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Abstract

The improvement of diagnosis systems for liquidkedcengines is an important step towards more
competitive and cost effective propulsion systefitee classical monitoring approaches used at bench
or in flight are based on fixed thresholds redliresr critical parameters identified from past
anomalies and engine behavior expertise. Decadisifig and launching have shown the limitation
of this approach especially when the number ofdisi and launches increases or when reusable
systems are concerned. Today to follow with the aewbitions of cutting the cost to access to space
for both expendable and reusable systems, new akégyalgorithms have to be considered and tested
in order to provide new solutions. After reviewitige main needs of a future innovative propulsion
system in terms of possible monitoring and diaghoseds, we propose a review of the most
promising approaches in HMS based on recent rds&anks.

1. Introduction

Rocket engines are high energy complex systemslueitog up to 12000 kN of thrust (corresponding @00 kg/s),
thanks to the conversion of the high energy of abebustion product into high speed ejected masssfldhe
energy levels can reach up to several GW of poWen a very confined space. Rocket engines haveitbstand
harsh thermal and mechanical environment and teigeca high level of reliability: unexpected event lead to
catastrophic anomalies in a very short time (18Qans).

This is why since the very early years of rockajiea testing and flight the issue of detecting aales early has
been a fundamental key to success. The typicaktietesystem is based on fixed thresholds appliectritical
sensors outputs. The choice of the sensors, theation and the values of the allowed thresholdsbaised on the
failure modes analysis and on the known anomalies.

This classical approach is indeed the simplestiplessolution and while it has the main advantafjpeing simple
to implement with no computational needs, it hagessd disadvantages such as:

- The need to account for uncertainties in thesthoéds selection leads to detection delay

- There is no knowledge of the system status wiies in the allowed thresholds

- False alarm may occur due to errors in threshioige mentation

- Setting and validating the fixed thresholds, whiare different for each operating point, induces a
important workload

- The need to have sensor redundancy

Classical redlines approaches have mainly beerogeglin the early years of rocket engine developrdeer to the
limited computational resources on bench or on dho@ipday the situation is completely new and witwprful
computers at hand and new methods to analyze datal time or differed time; this opens new pecsipes in
health management systems for rockets. To overdbmdimitation of the current diagnosis approachmealtiple
ways exist that are based on innovative algorithmgrocess the data coming from the existing sensbhe
objective of such an innovative system will be ¢éduce detection delays, increase knowledge oftitessof the
system and reduce the workload related to spetifesholds setting and anomalies analysis. Thishaiihg a new
flexibility to bench testing, open new ways forgfit recovery in case of anomalies; contribute tanteaance
strategies for reusable rocket engines, and lastdideast reduce the need for sensor redundancy.
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2. HM S approaches

When talking about diagnosis and prognosis for @b@ngines, we refer to the overall system withtéren HMS,
Health Monitoring System. The main functions aretedtion, diagnosis and prognosis.

This article will focus on the first two fundamehfanctions, detection and diagnosis, with an oiewof the main
approaches for a successful data treatment.

There are two main families of approaches:

- Model based [43]
- Data driven [44]

Data driven methods are extensively used in maktstrial domains nowadays. All these techniqueshbeareferred
to as Big Data approaches. The more data availdid@enore accurate the output of these algorithmddvbe.

In the field of rocket engines, data amount canlitmited: for Ariane 5 around 5 to 6 launches pearyare
performed, which is a very different situation framnplanes with hours and hours of engine functigni

The main limitation of data driven approaches sasmeural network identification is that they néedbe trained
and qualified with a somehow fair enough amourdag.

Another approach is the model-based one. Its iiétials dependent on the knowledge of the proaassits model.
In many industrial domains the difficulty is thattmodel of the process is too complex. An exangalee modeling
of the core nuclear reactions and the interactiaitis the fluid processes within the nuclear reactor

In rocket engines, simulation and models have leeeomplex business too for a long time, but aftecadles of
work all main industrial actors make an extensige of simulation tools at all steps of the desi§the engine.
Many complex problems that could not be modelecbB@0 years ago have now dedicated codes and tesare b
validated through testing and flights [7] .

This modeling capability represents a specific ptiéd for rocket engines compared to other indakttbmains with
respect to the development of model based diagnuesisods.

A set of data of reduced size and increasinglycieffit modeling capabilities are an asset for th@oghof model
based HMS strategies.

3. Model based algorithms

Model based diagnosis algorithms use equationbeptocess to provide observers and indicators.€efiuations
are usually rearranged in the form of a state wveartd measured or non-measured input and outputs.

The system state is then estimated generally bymiiimg the error between the model prediction #mel sensor
output via an optimization process.

This error is used for detection and diagnosis psep, and is usually called a diagnosis residual.

The main techniques to achieve model based diagaosi

- Parameter identification via least square minatian [1]

- State observers and Kalman filters [8]

In the first case the objective is to identify tbenstant parameter of the equation while in stdteervers the
equations are used to predict the behavior ofttite sariables.

3.1 Examples of parameter identification algorithms

Parameter identification algorithms are designeddtermine non measurable parameters of a mathehatodel
representing the relationship between input angudwdf a system.

The principle is to detect anomalies based on ababvariations of the estimated parameters.

By defining a generic process model

Y =£(U0X) )1

with Y and U vectors of the measured input and outpttis the state vectol is the parameter vector to be
identified. These parameters can be expressed @ia or less complex physical correlations. Thetfaulith an
impact on these coefficients will have an impactlwir values and will be detected. The functiaah be based on
polynomial expression for a static process, or iffier@ntial equations in the dynamic case. Foradistprocess the



DOI: 10.13009/EUCASS2017-417

parameters are estimated by minimizing the premicéirror between estimated outputs and those peediy the
model with the available signals and by applying dptimum criterion of the least squares whichgisiealent to the
maximum likelihood criterion for the linear casé.[1

For a model linear in the parameters, the systeegoétions can be written as:

Yy = f(U,6,X) = Hy6 +e @)

WhereN corresponds to the number of model outpHfsrepresents thd algebraic equations of the tyf{&J,X) and
eis the model error which can be represented eiasafunction such as:

V=3%k1eq = IIYy — HyOll5 3)
where the convex optimum is given t% =0.
The least square estimation of the vector of thdeghparameter8 is given by the following expression:
6 = argmin||Yy — Hy0ll3 4
Which can be expressed as:
6 = (HYHy) 'HyYy (5)

The value oV computed with this value of parameters is thusmmh

This approach gives good results for the identiiicaof parameters constant with time or subjecltav evolutions
[2][3][4], in particular in steady state operatidbemonstration on real time firing results showhdt tparameter
identification allows good detection rates but #igorithm can be sometimes too sensitive to peatioshs and
results in high false alarms when noise levelshréhe minimum detectable levels [5].

3.2 Examples of Kalman filter and observer algorithms

Kalman filtering [8] approaches allow to take into account stochastimwier of the process such as noise and
modeling errors [9], unlike Luenberger observe@[fll]which are deterministic.

The Kalman filter is designed to estimate the stdite dynamic linear system in presence of additiée Gaussian
noise [12]. Given a dynamic model, it is possildelévelop a Kalman filter and estimate online tia¢esof a system

if it is observable. The detection and diagnosis tteen be realized via the analysis of the preaticérror given by
the difference between the observed status amadtiction.

Given a state representation of a physical procasgliscrete timek, with a state noise to include modeling
uncertainties, and observation noise (sensor noise)

Xie = fi Xi—1, Up—1) + wy
e ©)
Z = (X)) + vy

X, € R™, Z, € R™ etU, € R! representing respectively the vectors of stategolation, command or inputs arfy
et C, are fonctions describing the dynamics of theestatctor or the output vector and transformatietwieen the
states and the measuremetlts, w,, and v, represent the noise on the state and the obsamvi@j, supposed here
as white and mutually non correlated E¢w, vl } = 0, with zero average and of covariance ma@ix = E{w,w/ }
and R, = E{v,vl} given as known. In this case the inpls include also additive noise of zero average and of
covariance matrix), .
When a model of all the possible sources of unitdytéw andv) is available, generally under the form of stotieas
vectors with known densities, Kalman filtering madk allow to generate residuals sensitive to faulith different
versions to deal with linear or nonlinear models.
The Kalman filter approach provides an estinitef the state of the system such that the variahtiee estimation
error is minimized, i.e.:

X = argmin E{V, V7|7, } (7)

where?, = X, — Xy« is the estimation error or Kalman residual.
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With the extended version of the filter (EKF) [189][16][17], it is also possible to extend the nmtho nonlinear
fi andC,, functions thanks to a first-order Taylor developinef the model around the current state estimaﬂgp
[18][19]. The state estimated value and its covengamatrix are obtained thanks to the recursivéicgijpn of the
cycle of prediction and correction [20]. Some ex@af application of a simple EKF are provided5h In this
reference the EKF is used for the detection ofcihaling system of a test bench. The results obdaorereal data
sets of bench firing tests show very good detecatidves and good filtering of noise from the sensors

The efficiency of the Kalman filter depends on tipeality of the linearization of the functions f ara the
estimation of the current stai®,. As long as the current estimation is close to fal state of the system
linearization is valid but if the system derivesrfr too much, the linearization may become lesalidi [21] and
divergence of the filter can occur. The implemeatatof the method may also be complex due to thed nef
computation of the Jacobian matrix at each sammieg. If the convergence speed for the paramstanates to
the real values is slower than that of the stat@lgkes the numerical robustness can be affectgld [2

Extensions of Kalman filter exist such as the EdezhKalman Filter - EKF to overcome these limitaio Some
additional examples are [23],: Second order EKFERB) which calculates the Hessian matrix and litimé risks of
divergence of the estimator due to first order daydevelopment errors, the unscented Kalman fil{&rsF)
[24]07[24] which, under the hypothesis of state variallesupted by white Gaussian noise, allows to cedosa
deterministic way the observations to use so asnBure an average value and a covariance alwage tothe
reality for the estimation. Another alternativetss use different techniques of polynomial approxiora of the
nonlinear functions, such filters are presentefl 8} and applied in [26] for the detection of okatibry faults in the
control loop of the control surfaces of A380.

Other promising algorithms are Unknown Input Obees\(UIO). This approach can be used to estimatetdte of
a system, treating the failure as an unknown ifgkit The Unknown Input Observers (UIO) can be &apto linear
systems with both known and unknown inputs [26][Z#e motivation for developing these techniquese®s from
the limitation of traditional observers and the chde identify unknown disturbances. To tackle thi®blem,
unknown inputs may be modeled by the unknown respai a suitable chosen dynamical system. A simrmathod
of UIO consists in designing a full order obserfa@r linear systems with unknown inputs and usingoardinate
system transformation to decouple the disturbaffigeteon the system and obtain a homogenous equafidhe
dynamic observer error, as in [28]. The coordirgtetem transformation modifies the system in suglagp that a
standard observer design can be applied and thesolved using the Luenberger theory [29]. A simmutaus
estimation of the system states and the unknowatsnfor linear systems when the so-called obsematching
condition is not satisfied has been proposed by. [80 auxiliary output vector is introduced so thhe observer
matching condition is satisfied and is used asnin system outputs to asymptotically estimate tfstesn states
without suffering the influence of the unknown itguThe problem of designing UIO for non-lineartsyss has
also been studied with extended UIO consistingrgatization techniques for non-linear discreteetisystems with
unknown inputs [31]. The structure of this obserngevery similar to that of the Kalman filter ingleKF form. As
presented in [22], the state estimation resultsbeansed in two ways:

1. to directly use the state estimation residualsetdopm detection via comparison of the predictedesto its
measure

2. to follow non nominal variation of non-measurabiternal parameters of the model (states and/ompeteas),
for this the state estimation can be used togetitarsome consistency tests in the parameter spaite state
space [13].

Application of EKF for detection on real data haeb performed in [5]. Very good results were olgdion the
firing tests of a cryogenic bench: with respecthe parameter identification, Kalman filtering givenuch better
results in terms of false alarm. This approachvaldo filter much better the noise behavior butlom other side is
less sensitive to slow degradation of amplitude garable to the nominal noise.

Application of UIO and Kalman filtering is curreptbeing tested with promising results on rocketieeg; for
example, critical non measured variables such asnthss flows can be easily predicted online basedhe
functional model and standard pressure and temperaénsors.

3.3 Residual analysis methods

A fault detection system is usually decomposed liesidual generator [32] to quantify a change anfthocess and a
residual evaluator to assess whether the estinvaréation is nominal or not [46].

The residual estimation function can be obtainddgudifferent algorithms that consider the sequesicacquired
residuals as independent random variables witlobatility density depending upon only one scalaapeeter [32].
One common tool to design on-line change detedatme log-likelihood ratio: in this approach a nba in the



DOI: 10.13009/EUCASS2017-417

monitored residual is reflected as a change insigja of the mean value of the likelihood ratio, @rhican be
interpreted as the property of detectability of thange [47]. The detectability of a change cao hisdefined with
the help of the Kullback information. Several simpind well-known algorithms for residual analyséén been
developed such as the Shewhart control chart,ébengtric moving average control chart, the finiteving average
control charts, filtered derivative algorithms a@JSUM algorithms, Bayes type’s algorithms and geliszd
likelihood ratio (GLR) algorithms, for more detadge [38]. The CUSUM control chart has been widedgd to
detect mean shifts. The CUSUM algorithm is equinal® a repeated sequential probability ratio tést, SPRT
defining a decision rule and a stopping time wéhpect to the Neyman-Pearson rule. The decisiencan be seen
as the integration of the observations over argligvindow with random size, see e.g. [39]. To desepositive or a
negative change a two sided CUSUM algorithm has Ipeeposed by [40], one side algorithm to detedhnarease,
another to detect a decrease. Since those algarittead prior knowledge on the change, relativehypt and
computationally inexpensive methods have been dpeel to estimate the fault size such as the expiatgn
moving average algorithm developed by [41]. Thosthwods are referred to adaptive CUSUM (ACUSUM) thar
where the estimated shift is updated by the expialgnweighted moving average (EWMA) method; tlederence
value and the control limit are dynamically adjast€he numerical results show that the ACUSUM chart detect
a small shift faster but for a large shift it ma&guire more observations. In [42] a modified ACUSUOMart has been
proposed using a linear weight on the chart statist

Different approaches of automatic thresholds calptethe CUSUM test were tested in [6] showing goeslilts
with both of the approaches for detection used.

4. Conclusions

Thanks to new computational capabilities it is tpg@ssible to foresee the use of innovative appresador real
time detection and diagnosis of liquid rocket eeginA great potential is represented by model bagpdoaches
coupled with mathematical methods reducing theigeityg of the detection process to modeling unaetties and
sensors noise. Two examples of promising approaahedParameter identification and state obsery€adm@an
filtering in particular), and some combination béttwo, because they allow an efficient treatméh® data in real
time and because of the availability of reliablegiction models for the majority of the engine msses. Statistical
tests such as CUSUM or likelihood ratio methodsthes used to determine the detection flags orb#sés of the
generated residuals. These fault diagnosis methads been widely used in many industrial domairts @ane now
mature enough to be integrated in the developmgaies of new rocket engines, in particular in tleespective of
reusable launchers.

5.Acknowledgements

This paper is the result of the analysis of a j¢iMS team composed by CNES and ONERA. Putting toget
experts in propulsion and algorithmic domains, aticwous effort is being provided to propose newtions and
approaches to design and evaluate innovative d&gapproaches for rocket systems.

References

[1] R. Isermann, "Process fault detection based on lmgdand estimation methods: a survey", Automafia4
(1984), pp. 387-404.

[2] T. Boileau and N. Leboeuf and B. Nahid-Mobaraketl Bh Meibody-Tabar, "Online identification of PMSM
parameters: Parameter identifiability and estimatomparative study”, IEEE Transactions on Industry
Applications, 47, 4 (2011), pp. 1944-1957.

[3] L. Liu and D. Cartes and others, "On-line idengfion and robust fault diagnosis for nonlinear PM&iies",
in American Control Conference (2005), pp. 20237202

[4] C. Meyer and J. F. Zakrajsek, "Rocket engine faildeetection using system identification techniques26th
AIAA/SAE/ASME/ASEE Joint Propulsion Conference, @mtlo, FL (1990).

[5] lannetti, S. Palerm, J. Marzat, H. Piet-LahanierGQ&donneau, A new HMS for the Mascotte cryogdagt
bench, AAAF, Space Propulsion Conference, Rom]|tal6 May 2016

[6] lannetti, J. Marzat, H. Piet-Lahanier, G. Ordonneautomatic tuning strategies for model-based diesim
methods applied to a rocket engine demonstratol Edrope 2016, Bilbao, Spain, 5-8 July 2016

[7] G. P. Sutton. History of liquid propellant rockeigénes. AIAA, 2006.



DOI: 10.13009/EUCASS2017-417

A. lannetti, J. Marzat

[8] E. Chow and A. Willsky, "Analytical redundancy atite design of robust failure detection systemsEHE
Transactions on Automatic Control, 29, 7 (1984),6(8-614.

[9] M. Labarrére and J.P. Krief and B. Gimonet and MleBrin and J.P. Krief, Le filtrage et ses applaad
(Cepadues, 1982).

[10]D.G. Luenberger, "Observing the state of a lingatesn”, IEEE Transactions on Military Electroni@s, 2
(1964), pp. 74-80.

[11]B. Larroque, "Observateurs de systéemes linéaipgdication a la détection et localisation de fati{@908).

[12]D. Boutat, "La notion d'observateur pour les sysemon-linéaires”, Supméca pour la Journée Mathié¢ueat
(IMS)

[13]M. S. Grewal, Kalman filtering (Springer, Berlin idelberg, 2011).

[14]A.Zolghadri, "Algorithm for real-time failure detgon in Kalman filters”, IEEE Transactions on Autatic
Control, 41, 10 (1996), pp. 1537-1539.

[15]R. J. Patton, "Fault detection and diagnosis iogmace systems using analytical redundancy”, IEfding
& Control Engineering Journal, 2, 3 (1991), pp. 1136.

[16]T. Kobayashi and D. Simon, Application of a bankkdlman filters for aircraft engine fault diagnasti
(Defense Technical Information Center, 2003).

[17]U. Lerneri and R. Parr and D. Koller and G. Bisvearsl others, "Bayesian fault detection and diagniosis
dynamic systems", in 17th National Conference ofifigial Intelligence AAAI, Austin, TX (2000), pp531-
537

[18]S. J. Julier and J. K. Uhlmann, "New extensionhaf Kalman filter to nonlinear systems", in AeroS2as,
Orlando, FL (1997), pp. 182-193.

[19]J. Crassidis and J. L. Junkins, Optimal estimaiodiynamic systems (CRC press, 2011).

[20]M. NgRgaard, N. Poulsen, O. Ravn, "New developmiengsate estimation for nonlinear systems”, Autboaa
36, 11 (2000), pp. 1627-1638

[21]Z. Wang and X. Liu and Xiaohui, Y. Liu, J. LiangdaN. Vinciotti, "An extended Kalman filtering appach to
modeling nonlinear dynamic gene regulatory netwowka short gene expression time series", |IEEE
Transactions on Computational Biology and Bioinfatits (TCBB), 6, 3 (2009), pp. 410-419.

[22] A.Falcoz, "Contribution au développement de stiatégle diagnostic a base de modéles pour les Jékicu
spatiaux : application & une mission de rentrémspimerique”, Ph.d Thesis (2009).

[23]K. Reif and R. Unbehauen, "The extended Kalmaerfiis an exponential observer for nonlinear systems
IEEE Transactions on Signal Processing, 47, 8 (1999 2324-2328.

[24]B. Sadeghi and B. Moshiri, "Second-order EKF andcented Kalman filter UKF fusion for tracking
maneuvering targets", in International Conferencénformation Reuse and Integration, Las Vegas 1208p.
514-519.

[25]E. Wan and R. Van Der Merwel, "The unscented Kalfilger for nonlinear estimation”, in Adaptive Sgsts
for Signal Processing, Communications, and Cor@yohposium (2000), pp. 153-158.

[26]L. Lavigne and A. Zolghadri and P. Goupil and Rn&h, "Robust and early detection of oscillatoryuie case
for new generation Airbus aircraft”, in Proc. oEtAIAA Guidance, Navigation and Control Confereroel
Exhibit, Honolulu (2008).

[27] Ha, Q.P. and Negnevitsky, M. (1970). “Fuzzy tunimgnotion control”. WIT Transactions on Informatiand
Communication Technologies, 16.

[28] Guidorzi, R. and Marro, G. (1971). “On Wonham #tahbility condition in the synthesis of observes
unknown-input systems”. IEEE Transactions on Auttien@ontrol, 16(5), pp. 499-500.

[29] Darouach, M., Zasadzinski, M., and Xu, S.J. (199Bull-order observers for linear systems with uoNum
inputs”. IEEE Transactions on Automatic Control(39 pp. 606-609.

[30] Hou, M. and Muller, P. (1992), “Design of observdms linear systems with unknown inputs”. IEEE
Transactions on automatic control, 37(6), pp. 87%:8

[31]Zhu, F. (2012). “State estimation and unknown inpdonstruction via both reduced-order and higteord
sliding mode observers”. Journal of Process Con2@(1), pp. 296-302.

[32]Witczak, M. (2007). “Modelling and estimation stgies for fault diagnosis of non-linear systemsinfr
analytical to soft computing approaches”, volumé.33pringer Science & Business Media

[33]Patton, R. and Chen, J. (1997). “Observer-baseld datection and isolation: Robustness and apjdioat.
Control Engineering Practice, 5(5), pp. 671-682.

[34]Ryu, J.H.,Wan, H., and Kim, S. (2010). “Optimal iglesof a CUSUM chart for a mean shift of unknownesi
Journal of Quality Technology, 42(3), pp. 311-326.

[35] Sparks, R.S. (2000). “Cusum charts for signallirrgying location shifts”. Journal of Quality Techagy,
32(2), pp. 157-171.

[36]Le, K., Huang, Z., Moon, C.W., and Tzes, A. (1997)daptive thresholding - a robust fault detection
approach”. In Proceedings of the 36th IEEE Confegeon Decision and Control, , volume 5, pp. 4499544



DOI: 10.13009/EUCASS2017-417

[37]Emami-Naeini, A., Akhter, M.M., and Rock, S.M. (8)8“Effect of model uncertainty on failure detecti the
threshold selector”. IEEE Transactions on Autom@onitrol, 33(12), pp. 1106-1115.

[38]Isaksson, A. (1992). “An on-line threshold seledtorfailure detection”. Linkdping University Regor

[39]Basseville, M., Nikiforov, L.V., et al. (1993).” Dection of abrupt changes: theory and application”,
Englewoods Cliffs: Prentice Hall.

[40]Mohanty, S., Pradhan, A., and Routray, A. (2008).cimulative sum-based fault detector for powertesys
relaying application”. IEEE transactions on Powediiery, 23(1), pp. 79-86.

[41]Page, E. (1954). “Continuous inspection schemeigimBtrika, 41(1/2), pp. 100-115.

[42]Jdiang, W., Shu, L., and Apley, D.W. (2008). “Adapti CUSUM procedures with EWMA-based shift
estimators”. lIIE Transactions, 40(10), pp. 992-1003

[43]Marzat J., Piet-Lahanier H., Damongeot F., Walter(#)12) “Model-based fault diagnosis for aerospace
systems”, Proc. Imech. Part G: Journal of Aerosjatgneering, 226(10), pp. 1329-1360.

[44] Venkatasubramanian, V., Rengaswamy, R., KavuriNS.and Yin., K. (2003). “A review of process fault
detection and diagnosis Part Ill: process hist@sell methods”. Computers and Chemical Enginee2in@),
pp. 327-346.

[45]Hamayun, M.T., Edwards, C., and Alwi, H. (2013)."féult tolerant control allocation scheme with auttp
integral sliding modes”. Automatica, 49(6), pp. Q8337.

[46]J. Marzat, E. Walter, H. Piet-Lahanier, and F. Dagent. (2010) “Automatic tuning via kriging-based
optimization of methods for fault detection andlason”. In Conference on Control and Fault-Toldran
Systems (SysTol), pp. 505_510.

[47]J. P. Herzog and R. L. Bickford Y. Y. Yue. (199&yhamics sensor validation for reusable launch alehi
propulsion”. In 34th AIAA/ASME/SAE/ASEE Joint Profsion Conference, Cleveland, OH, number AIAA-
1998-3604.



