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Abstract 
Probabilistic model of damage calculation for aviation composite materials is proposed, the main task 

of which is physically substantiated modeling of stress dependence on deformations under the 

influence of external loading, distinguishing between the formed elastic and plastic deformation, as 

well as irreversible cracking and material destruction. For this purpose, the calculation of the 

probabilities of the destruction of bonds between the material elements, as well as the equivalent 

energy of deformation is made. Comparison of the results of numerical calculations with experimental 

data shows principal applicability of the proposed model. 

1. Introduction 

Modeling the behavior of multicomponent composite materials made on the basis of particles or fibers as a 

reinforcing phase, as well as various types of plastic or metal matrices as a binding phase, and which are widely used 

in modern aviation, in spite of all their diversity, is associated with the same typical problems as the simulation of 

traditional structural metals and alloys. In particular, in order to describe the behavior of materials of both types, 

specialized models are widely used, which are well adapted for certain temperature ranges, loads or other conditions 

of interaction, but are difficultly generalized to wider ranges of operating conditions [1-3].  

At the same time, when choosing a particular calculation model, it is often necessary to operate with a set of material 

properties, which are often more qualitative than quantitative [4, 5]. Such properties determine the choice of a model, 

but are not explained by the model itself. For example, these characteristics are material brittle or plastic behavior, 

relationship between static and long-term durability, creep and strengthening, yielding and melting heat. 

On the other hand, it is known that only a few typical atomic gratings and types of molecular bonds exist, which 

result in ionic, covalent, van der Waals bonding, also an additional effect of molecular bonds due to vulcanization 

can be considered. Moreover metals for example can be also potentially unified as the calorimetric properties of 

metals in general are similar if some magnitude factor is introduced which depends on the atomic structure and 

Debye temperature [6]. 

Thus, the question arises as how it is possible to describe the mechanical behavior of a material, based not so much 

on the phenomenological data about each particular material [7, 8], but from the general physical analysis grounded 

on its basic parameters, such as atomic mass, interatomic distance, coefficients of the function of potential energy of 

interatomic interaction and other similar quantities [9, 10]. 

The immediate task that needs to be solved to answer the question is to establish a quantitative relationship between 

the loading conditions, conditions of the experiment and the mechanical behavior of the material. In this study, the 

solution of this problem is presented for the case of stress and strain simulation of simple composite elements based 

on a metal matrix, using a probabilistic approach. 

2. Materials and methods 

The study was implemented in three stages, with the transition from analysis of a simple material without 

strengthening, which is characterized with an expressed ductile behavior, then of a non-reinforced material, which is 

characterized with more brittle behavior under the given conditions of the experiment conducting, to the analysis of 

the latter in the role of a matrix of reinforced with particles metal composite. 

Thus, at the first stage of the simulation, an attempt was made to predict the uniform tensile loading of a standard 

cylindrical specimen made of almost pure metal without the use of reinforcing particles. As such a material, a solid 

low-carbon solution in iron, namely ferrite, was considered, since the properties of the ferrite are rather close to the 
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properties of pure iron, and therefore carbon inclusions can be neglected when modeling the phonon effects of the 

impact on the strength of the material. The mechanical characteristics of the material are given in Table. 1 [11]. 

Table 1: Mechanical characteristics of ductile ferrite specimen 

 
Proportionality   

limit  

Plasticity            

limit 

Ultimate        

strength 

Young's modulus,    

1 GPa 

Stress, MPa 184,45 275,60 345 1,085 

Strain, % 0,17 0,37 25 1,085 

 
In order to test a comparatively more brittle material, a specimen made of cast aluminum alloy was selected, the 

mechanical characteristics of which are given in Table 2 [11, 12].  

Table 2. Mechanical characteristics of brittle aluminum specimen 

 
Proportionality   

limit  

Plasticity            

limit 

Ultimate        

strength 

Young's modulus,    
210  GPa 

Stress, MPa 283 345 414 0,69 

Strain, % 0,41 0,52 0,98 0,69 

 
In the third stage of the study a composite material was tested, for which a specimen of a powder composite was used 

representing a matrix of aluminum alloy A359 reinforced with particles of silicon carbide. The mechanical 

characteristics of the material are given in Table. 3 [13]. 

Table 3. Mechanical characteristics composite specimen based on aluminum 

 
Proportionality   

limit  

Plasticity            

limit 

Ultimate        

strength 

Young's modulus,    
210  GPa 

Stress, MPa 80 130 245 0,67 

Strain, % 0,12 0,21 1,25 0,67 

3. Probabilistic approach to modeling of materials 

Structural elements of a material at different scales, namely the nano-, micro- or macro-scales, are interconnected by 

force interaction. A hypothesis was put forward that mechanical behavior of a material is determined by the ratio of 

the time during which this force interaction manifests itself at a level sufficient for providing significant influence on 

the course of the phenomenon under study, namely, the appearance of internal stresses in the material in response to 

external force or temperature influences, and this case is terminologically referred to as the existence of a connection 

or bond between the said structural elements, and the time during which this force interaction manifests itself at a 

level which is, on the contrary, insufficient for the indicated significant impact, that is terminologically designated as 

the absence or destruction of the bond.  

Below we consider the peculiarities of the formation and the temporal stability of this characteristic, namely the force 

interaction between the structural particles of the material, in detail, in order to establish, in particular, whether it 

relates to those parameters whose discreteness of change can be neglected, that is, if the transition from the presence 

of a bond to its absence and vice versa is intermittent or continuous. 

It is known that atomic particles in a solid body are in a state of continuously maintained dynamic equilibrium of 

thermal vibrations of atoms. The calculation of the distribution of internal energy of a solid body between 

oscillations of different frequencies and spatial wavelengths can be carried out using the Bose-Einstein or Maxwell-
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Boltzmann statistics for the so-called large canonical ensemble of indistinguishable quasiparticles – phonons – each 

of which corresponds to oscillations of a certain frequency. 

With this approach to modeling there is a certain paradox. Usually, the presence of sufficient energy for activation of 

phonons of a certain frequency and amplitude is interpreted as the presence in the material of some number of atoms 

with the energy of exactly this magnitude, and the percentage of these atoms corresponds to the probability of 

particles to occupy the corresponding energy level. 

However, in this case there is a theoretical problem, as this approach to modelling cannot explain the presence of 

time dependence of the material's reaction on the load, which has its manifestation in the phenomena of long-term 

durability and material strengthening in case of growth of the strain rate, because the properties of the material are 

treated as being stationary in time. 

The solution of this paradox is suggested in this study on the basis that the described treatment of the probability of 

taking certain energy levels in a material contradicts the principle of ergodicity of the system, which, along with the 

principle of the indistinguishability of the particles (that is, the principle of a priori probability) and the principle of 

maximization of entropy, forms the basis of statistical mechanics. 

Explanation is as follows. In accordance with this principle, in the case of considering quasiparticles, such as 

phonons, having a zero chemical potential for adding a new particle to the system, that is, the number of particles in 

the system is unlimited, in fact not a number of phonons of a certain frequency should be considered, but the number 

of energy levels of one and the same the only single phonon. Hence the spatial statistical distribution of probabilities 

of the system energy levels and its equivalence to the mean time values of the corresponding physical quantities 

cannot take place. That is, on one side, the ergodicity of the system manifests itself in the spatial and temporal 

relation of energies of different phonons in space and time. But on the other side, when it comes to a certain phonon 

of a given frequency, realization of different amplitudes of oscillations does not occur simultaneously in different 

points of the material, but it occurs consistently over time with a certain frequency. 

Let's consider the theoretical dependence of the energy of interaction between two structural particles on the distance 

between them (Fig. 1). Each energy level n  of a phonon of a given frequency   and full energy
 

 )( 2
1nEn , where   – Planck constant, 2

1  – energy of a zeroth energy level, corresponds an 

oscillations of a certain amplitude. According to an idealized curve, at a certain distance minx  between particles, a 

minimum of potential energy )/( 0min xxEn  of their interaction is observed (Fig. 1, a). However, according to a 

quantum-mechanical approach, a wave function 
2|| n , which describes the state of the microsystem, can take only 

discrete values. Fig. 1, b schematically shows the number of local minima of the function 
2|| n  at each energy 

level n ,  which is numerically equal to n  and also numerically equal to the conditional number of quasiparticles – 

phonons, which, as it is terminologically designated, are present at this energy level. 

In fig. 1, b the amplitude of oscillations is determined along the horizontal axis and equals to half the width of the 

plot of the horizontal line corresponding to a certain n , where this plot is limited by the curve of energy dependence 

on the distance. 

On the other hand, when the amplitude of the oscillations exceeds some critical level, so that the particle enters the 

region 0xx  , when
 

0nE , or the region of such 0xx  , so that 0nE , then the level of the potential 

energy of interaction of the particles becomes not high enough to prevent getting into the sphere of influence of other 

neighboring particles. Corresponding additional displacement and associated irreversible deformation take place. 

Since the energy levels of the phonons are discrete, so the excess of the critical amplitude and energy of the 

oscillations, which correspond to the occurrence of bond destruction, is abrupt. Accordingly, the presence and 

absence of the bond between any structural particles of a material are two separate discrete states in the process of 

evolution of material deformation and damage. 

Another important conclusion regarding the peculiarities of the transition between energy levels, which correspond 

to oscillations of bound particles (described with probability rp ), and energy levels, which correspond to the bond 

destruction (described with probability fp , both probabilities rp  and fp  can be calculated according to [14-16] 

and their graphs are shown in Fig. 1, c), is that at any of them the probability that the amplitude and accordingly the 

energy of the oscillation reaches some higher value, which even corresponds to higher energy levels, is nonzero. And 

as it is shown above, such transitions to higher energy levels, in particular those at which the bond turns out to be 

destructed, occur not continuously with different particles of the material, but consistently, once pro a certain number 

of oscillation cycles (since the phonon under consideration can be brought into conformity with some certain 

oscillation frequency), but in the whole volume of the material, as in fact only one single quasiparticle, phonon, is 

present in the entire material volume, and this unitary quasiparticle describes the oscillations of the considered 

frequency. 
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                               a                                                      b                                                c 

Figure 1: Dependence of the energy nE  of interaction between the two structural particles on the relative distance 

xx0  between them: a – theoretical curve; b – illustration of the quantum-mechanical approach; c – graphs of 

functions ),( Tp f   and ),( Tpr   

An additional confirmation of relevancy of the suggested interpretation is the very definition of a phonon 

quasiparticle as of a joint oscillation of the entire n-dimensional chain of interacting physical particles. It exists only 

if all of them together participate in this oscillation. 

It is also worth to note the appropriateness of distinguishing between two main types of bonds between any material 

structural particles, namely the normal and the tangential or the shear bonds, which correspond to the known from 

mechanics of materials and structures main types of stresses with the same names, as it was proposed and discussed 

in detail in [9, 10]. In this case, rupture of the former ones, namely of the normal bonds, corresponds to the 

possibility of fracture of the material specimen into parts, rupture of the latter ones gives the opportunity of forming 

plastic deformations due to the slip of material layers, which has its manifestation in the form of motion of 

dislocations. 

Obtained solution of the problem with the help of the described probabilistic approach allows determination of the 

following stages of further modeling of the material mechanical behavior: calculation of the probability of energy 

levels occupation of the phonons of a selected frequency; determination of critical amplitudes corresponding to 

destruction of bonds between atoms; calculation of probabilities of exceeding these critical amplitudes; calculation of 

the frequency of exceeding the critical amplitudes of oscillations; calculation of the probabilities of destruction of 

normal and tangential bonds; calculation of probabilities and frequencies of critical combinations of destruction of 

normal and tangential bonds that lead to certain types of damage (here, by the way, one can refer to the widely used 

concept of phenomenological differentiation of various types of damage in composites [17-20] – warping, cracking , 

fiber pull-out etc., for which the application of the proposed probabilistic approach allows, therefore, to provide a 

quantitative assessment during modeling and simulation, as well as, as it will be seen from the results below, to 

predict which type of damage prevails and hinders development of the others); calculation of equivalent strain rates 

corresponding to each type of damage; a stepwise calculation of the material reaction to loading with simultaneous 

determination of the fractions of ductile, or plastic, and so-called diffuse deformation (damage) and equivalent 

energies, namely the potential energy of elastic deformation, plastic deformation, heat losses; calculation of the 

corresponding stresses; determination of the critical points of irreversible destruction when the probability fp  of 

bond destruction excesses the probability rp  of its integrity or restoration. 

4. Methodology of numerical modeling 

The number N  of permitted wavelengths i  in a material specimen, and hence the number N  of permitted 

phonon frequencies
 i , is equal to the number of atoms xN  in the chain of material particles along a given 

specimen dimension, for example, along the x  axis, i.e. 

 

 xNN  , (1) 
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where numbering starts from 
2

xN
  then through 0 to 

2

xN
 . 

The internal energy of material specimen U  is distributed between phonons of different frequencies with equal 

probability. At a given moment of time, a phonon of some specific frequency may obtain all the internal energy U  

of the material specimen, or some certain part of the energy or no part of it, that is, a phonon does not manifest itself, 

in other words oscillation of the corresponding frequency does not manifest itself. Moreover, if the part of U , which 

is related to a considered phonon at a given moment of time, is less than necessary for existence of at least one 

phonon from the point of view of energy quantization properties, then it does not manifest itself, that is, its amplitude 

is zero. Depending on the magnitude of the part of the energy U , which is related to the phonon of the considered 

frequency at the given moment of time, this phonon may appear, as already mentioned, with zero amplitude, single, 

double amplitude, etc., that is terminologically denoted as the presence of correspondingly zero, one, two or more of 

the phonons of this frequency.  

Consequently, if the number of allowed phonon frequencies is N , then at a certain moment of time the internal 

energy U  of the material specimen can be distributed to only one of them in a unique way. But since their number is 

N , so the total amount of ways for distributing the energy U  to only one phonon of N  phonons is equal to 

 

 






N

N

N
CN 




!1)!1(

!1
. (2) 

 

For an arbitrary number m  of phonons to which the energy U  is distributed, where Nm 1 , the formula for 

the number of ways gives the number of methods of how to choose m  from N  according to the rule of 

combinatorics for the number of combinations: 

 

 
!)!(

!

mmN

N
Cm

N








,      Nm 1 ,  Zm . (3) 

 

Thus, the total number of ways or methods for distributing the energy U  among one, several or all phonon 

frequencies: 
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or 
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where 
 

 1    ,    ,
11 
 





 

N

N

N

NN CNCNC . (6) 
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So there is a need to calculate a large number of factorials of numbers much larger than 
210 , which causes 

numerical difficulties (memory overflow when storing floating-point numbers). Therefore, in order to calculate 

factorials, the following mathematical approach is used. The function Γ is introduced so that Γ(n+1) = n!, and an 

approximate Stirling formula is utilized [21]: 

 

 log Γ(x) ≈ (x – 1/2) log(x) – x + (1/2) log(2 π) + 1/(12 x) – 1/(360 x3) + 1/(1260 x5) – … (7) 

 

Additionally, in order to simplify the calculation of the sum of combinations 
m

NC


, where Nm 1 , Zm , 

from a mathematical point of view, it was noticed that for large numbers N  the values of 
m

NC


 are distributed 

close to the normal law: graph of the function )()( mCmf m

NC 
  practically coincides with the scaled graph of the 

Gaussian function 
2

2

2

)(

2

1
)( 














m

G emf , where RR   , , that is, they are similar to each other.  

Since the Gaussian function describes the normal probability distribution for a one-dimensional case, we can use the 

terms for the parameter μ – mathematical expectation (mean), median and mode of the distribution, and for the 

parameter σ – mean square deviation, for σ² – dispersion of the distribution. 

Then the normal distribution of probabilities for the one-dimensional case acquires the following physical meaning: 

for a large number of possible and equally probable ways of how to distribute the internal energy of a material 

specimen between phonons of different frequencies and amplitudes, the density )(mfG  of probability to involve a 

certain number m  of phonons of different frequencies is equal to the number of combinations 
m

NC


, with the help 

of which exactly this number m  of phonons of different frequencies can be chosen among all allowed phonons
 N . 

Therefore the most expected situation is the one when the number 
2


N

  of phonons is involved, because the 

number combinations in this case reaches the maximum. It was shown that dispersion of such the distribution is

 

4

2 
N

 , mean square deviation is 2

1

2

1
 N , or, using adjusted calculations for the case 100N , mean 

square deviation is 
495,0

515,0  N .  

For a multidimensional case of the normal probability distribution, it is considered expedient to explain its physical 

meaning in the similar way to the one-dimensional case, but considering phonon oscillations or vibrations of not one-

dimensional, but two-, three- or multidimensional chain of particles of the material. 

It is worth noting that it is possible to perform interpolation of the graph of the function )(mfC  for a non-discrete 

m  in view of the fact that due to the property of quantization of the phonon energies only an integer number of 

phonons can physically appear, i.e. be registered – even if some amount of energy is allocated at the current moment 

of time for the phonon of a given frequency, such that this amount is greater or possibly smaller than the amount 

corresponding to their nearest integer number. This means that non-integer combinations of variants are still 

theoretically possible and must play their important role in the calculations, although the mathematical apparatus for 

non-integer combinations is not trivial. 

Moreover, if we analyze this phenomenon in more detail, it turns out that the point is not even in a mandatory 

implementation of the phonon amplitude, which corresponds to the internal energy allocated to it at the current time 

moment, but only in the probability of realizing a phonon of one or another quantized amplitude at the given level of 

the average energy. 

Thus, interpolation and extrapolation of the graph of the function )(mfC  for non-discrete quantities of phonons 

Rm  means either (1) – the presence of energy fluctuations, which are not sufficient for the transition of a phonon 

to the next energy level, that is, to the next quantized amplitude value, but which are present during fractions of a 

second for the allowed phonon frequencies, whether they are allowed is determined by the interatomic distance of the 

particles and their number in the chain, and thus it means that there are deviations from the ideal distribution in the 

real physical body, or (2) – the realization of these frequencies of phonons, which are not allowed in the case of the 

ideal model of a solid body, and these phonon frequencies correspond again to either integer quantized amplitudes or 

these amplitudes and additional energy fluctuations. 
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Conclusions are as follows. In the case of interpolation and extrapolation of the function graph )(mfC  for non-

discrete quantities of phonons Rm  we obtain an area under the function graph
 

)()( mCmf m

NC 
 , which is 

numerically equal to the sum of such quantities, each of which is equal to the number of variants of how to distribute 

the internal energy of a material specimen between a certain number of phonons of different frequencies. Arbitrary, 

not obligatory integer or finite numbers of phonons and frequencies are considered. And additionally it turns out that, 

in fact, the portion of those variants, which are related to the physically nonrealistic phonon frequencies according to 

the classical theory of solid body, is very small compared to the energy levels permitted by this theory. Moreover, as 

it will be seen below, the specific portion of energy expended on these unrealized frequencies varies depending on 

the number and the frequency range that are allowed in this particular material specimen, given its geometric 

dimensions and the type and distance between oscillating particles. 

Thus, the described area under the curve )(mfC , which is equal to the sum of the variants of the distribution of the 

internal energy of the material specimen among all possible phonons of different frequencies and amplitudes, can be 

approximated to be an area under the graph of the Gaussian function
 

)(mfG , since these two graphs are similar: 
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or 
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dmmf
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











. (9) 

 

As it can be seen from the equations above, the similarity coefficients between the normalized to the unit area 

1)( 




dmmfG  under the graph of the normal probability distribution function )(mfG  and the area under the 

graph of the function of the sum of the variants of energy distribution between the phonons of the specimen )(mfC  

is equal to the ratio of the values of these functions at abscissa, which is equal to the mathematical expectation
 

2 N , which can easily be calculated directly for )(mfG  and if to apply the above-mentioned Stirling 

formula also for )(mfC .  

We further consider that each individual variant of the distribution of the body internal energy between phonons is a 

separate microstate within the macrosystem of the material specimen. We introduce for the total number of 

microstates of the system the traditional designation   [22]. Then for exclusively integer discrete states of the 

macrosystem: 

 

 



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, (10) 

 

and in the case of taking into account possible energy fluctuations and the influence of additional oscillation 

frequencies: 
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The latter case includes also fluctuations and frequencies due to the occurrence of local phonon modes, which are 

caused in particular by the non-homogeneity of the structure of the three-dimensional chain of particles within the 

material specimen, such as lattice defects, vacancies, dislocations, faces of grains, etc., or by impurities and 

inclusions. 

It should be noted that in the case of applying the expression for the dispersion of the distribution, which as it is 

shown above is equal to 
4

2 
N

 , the formula for the normal distribution of probabilities can be presented as: 

 

 

2)(1
)(

k
k

m

G e
k

mf








,   where   2k . (12) 

 

In particular 
 

 





 N

N
fG
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
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)
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( . (13) 

 

With the calculated number   of microstates of the system, the conclusion is derived that indeed the probability of 

occurrence of each individual phonon according to the very definition of the mathematical notion of probability 

cannot exceed unity, but the number of ways in which these phonons may emerge, that is, the ways in which the 

available internal energy of the material specimen can be allocated to them, is allowed to exceed and usually exceeds 

unity.  

The following considerations demand now a deeper analysis of the physical meaning of the number of microstates 

  of the system. We assume, as before, that every microstate is equally probable, and hence, the probability of 

occurrence of each of these microstates: 

 

 




1
p . (14) 

 

Every microstate is a case in which all internal energy of the body is spent on the occurrence of elastic oscillations at 

frequencies of a certain range and discreteness, that is, of a certain sample of frequencies, with all frequencies 

equally probable, but the samples are also equally probable, and therefore, the presence of any frequency in the 

sample is also equally probable.  

At any given moment of time the energy can be spent on the occurrence of only one oscillation of some frequency, 

that is of only one single phonon and the sample contains only one frequency, or on combined oscillation of some 

two frequencies, i.e. the sample contains two arbitrary frequencies from the allowed range, that corresponds to two 

phonons, etc. up to the realization of all the permitted frequencies at once, i.e. N  phonons at once. To avoid 

terminological uncertainty, we avoid the notation of a phonon of n -th amplitude as of a multitude of n  phonons, 

which is often used in the literature [22, 23]. That is, we use the notation according to which we speak of the 

presence of only one phonon of a certain frequency, which is realized with the amplitude of n -th order, since the 

amplitude is quantized, as opposed to saying that there are n  phonons implemented at this frequency. Thus if only 

one phonon is realized at a given time moment, that is, all the energy is spent to its manifestation, then the amplitude 

of this phonon is higher in comparison with the case when the same total internal energy is distributed among a 

greater number of phonons. Then the probability of occurrence of a separate phonon, if it is the only phonon 

manifested at the given time moment, is equal to 


 

1
1 pp .  

If the energy is spent to manifestation of only two phonons at the given time moment, then the probability of any 

certain two of them 


 

1
2 pp . If it is spent for another certain two phonons, i.e. phonons of arbitrary two 

other frequencies from the list of allowed ones, then the probability of their manifestation is still 


 

1
2 pp . 
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The number of variants for choosing two frequencies among N  frequencies, as shown above, is equal to
 

2

NC . 

Thus the sum of the probabilities to choose two random phonons among N  phonons is equal to
 2

2 pCN 


. A 

general case gives the sum of the probabilities to choose m  random phonons among N  phonons, where 

Nm 1 , 

 

is equal to
  pCpC m

Nm

m

N 
.  

The sum of the probabilities to choose either one or two, or more phonons up to the total number of N  phonons, is 

equal to: 

 

 1
1

)(
11




 







  pCpCpP
N

m

m

N

N

m

m

N








, (15) 

 

However, when switching from integer variants of combinations to the environs of the integer values of the number 

of phonons in the sample, we obtain: 

 

 










 

2

2

2

2

d

d

dmm

dmm

m

N dpdCpdP






,     where   Nm 1 ,    1 . (16) 

 

Then the sum of probabilities to realize all the possible microstates, which are integer and non-integer microstates in 

case of fluctuations:  

 

 


 


 ln
1

11

ddpP . (17) 

 

Then the value of the average energy of a phonon avu , J, is taken. It is equal to the sum of the average potential and 

equal to its average kinetic energy of the phonon. And the latter one, in turn, in accordance with the equivalence 

theorem for thermal equilibrium, is proportional to the body temperature with the Boltzmann coefficient Bk , i.e. 

Tk
Tk

u B
B

av 



2

2 . The average energy of a phonon avu  is multiplied by the sum
 P  of the probabilities of 

occurrence of all the allowed microstates   of the system with possible fluctuations (and hence with non-integer 

intervals), that is, by the sum of the probabilities of variants of how many phonons and which phonons are 

manifested in the specimen. Then the total internal energy of the material specimen is obtained, as exactly this total 

internal energy U  of the material specimen ensures the manifestation of all the considered microstates: 

 

 TSTkTkPuU BBav   )ln(ln , (18) 

 

where 

 

 lnBkS  – the entropy of the specimen in accordance with the definition of entropy in statistical 

mechanics [24].  

In this case, the subject of consideration is not the change in internal energy dU , which could be related to the 

change in entropy dS  when the system is under reconfiguration (melting, boiling), as such a reconfiguration 

involves the change in the type of permitted fluctuations of the material particles, their frequencies or types of 

phonons, and hence the change in the number of their possible combinations, thus, the number of microstates of the 

system, or when the system’s volume or the number of material particles in it are changed during chemical 

transformations.  

Contrary to the change in internal energy dU , the whole part U  of the internal energy of the material is considered 

directly (in the context of the questions considered it is the total internal energy U  of the specimen), which is related 
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to the mechanical vibrations of its constituent particles, which can be atoms, molecules, grains, etc., that is, to the 

phonon oscillations. 

Based on the considered methodology of entropy and internal energy calculation, the thermodynamic parameters of 

any given specimen can be determined and then used for calculation of probabilities of destruction fp  or 

preserving rp  the bonds between material structural elements, while these bonds provide the material strength and 

resistance to external loading. The following considerations need introducing two equivalent strain rates of so-called 

diffuse 
d

eq  and plastic 
p

eq  deformations 

 

as it is described in [14-16]. 

The former equivalent strain rate 
d

eq  of diffuse deformation relates to the occurrence of mutually uncoordinated 

ruptures of normal and tangential bonds between material particles. Displacements of atoms between stationary 

positions in the lattice occur in this case, but, similarly to what happens in case of other diffuse processes, they occur 

locally, without being accompanied by organized displacements of the entire atomic planes. Externally, when 

observed, the described processes are manifested in the form of the motion of dislocations, although their physical 

basis lies in the destructions and potential renewals of interatomic or intermolecular bonds due to energy 

fluctuations, which take place in the material and are random but subject to statistical distribution. 

The latter equivalent strain rate 
p

eq  of plastic deformation relates to the occurrence of phonon fluctuations leading to 

an organized destruction of bonds during oscillations of particles, when all the lattice atoms are entangled into 

organized joint vibrational process. 

The considered above peculiarities of modeling within the framework of the general calculation algorithm described 

in the previous section allowed carrying out simulation of behavior of material specimens under loading. 

5. Results and discussion 

The results of simulation of the stress-strain curves under tension for a ferrite specimen are given in Fig. 2, a. 

Comparison of simulation curve 3 to the experimental curve 2 [11] shows, that deviation of simulation results from 

experimental data does not exceed 6%. Thin solid horizontal and vertical lines denote in the graphs of Fig. 2 the 

stresses of the proportionality limit and yielding and corresponding strains. The slanting dotted lines mark 

dependences of proportionality in accordance with Hooke's law for the considered materials. 

The simulation results are thus obtained using the proposed probabilistic approach, i.e. on the basis of calculation of 

probabilities of destruction and restoration of bonds using the ratio of equivalent strain rates, as presented in Fig. 3, 

a. Considering the dependences of the plastic and diffuse equivalent strain rates, i.e., strain rates corresponding to 

phenomenological deformations, which are typical for respectively yielding and creep (the latter takes place indeed 

even at quasi static loading), on strain   (Fig. 3) reveals the following.  

In the first stage, the equivalent strain rate of diffuse deformation of the ductile ferrite specimen exceeds the 

equivalent strain rate of plastic deformation. It corresponds to the fact that under such low loading conditions the 

atoms can mutually exchange positions, but the structure of their mutual arrangement remains, plastic deformation, 

or yielding, practically does not take place. As the abscissa value increases, the difference between the equivalent 

velocities gradually diminishes leading to that plastic deformations begin to appear gradually. 

As then the equivalent strain rate of plastic deformation begins to exceed the equivalent strain rate of diffuse 

deformation, the manifestation of yielding becomes predominant. And we really observe that as only that happens as 

indicated in the curves in Fig. 3, the specimen reaches the strains, which correspond to start of yielding, that can be 

seen in curves in Fig. 2. 

Proceeding from the proposed probabilistic approach and the formulated hypothesis, the mechanical behavior of the 

material is determined by the probabilistic phenomena of interaction of energy fluctuations arising complementary to 

the background oscillatory processes in the structure of the material. Therefore the proximity of the mechanical 

properties of ferrite and pure iron can be explained by the fact that, since the density of inclusions of carbon atoms is 

low, so they result in the occurrence of only local phonon modes without a significant effect on the global energy 

redistribution between the particles in the specimen under study. 

A similar result is obtained for a comparatively more brittle aluminum specimen (Fig. 2, b, Fig. 3, b). In this case, a 

sharper transition from the directly proportional dependence to plastic deformation is due to the more significant 

excess of the equivalent strain rate 
d

eq  above 
p

eq  before and on the contrary after the critical point of intersection 

of these curves. 

The performed calculations made it possible to proceed to the simulation of composites with a metal matrix (Fig. 2, 

c, Fig. 3, c). For the composite, the fracture point is slightly exceeded in comparison with the experimental results 

according to [13], but, as indicated in the experimental work, there is a significant dispersion of experimental data for 
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strains exactly beyond the yield boundary. According to the probabilistic theoretical model, the reason for such a 

pronounced scattering is the asymptotic behavior of the parameter, which is equal to the difference of equivalent 

strain rates, approaching zero value (Fig. 3, c, the range of strains   > 0,2 %). This is just the case when 

concentrators and material inhomogeneity can play a key role. In the investigated range of parameters the deviation 

of the stress, which is determined under large strains by random factors of the actual structure of experimental 

specimens, from the theoretical predicted value constitutes up to 13% (Fig. 2, c). 
 

a  

b  

c  

Figure 2: Dependence of stresses on strains under quasi-static tension: a – ferrite plastic material; b – brittle 

aluminum material; c – powder-reinforced composite based on aluminium; 1 – Hooke's law; 2 – experiment; 3 – 

simulation using the probabilistic approach 

 

As it can be seen from Fig. 3, c, in this case for the composite there is no second part of graphs, which is typical for 

the both previous cases, where 
p

eq  exceeds 
d

eq . Consequently, in the whole considered range of strains, the 
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deformation is of principally another nature, being brittle in this case. This theoretical conclusion, obtained solely on 

the basis of the probabilistic modeling, is confirmed by experimental data. It turns out that according to figure 8 in 

[13], microphotographs clearly indicate strands of plastic deformation on the boundaries of the destroyed surface in 

the case of aluminum and at the same time expressively brittle character without such strands in the case of 

reinforced with particles of aluminum composite. 

 

a  

b  

c  

Figure 3: Dependences of equivalent strain rates of plastic 
p

eq  (1) and diffuse 
d

eq  (2) deformations on strain  : a 

– ferrite plastic material; b – brittle aluminum material; c – powder-reinforced composite based on aluminium 

6. Conclusions 

A probabilistic approach to deformation and damage modeling of composite materials is proposed. It is based on the 

principle of calculating probabilities of destruction and restoration of force bonds between material structural 

elements, taking into account the frequency characteristics of these processes, as well as the corresponding 
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equivalent strain rates of plastic and diffuse deformations as parameters, on the basis of which the refined 

thermodynamic calculation of the deformation process is done. The carried out study of stress-strain dependencies of 

three structural materials, namely two metal alloys with a minimum amount of structural inclusions, and also a 

reinforced with silicon carbide particles composite on the basis of a metal matrix, showed the principal applicability 

of the proposed probabilistic model. 

The advantages of the developed probabilistic model are the possibility of practically accurate prediction of strain 

values, at which a transition from predominantly elastic to predominantly plastic, or ductile, deformation takes place, 

as well as obtaining a fundamental answer to the question whether plastic deformation is going to occur at all.  

Thus, the probabilistic model makes it possible at the early stage of simulation to predict not only the stress-strain 

dependence, but also the accompanying phenomenological phenomena, namely, if a deviation of this dependence 

from the Hooke's law is due to irreversible plastic deformations or, conversely, brittle damage, that is, the formation 

of microcracks, while other sites retain their initial intact internal structure. The first case is realized provided that the 

equivalent strain rate of plastic deformation exceeds the equivalent strain rate of diffuse deformation. The case of 

brittle damage is realized under opposite condition. 

In addition, characteristic conditions have been revealed, which indicate weather random factors of the presence of 

local structural inhomogeneities in the material start playing the key role during the deformation and damage 

process. Such the case is then characterized with significant scattering of experimental values obtained in tests. Such 

the phenomenon is observed under conditions when the equivalent strain rate of diffuse and plastic deformations 

takes similar values. Therefore the physical processes of destruction and restoration of bonds allow with practically 

close probability the formation of both irreversible transverse gaps as cracks and also tangential sliding of the 

material layers as the mechanism of plastic deformation. Only under such condition the real material behavior is 

predominated by solely random factors of structural imperfections. 
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