2, (42)
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which implies a loss of thrust for γ < 1. It is straightforward to notice that

γ =
Ω

Ω0
=

√
1 +

m2d2 + 2m2Td + 2mqd
Ω2

0

, (43)

where a plot of γ2 is given in Figure 4.

-30 -25 -20 -15 -10 -5 0
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0.9

1

Figure 4 – Loss of thrust γ2 due to the disturbance d in hover. For example for d = −12% there is about 34% loss of
thrust in hover.

Based on that, two experiments were designed:

• Steady state control: during the experiment the set point of the pitch angle Θ is set to 0. After about 10 seconds to
the second motor a disturbance d = −12% is applied, which implies a loss of thrust of 34%. Then, approximately
after 20 seconds the disturbance is removed. The test is done in order to verify the ability of the adaptive control
to quickly recover the attitude.

• Pulse-wave step reference control: in this test a pulse-wave step reference input is used to control the pitch angle
Θ with amplitude of 28° (0.5 rad). At the mid of the test a disturbance d = −12% is applied to the second motor.
The test is done so to verify both the ability of the adaptive control to quickly recover the attitude and to suppress
the influence of nonlinearities on the pitch angle.

As previously stated, results for the augmented L1 adaptive control will be presented. Due to unmodeled dy-
namics and delays it was found necessary to lower the value K of the L1 low-pass filter to values below 2. Other than
that, the other parameters of the controller were chosen as:

K = 0.7, L = −125, ε = 0.9, Γ = 105, (44)

where ε is an attribute of the Projection Operator, defining when the projection should start. The bounds used for the
estimates are:

α̂1 ∈ [−0.2, 0.2] (45)
α̂2 ∈ [−0.2, 0.2] (46)

λ̂ ∈ [0.8, 1.2] (47)
σ̂ ∈ [−0.4, 0.4]. (48)

In Figure 5 the plot of the pitch angle signal is shown, whilst Figure 6 illustrates the time history of the control
signal M. First notice the quickness of the adaptive control to counteract the disturbance. It should be noted, though,
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Figure 5 – Plot of the pitch angle Θ. At about 9 seconds a disturbance d = −12% is applied. Notice the quick response
of the L1 adaptive control.

that the estimates are being low-pass filtered at a very low frequency since K = 0.7. Despite that there is a visible
improvement of the tracking performance. The variance ratio of the two signals was used as indicator: let Θa be the
pitch angle signal obtained using adaptive control, whilst Θn the one using the nominal control. Then we obtain that
the Mean Squared Error (MSE) is

E[Θ2
a] ≈ 1

N

N∑

i=1

Θi,a ≈ 40, E[Θ2
n] ≈ 1

N

N∑

i=1

Θi,n ≈ 50.2 (49)

where Θi is the i-th sample, and N the total number of samples. Then:

E[Θ2
a]

E[Θ2
b]
≈ 0.72, (50)

which indicates that effectively we have better tracking performance, despite the modelled dynamics and the not-
optimized parameters. In Figure 6 it is possible to notice that overall the adaptive control law does not heavily modify
the baseline control signal, acting only at high frequencies. Let Ma and Mn be the control signal respectively of the
adaptive control and the nominal control. We have that

‖Ma‖2 =

√∫ T

0
|Ma(t)|2dt ≈ 3.42, ‖Mn‖2 =

√∫ T

0
|Mn(t)|2dt ≈ 3.49, (51)

which indicates that the energy used by the two control schemes is almost the same. Further, it should be noted that
during the disturbance period of time the dc-frequency amplitude is higher for Mn than Ma.

In the second experiment, the results of which are shown in Figure 7, the set-point used for the pitch angle is more
similar to what was used during the simulations. A pulse-wave step reference input signal was used, with amplitude
of about 28°, which breaks the hovering assumption. At about 24 seconds a disturbance d = −12% is applied to the
second propeller. Although from figure it is not clearly visible the adaptive control action improves the reaction time
of the nominal controller of about 25%. Unfortunately, the nominal control used in this test is similar to the one used
in the simulations, but it is not exactly the same. Further, the value of K was lowered, which means that the adaptive
controller is more robust at the cost of performance. All of this implies that necessarily performance will not be the
same of the simulations presented in the previous chapter. Despite that, notice that when the set point is about 28°
the nominal controller is not able to follow the reference properly, due to nonlinearities. That effect on the other hand
is suppressed by the adaptive control, which is able to track the reference signal. Now, let Θa denote the pitch angle
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Figure 6 – Control signal M. Notice the similar behaviour of the two different types of control for low frequencies.

signal when adaptive control is used, Θn the pitch angle when nominal control is used and Θ0 the reference signal. The
MSEs are:

E[(Θa − Θ0)2] ≈ 1
N

N∑

i=1

(Θi,a − Θi,0)2 ≈ 19.43

E[(Θa − Θ0)2] ≈ 1
N

N∑

i=1

(Θi,n − Θi,0)2 ≈ 23.77

which indicates a performance increase of about 20%. In Figure 8 the control signal for the two control schemes
is shown, and overall the two schemes at low frequencies are the same, as expected. A further indication is that the
energy of the two signals is almost the same:

‖Ma‖2 =

√∫ T

0
|Ma(t)|2dt ≈ 4.08, ‖Mn‖2 =

√∫ T

0
|Mn(t)|2dt ≈ 3.90. (52)

Figure 7 – Plot of the pitch angle Θ during a pulse-wave step reference input. In red the adaptive control, blue the
nominal control. At about 24s a 34% loss of thrust is applied to the second motor.
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Figure 8 – Plot of the control signal moment M during a pulse-wave step reference input. In red the adaptive control,
blue the nominal control. At about 24s a 34% loss of thrust is applied to the second motor.

7. Conclusions

In conclusion, the proposed implementation requires only a little increase in terms of control power, although few
modifications of the control scheme are needed. Overall, the adaptive controllers developed in this work offer an
increased robustness to parametric uncertainties and they are effective in mitigating a loss-of-thrust anomaly compared
to the nominal controller alone.
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