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Abstract 

The improvement of diagnosis systems for liquid rocket engines is an important step towards more 
competitive and cost effective propulsion systems. The classical monitoring approaches used at bench 
or in flight are based on fixed thresholds redlines over critical parameters identified from past 
anomalies and engine behavior expertise. Decades of testing and launching have shown the limitation 
of this approach especially when the number of firings and launches increases or when reusable 
systems are concerned. Today to follow with the new ambitions of cutting the cost to access to space 
for both expendable and reusable systems, new diagnosis algorithms have to be considered and tested 
in order to provide new solutions. After reviewing the main needs of a future innovative propulsion 
system in terms of possible monitoring and diagnosis needs, we propose a review of the most 
promising approaches in HMS based on recent research works. 

1. Introduction 

Rocket engines are high energy complex systems. Producing up to 12000 kN of thrust (corresponding to 1000 kg/s), 
thanks to the conversion of the high energy of the combustion product into high speed ejected mass flows. The 
energy levels can reach up to several GW of power all in a very confined space. Rocket engines have to withstand 
harsh thermal and mechanical environment and to provide a high level of reliability: unexpected events can lead to 
catastrophic anomalies in a very short time (10 to 30 ms).  
This is why since the very early years of rocket engine testing and flight the issue of detecting anomalies early has 
been a fundamental key to success. The typical detection system is based on fixed thresholds applied on critical 
sensors outputs. The choice of the sensors, their location and the values of the allowed thresholds are based on the 
failure modes analysis and on the known anomalies. 
This classical approach is indeed the simplest possible solution and while it has the main advantage of being simple 
to implement with no computational needs, it has several disadvantages such as: 
- The need to account for uncertainties in the thresholds selection leads to detection delay 
- There is no knowledge of the system status while it lies in the allowed thresholds 
- False alarm may occur due to errors in thresholds implementation 
- Setting and validating the fixed thresholds, which are different for each operating point, induces an 
important workload  
- The need to have sensor redundancy 
 
Classical redlines approaches have mainly been deployed in the early years of rocket engine development due to the 
limited computational resources on bench or on board. Today the situation is completely new and with powerful 
computers at hand and new methods to analyze data in real time or differed time; this opens new perspectives in 
health management systems for rockets. To overcome the limitation of the current diagnosis approaches, multiple 
ways exist that are based on innovative algorithms to process the data coming from the existing sensors. The 
objective of such an innovative system will be to reduce detection delays, increase knowledge of the status of the 
system and reduce the workload related to specific thresholds setting and anomalies analysis. This will bring a new 
flexibility to bench testing, open new ways for flight recovery in case of anomalies; contribute to maintenance 
strategies for reusable rocket engines, and last but not least reduce the need for sensor redundancy.  
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2. HMS approaches 

When talking about diagnosis and prognosis for rocket engines, we refer to the overall system with the term HMS, 
Health Monitoring System. The main functions are: detection, diagnosis and prognosis. 
This article will focus on the first two fundamental functions, detection and diagnosis, with an overview of the main 
approaches for a successful data treatment. 
 
There are two main families of approaches: 
 
- Model based [43] 
- Data driven [44] 
 
Data driven methods are extensively used in most industrial domains nowadays. All these techniques can be referred 
to as Big Data approaches. The more data available, the more accurate the output of these algorithms would be. 
In the field of rocket engines, data amount can be limited: for Ariane 5 around 5 to 6 launches per year are 
performed, which is a very different situation from airplanes with hours and hours of engine functioning. 
The main limitation of data driven approaches such as neural network identification is that they need to be trained 
and qualified with a somehow fair enough amount of data. 
Another approach is the model-based one. Its reliability is dependent on the knowledge of the process and its model. 
In many industrial domains the difficulty is that the model of the process is too complex. An example is the modeling 
of the core nuclear reactions and the interactions with the fluid processes within the nuclear reactor. 
In rocket engines, simulation and models have been a complex business too for a long time, but after decades of 
work all main industrial actors make an extensive use of simulation tools at all steps of the design of the engine. 
Many complex problems that could not be modeled 30 or 40 years ago have now dedicated codes and have been 
validated through testing and flights [7] .  
This modeling capability represents a specific potential for rocket engines compared to other industrial domains with 
respect to the development of model based diagnosis methods. 
A set of data of reduced size and increasingly efficient modeling capabilities are an asset for the choice of model 
based HMS strategies. 

3. Model based algorithms 

Model based diagnosis algorithms use equations of the process to provide observers and indicators. The equations 
are usually rearranged in the form of a state vector and measured or non-measured input and outputs. 
The system state is then estimated generally by minimizing the error between the model prediction and the sensor 
output via an optimization process. 
This error is used for detection and diagnosis purposes, and is usually called a diagnosis residual. 
The main techniques to achieve model based diagnosis are: 
- Parameter identification via least square minimization [1] 
- State observers and Kalman filters [8] 
 
In the first case the objective is to identify the constant parameter of the equation while in state observers the 
equations are used to predict the behavior of the state variables. 

3.1 Examples of parameter identification algorithms 

Parameter identification algorithms are designed to determine non measurable parameters of a mathematical model 
representing the relationship between input and output of a system. 
The principle is to detect anomalies based on abnormal variations of the estimated parameters.  
By defining a generic process model 
 

� = �(�, �, �)                                                 (1) 
 
with Y and U vectors of the measured input and output, X is the state vector, θ is the parameter vector to be 
identified. These parameters can be expressed via more or less complex physical correlations. The faults with an 
impact on these coefficients will have an impact on their values and will be detected. The function f can be based on 
polynomial expression for a static process, or on differential equations in the dynamic case. For a static process the 
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parameters are estimated by minimizing the prediction error between estimated outputs and those predicted by the 
model with the available signals and by applying the optimum criterion of the least squares which is equivalent to the 
maximum likelihood criterion for the linear case [1].  
For a model linear in the parameters, the system of equations can be written as:  
 

�
 = �(�, �, �) = �
� +                                       (2) 
 
Where N corresponds to the number of model outputs, �
 represents the N algebraic equations of the type f(U,X) and 
e is the model error which can be represented via a cost function such as: 
 

� = ∑ ��
��� = ‖�
 − �
�‖��                                      (3) 
 

where the convex optimum is given by  
��
�� = 0. 

 
The least square estimation of the vector of the model parameters θ is given by the following expression: 
 

�� = argmin‖�
 − �
�‖��                                        (4) 
 
Which can be expressed as: 
 

�� = (�
!�
)"��
!�
                                        (5) 
 
The value of V computed with this value of parameters is thus minimal. 
This approach gives good results for the identification of parameters constant with time or subject to slow evolutions 
[2][3][4], in particular in steady state operation. Demonstration on real time firing results showed that parameter 
identification allows good detection rates but the algorithm can be sometimes too sensitive to perturbations and 
results in high false alarms when noise levels reach the minimum detectable levels [5]. 

3.2 Examples of Kalman filter and observer algorithms 

Kalman filtering [8] approaches allow to take into account stochastic behavior of the process such as noise and 
modeling errors [9], unlike Luenberger observers [10][11]which are deterministic. 
The Kalman filter is designed to estimate the state of a dynamic linear system in presence of additive white Gaussian 
noise [12]. Given a dynamic model, it is possible to develop a Kalman filter and estimate online the state of a system 
if it is observable. The detection and diagnosis can then be realized via the analysis of the prediction error given by 
the difference between the observed status and its prediction.  
Given a state representation of a physical process, at discrete time k, with a state noise to include modeling 
uncertainties, and observation noise (sensor noise): 
 

#�� = ��(��"�, ��"�) + $�
%� = &�(��) + '�                                       (6) 

 
�� ∈ ℜ*, %� ∈ ℜ+ et �� ∈ ℜ, representing respectively the vectors of state, observation, command or inputs and  �� 
et &�  are fonctions describing the dynamics of the state vector or the output vector and  transformation between the 
states and the measurements  %�, $� and  '� represent the noise on the state and the observation [8], supposed here 
as white and mutually non correlated i.e. -.$�'�!/ = 0, with zero average and of covariance matrix 01� = -.$�$�!/ 
and 2� = -.'�'�!/ given as known. In this case the inputs �� include also additive noise of zero average and of 
covariance matrix 03�. 
When a model of all the possible sources of uncertainty (w and v) is available, generally under the form of stochastic 
vectors with known densities, Kalman filtering methods allow to generate residuals sensitive to faults, with different 
versions to deal with linear or nonlinear models. 
The Kalman filter approach provides an estimate ��� of the state of the system such that the variance of the estimation 
error is minimized, i.e.: 

�� = argmin-4������!5%�6                                      (7) 
 

where ��� = �� − ���|� is the estimation error or Kalman residual. 
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With the extended version of the filter (EKF) [14][15][16][17], it is also possible to extend the method to nonlinear 
�� and &� functions thanks to a first-order Taylor development of the model around the current state estimation ���|� 
[18][19]. The state estimated value and its covariance matrix are obtained thanks to the recursive application of the 
cycle of prediction and correction [20]. Some examples of application of a simple EKF are provided in [5]. In this 
reference the EKF is used for the detection of the cooling system of a test bench. The results obtained on real data 
sets of bench firing tests show very good detection rates and good filtering of noise from the sensors. 
The efficiency of the Kalman filter depends on the quality of the linearization of the functions f around the 
estimation of the current state ���. As long as the current estimation is close to the real state of the system 
linearization is valid but if the system derives from too much, the linearization may become less reliable [21] and 
divergence of the filter can occur. The implementation of the method may also be complex due to the need of 
computation of the Jacobian matrix at each sampling step. If the convergence speed for the parameter estimates to 
the real values is slower than that of the state variables the numerical robustness can be affected [22].  
Extensions of Kalman filter exist such as the Extended Kalman Filter - EKF to overcome these limitations. Some 
additional examples are [23],: Second order EKF (SOEKF) which calculates the Hessian matrix and limit the risks of 
divergence of the estimator due to first order Taylor development errors, the unscented Kalman filters (UKF) 
[24][24] which, under the hypothesis of state variables corrupted by white Gaussian noise, allows to choose in a 
deterministic way the observations to use so as to ensure an average value and a covariance always close to the 
reality for the estimation. Another alternative is to use different techniques of polynomial approximation of the 
nonlinear functions, such filters are presented in [19] and applied in [26] for the detection of oscillatory faults in the 
control loop of the control surfaces of A380. 
Other promising algorithms are Unknown Input Observers (UIO). This approach can be used to estimate the state of 
a system, treating the failure as an unknown input [45]. The Unknown Input Observers (UIO) can be applied to linear 
systems with both known and unknown inputs [26][27]. The motivation for developing these techniques comes from 
the limitation of traditional observers and the need to identify unknown disturbances. To tackle this problem, 
unknown inputs may be modeled by the unknown response of a suitable chosen dynamical system. A simple method 
of UIO consists in designing a full order observer for linear systems with unknown inputs and using a coordinate 
system transformation to decouple the disturbance effect on the system and obtain a homogenous equation of the 
dynamic observer error, as in [28]. The coordinate system transformation modifies the system in such a way that a 
standard observer design can be applied and then be solved using the Luenberger theory [29]. A simultaneous 
estimation of the system states and the unknown inputs for linear systems when the so-called observer matching 
condition is not satisfied has been proposed by [30]. An auxiliary output vector is introduced so that the observer 
matching condition is satisfied and is used as the new system outputs to asymptotically estimate the system states 
without suffering the influence of the unknown inputs. The problem of designing UIO for non-linear systems has 
also been studied with extended UIO consisting on linearization techniques for non-linear discrete-time systems with 
unknown inputs [31]. The structure of this observer is very similar to that of the Kalman filter in the EKF form. As 
presented in [22], the state estimation results can be used in two ways: 

1. to directly use the state estimation residuals to perform detection via comparison of the predicted state to its 
measure 

2. to follow non nominal variation of non-measurable internal parameters of the model (states and/or parameters), 
for this the state estimation can be used together with some consistency tests in the parameter space or the state 
space [13]. 

Application of EKF for detection on real data has been performed in [5]. Very good results were obtained on the 
firing tests of a cryogenic bench: with respect to the parameter identification, Kalman filtering gives much better 
results in terms of false alarm. This approach allows to filter much better the noise behavior but on the other side is 
less sensitive to slow degradation of amplitude comparable to the nominal noise. 
Application of UIO and Kalman filtering is currently being tested with promising results on rocket engines: for 
example, critical non measured variables such as the mass flows can be easily predicted online based on the 
functional model and standard pressure and temperature sensors. 

3.3 Residual analysis methods 

A fault detection system is usually decomposed in a residual generator [32] to quantify a change in the process and a 
residual evaluator to assess whether the estimated variation is nominal or not [46].  
The residual estimation function can be obtained using different algorithms that consider the sequence of acquired 
residuals as independent random variables with a probability density depending upon only one scalar parameter [32]. 
One common tool to design on-line change detection is the log-likelihood ratio: in this approach a change in the 
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monitored residual is reflected as a change in the sign of the mean value of the likelihood ratio, which can be 
interpreted as the property of detectability of the change [47]. The detectability of a change can also be defined with 
the help of the Kullback information. Several simple and well-known algorithms for residual analysis have been 
developed such as the Shewhart control chart, the geometric moving average control chart, the finite moving average 
control charts, filtered derivative algorithms and CUSUM algorithms, Bayes type’s algorithms and generalized 
likelihood ratio (GLR) algorithms, for more details see [38].  The CUSUM control chart has been widely used to 
detect mean shifts. The CUSUM algorithm is equivalent to a repeated sequential probability ratio test, the SPRT 
defining a decision rule and a stopping time with respect to the Neyman-Pearson rule. The decision rule can be seen 
as the integration of the observations over a sliding window with random size, see  e.g. [39]. To detect a positive or a 
negative change a two sided CUSUM algorithm has been proposed by [40], one side algorithm to detect an increase, 
another to detect a decrease. Since those algorithms need prior knowledge on the change, relatively simple and 
computationally inexpensive methods have been developed to estimate the fault size such as the exponentially 
moving average algorithm developed by [41]. Those methods are referred to adaptive CUSUM (ACUSUM) charts 
where the estimated shift is updated by the exponentially weighted moving average (EWMA) method; the reference 
value and the control limit are dynamically adjusted. The numerical results show that the ACUSUM chart can detect 
a small shift faster but for a large shift it may require more observations. In [42] a modified ACUSUM chart has been 
proposed using a linear weight on the chart statistic.  
Different approaches of automatic thresholds coupled to the CUSUM test were tested in [6] showing good results 
with both of the approaches for detection used. 

4. Conclusions 

Thanks to new computational capabilities it is today possible to foresee the use of innovative approaches for real 
time detection and diagnosis of liquid rocket engines. A great potential is represented by model based approaches 
coupled with mathematical methods reducing the sensitivity of the detection process to modeling uncertainties and 
sensors noise. Two examples of promising approaches are Parameter identification and state observers (Kalman 
filtering in particular), and some combination of the two, because they allow an efficient treatment of the data in real 
time and because of the availability of reliable prediction models for the majority of the engine processes. Statistical 
tests such as CUSUM or likelihood ratio methods are then used to determine the detection flags on the basis of the 
generated residuals. These fault diagnosis methods have been widely used in many industrial domains and are now 
mature enough to be integrated in the development cycles of new rocket engines, in particular in the perspective of 
reusable launchers. 
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