
7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS)

DOI:

Response of a Transcritical Coaxial Flame to Fuel Injection
Rate Modulations: Analysis and Low-Order Modeling of the

Generation of Unsteady Heat Release Rate

Robin Nez1,2,†, Thomas Schmitt1, Manuel Gonzalez-Flesca1,2, Sébastien Candel 1 and Sébastien Ducruix 1

1Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay
Grande Voie des Vignes 92295 Châtenay-Malabry, France

2CNES DLA
52 rue Jacques Hillairet 75612 Paris Cedex France
†Corresponding author: robin.nez@centralesupelec.fr

Abstract
Acoustic pressure fluctuations within the combustion chamber or the plenums of a liquid-rocket engine
can induce temporal modulations of the propellants injection velocities. The dynamic response of a tran-
scritical coaxial flame to such velocity modulations is here investigated as it is thought to be one of the
mechanisms that can promote high-frequency combustion instabilities. A low-order model for this process
is proposed, assuming that the modulation induces fluctuating flame stretch rates traveling along the flame
front. This question is then addressed through Large-Eddy Simulation (LES). The annular fuel stream of a
single element LOx/GCH4 injector is acoustically modulated at several frequencies. The proposed model
is in reasonable agreement with the flame response extracted from the LES in terms of both gain and phase.

1. Introduction

High-Frequency (HF) combustion instabilities have always constituted an important source of failure for liquid propel-
lant propulsion systems. Today it is still one of the main challenges for the development of a Liquid Rocket Engine
(LRE), see among others the review by Oefelein and Yang.16 These instabilities are due to a resonant coupling that
can occur between acoustics, hydrodynamics and combustion, see Culick,7 Yang and Anderson.1 Under certain con-
ditions, this coupling can constitute a closed-loop dynamical system which can then lead to self-sustained pressure
oscillations. It is of prime importance to predict these unstable operating conditions and for that purpose to develop
engineering modeling tools to decrease the need for hot-fire tests and reduce engine development costs. Large-Eddy
Simulation (LES) constitutes a promising approach (see Hakim et al.9 and Urbano et al.31), but currently available
computational resources make it too expensive to be used as a design tool in the space propulsion industry. Much
effort is consequently put into the development of low-order modeling tools (Candel et al.,3 Pieringer et al.,18 Schulze
and Sattelmayer26). These tools are designed to perform stability analyses or to predict limit cycle oscillations at the
expense of a reduced computational demand. However, they require submodels to account for the dynamic response of
the flames to the acoustic or hydrodynamic perturbations and then require a significant modeling effort. As many flame
response models are required as there are thermoacoustic coupling mechanisms at play in the engine. One possible
coupling mechanism can be the consequence of the fluctuating injection velocity of one of the propellants. Pressure os-
cillations within the combustion chamber and/or the injection manifolds can indeed modulate the pressure drop across
an injector element and consequently excite the flame. This has already been observed within lab-scale experiments,
see for instance the observations reported by Noiray et al.15 As experimental diagnostics are usually limited by the
extreme conditions prevailing in configurations typical of LREs, LES is increasingly used to study flame dynamics
and to provide validation data to low-order models. The dynamics of a transcritical coaxial flame under transverse
acoustic forcing were for example simulated by Hakim et al.10 The objective is here to propose a model for the heat
release rate of a fuel-modulated transcritical coaxial flame and to carry out simulations for validation. the purpose of
such a submodel would be to be implemented in a stability analysis tool. In section 2, a possible coupling mechanism
between hydrodynamics and heat release rate is suggested and a model for the flame response is derived. In section 3,
an extensive database of numerical results for modulated transcritical flames is constituted and the flame response is
characterized. In section 4 the model predictions are confronted to the LES database for validation.

Copyright© 2017 by Robin Nez et al. . Published by the EUCASS association with permission.

DOI: 10.13009/EUCASS2017-369
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2. Low order modeling

The problem considered in this article is represented schematically in Figure 1. A coaxial injector feeds transcritical
oxygen and gaseous methane and establishes a flame that is stabilized in the close vicinity of the lips of the LOx injec-
tion tube. The fuel stream is modulated around its mean value. The modulation of the fuel stream produces velocity
disturbances within the annular jet which then propagate along the reactive region. These velocity perturbations trans-
late into flame stretch rate disturbances, which in turn can induce fluctuating heat release rates. The flame stretch rate
is defined as the velocity field divergence in directions tangential to the flame sheet (see Poinsot and Veynante19):

ε = ∇t · ut, (1)

where the subscript t refers to the tangential component of ∇ operator and ut is the tangential component of the velocity
field with respect to the flame front. This local tangential plane can be defined as the plane which, at each spatial
location, is orthogonal to the gradient of any transported scalar, for instance mixture fraction, a species mass fraction,
or temperature.

2.1 Vortical perturbation propagation

The shed velocity disturbances are associated with a vorticity mode. They are then characterized by a phase velocity
of convective nature. As a first approximation, we assume that this phase velocity is equal to the annular injector bulk
velocity ue. This propagation at ue is qualitatively depicted in Figure 1.
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Figure 1: Schematic depicting the effect of the modulation on the flow.

It is reasonable to assume at this stage that the problem is essentially one-dimensional. This is admittedly not quite right
but constitutes a good approximation because the flame expansion is relatively slow. This is justified by recalling that
cryogenic flames typically encountered in liquid rocket engines are characterized by large outer to inner momentum
flux ratios, typically of the order of 10 or higher. This feature, and the significant stratification between the dense inner
cryogenic jet and the light annular stream, lead to the production of flames with fairly small opening angles. Now, the
traveling velocity perturbation may be assumed to be monochromatic and may be written in the standard form:

u(x, t) = ue(1 + a sin(ωt − κx)), (2)

where ue is the local mean velocity, a designates the relative amplitude of the perturbations, ω = 2π f represents the
angular frequency related to the modulation and κ = ω/ue is the wavenumber. The wavenumber is here real and
constant as the simplified disturbed velocity signal that we have chosen is characterized by a constant amplitude a and
a constant phase velocity ue.

2.2 Local response of the flame

Small perturbations are assumed. We then start by expanding variables to first order:
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u(x, t) = ue + u′(x, t),
ε(x, t) = ε0(x) + ε′(x, t), (3)
q̇(x, t) = q̇0(x) + q̇′(x, t),

where the subscript 0 denotes a temporal average and ′ a perturbation around the average. Here q̇ is the surface heat
release rate and ε the flame stretch rate. Considering our one-dimensional flame, with x the axial coordinate, the
modulated strain rate ε̃′(x, t) imposed by the velocity modulation is given by:

ε̃′(x, t) = ∇t · u′t(x, t) =
∂u′(x, t)
∂x

. (4)

The assumed monochromatic velocity distribution along the flame then yields:

ε̃′(x, t) = −ueaκ cos(ωt − κx). (5)

The change in surface heat release rate related to a flame stretch rate disturbance can be thought of as the consequence
of a contraction or expansion of species concentrations and temperature fields and hence of the resulting modification of
diffusive fluxes. There is however a time delay characterizing this conversion of hydrodynamic stretching into enhanced
scalar diffusion across the shear layer, which results from the coupled multi-species Navier-Stokes equations. The
instantaneous heat release rate response of an unsteady flame then depends on the entire time history of the stretch rate
field. Haworth et al.11 considered the problem of a counter-flow diffusion flame and solved the problem analytically.
They demonstrated that, in the infinitely fast chemistry limit, a modulated one-dimensional diffusion flame burns with
an effective flame stretch rate ε(x, t) - i.e. the stretch rate that would give the stationary flame the same heat release rate
- which depends on the actual flame stretch rate ε̃(x, t) by verifying the following differential equation:

dε(x, t)
dt

= −2ε(x, t)2 + 2ε(x, t)ε̃(x, t). (6)

This temporal response of the effective flame stretch rate actually constitutes a second-order low-pass filter. By sub-
stituting for the actual flame stretch rate signal ε̃(x, t) from Eq. 5 and integrating one can express the effective flame
stretch rate disturbance field as shown by Candel:2

ε′(x, t) = − ueaκ

1 + (ω/ (2ε0))2

(
cos(ωt − κx) +

ω

2ε0
sin(ωt − κx)

)
, (7)

We now need to express the temporal response of heat release rate to a time varying flame stretch rate. Under a fast
chemistry assumption and for a steady flame, heat release rate is a linear function of the square root of flame stretch
rate (see for instance Pons et al.21):

q̇(x) ∝ ε(x)1/2. (8)

Assuming small fluctuations ε′(x, t) around ε0(x), one obtains:

q̇′(x, t)
q̇0(x)

=
ε′(x, t)
2ε0(x)

. (9)

By injecting Eq. 9 into Eq. 7, the space-time response of the flame in terms of surface heat release rate as a function of
the modulated velocity signal takes the form:

q̇′(x, t)
q̇0(x)

= −ueaκ
2ε0

1
1 + (ω/ (2ε0))2

(
cos(ωt − κx) +

ω

2ε0
sin(ωt − κx)

)
. (10)
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If the axial distribution of mean heat release rate q̇0(x) is known, for example from a numerical simulation, Eq. 10 can
be integrated over the whole flame - i.e. to a distance where q̇0(x) drops to zero - to determine the global heat release
rate perturbation and deduce the corresponding relative level of fluctuation:

Q̇′(t)
Q̇0

= − ueaκ
2ε0Q̇0

∫
q̇0(x)

1 + (ω/ (2ε0))2

(
cos(ωt − κx) +

ω

2ε0
sin(ωt − κx)

)
dx, (11)

where q̇0(x) is the average heat release rate deduced from a simulation, Q̇′(t) is the total heat release rate fluctuation
and Q̇0 the total average heat release rate. The only remaining unknown is the average stretch rate ε0. Strictly speaking,
Q̇0 and Q̇′(t) are heat release rates per unit circumferential length. However, considering our simplified 1D model
we can arbitrarily substitute surface quantities q̇ with heat release rates per unit length in the x-direction, so that after
integrating Q̇0 and Q̇′(t) actually represent total heat release rates.

2.3 Canonical application: case of a uniform mean flame

It is interesting to introduce a further simplification of the previously defined flame model, which in its present form
necessitates a priori knowledge of the mean axial distribution of heat release rate q̇0(x) within the flame. The mean
heat release rate is approximated by a rectangular function depicted in Figure 2.
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Figure 2: Mean heat release rate may be approximated in the form of a rectangular function. Black: LES profile. Red:
’equivalent flame’.

The heat release rate is now assumed to be constant over an effective length L which would be shifted by a distance l
from the injection plane in order to account for the low heat release rates encountered over the first few millimeters:

q̇0(x) =



Q̇0

L
for x ∈ [l ; l + L],

0 otherwise.
(12)

The flame-integrated heat release rate fluctuation is then given by:

Q̇′(t)
Q̇0

= −uea
ε0L

sin
(
κL
2

)

1 + (ω/ (2ε0))2

(
cos(ωt − κL

2
− κl) +

ω

2ε0
sin(ωt − κL

2
− κl)

)
. (13)

In frequency domain this corresponds to the following transfer function between total heat release rate disturbance and
velocity disturbance at the injector exit:

F(ω) =
̂̇Q
′
(ω)/Q̇0

û′e(ω)/ue
=

ue sin
(
κL
2

)

ε0L
exp (− j (κL/2 + κl + π/2 + θ))

(
1 +

(
ω

2ε0

)2
)1/2 , (14)

with θ = tan−1(ω/(2ε0)).

4

DOI: 10.13009/EUCASS2017-369



RESPONSE OF A TRANSCRITICAL COAXIAL FLAME TO FUEL INJECTION RATE MODULATIONS

2.4 Analysis of the physical implications of the model

In addition to circumventing the need for a priori knowledge of the flame structure, this simplified version of the
model has the advantage to help the physical understanding of the underlying mechanism. Three main parameters
characterize the model response, and their physical meaning and practical effects can be explained by representing the
model transfer function Eq. 14 through Bode diagrams (Figure 3).

• The gain diagram displays a decaying envelope. This behavior is related to the low-pass filter nature of the link
between actual flame stretch rate and heat release rate exposed previously. This second-order low-pass filter can

be clearly identified in Eq. 14 as the quotient ue/

(
ε0L

(
1 +

(
ω

2ε0

)2
)1/2

)
. It is characterized by its cutoff frequency

fc = ε0/π. Practically, ε0 then essentially drives the response amplitude at frequencies close to fc.

• The lobes-shaped gain diagram from Figure 3 indicates that the low-pass behavior of the modeled mechanism is
superimposed with a tendency to oscillate in frequency domain. This corresponds to the presence in the transfer
function of the factor: sin

(
κL
2

)
. This reflects the non-compactness of the flame with respect to the propagating

velocity disturbances. These hydrodynamic disturbances are non-compact as their wavelengths are shorter than
the flame length: λ < L. One can then define the - real valued - number of flow disturbances present within the
reactive region at each time:

Nd =
L
λ
. (15)

In the case where Nd ends up being an integer, the summation of every wavelength contribution will be null. If
it is real valued, the incomplete wavelength present within the reactive region will constitute the disturbance in
heat release rate. L drives the lobes width in frequency domain, this width being the inverse of the residence time
within the reactive region. This residence time, and thus L, also drives the slope of the phase diagram.

• The length l does no appear in terms affecting the gain, but shares a role similar to L in terms of phase: it consti-
tutes an additional time-lag: td = (L/2 + l) /ue is the effective time-lag of the total heat release rate response to
the modulation.
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Figure 3: Bode diagrams resulting from the low order model.

It is now logical to see if this model matches what can be deduced from numerical simulations.

3. Large eddy simulations

3.1 Numerical setup

The setup corresponds to the configuration studied by Hakim et al.10 The domain consists in an almost cubic chamber,
equipped with a single shear coaxial element on one end and a small exhaust pipe on the other. The main dimensions of
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the chamber are given in Figure 4a. The dimensions of the shear coaxial injector are quoted in Figure 4b. The injector
dimensions can be compared to those found in the G2 experimental setup studied by Singla et al.28 on the Mascotte test
rig from Onera, which was itself designed to reproduce conditions typical of actual engines. It can nonetheless be noted
that in the present configuration the dimensions of the chamber are large compared to those of the injector element.
This is to avoid any confinement effect on the flow dynamics in order to facilitate the analysis of the phenomena of
interest. Another substantial specificity of the present geometric setup compared to the aforementioned experiment or
real engine injectors is that the LOx post is not tapered. This is to allow for coarser mesh resolutions in the vicinity of
the injector, thus facilitating extensive parametric investigations.
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Figure 4: Depiction of the computational domain and dimensions of the injector.

The mean chamber pressure is stabilized to 1.17 × 107 Pa. This is well above the critical pressures of methane as well
as oxygen and Hakim et al.10 demonstrated that, depending on the mixture fraction, the burnt mixture can either be
supercritical or in a gaseous state (subcritical pressure but supercritical temperature). No two-phase flow regime can
then be encountered in this configuration. The details of the injection parameters are given in Table 1. The mixture
ratio E and the momentum flux ratio J are defined as follows:

E =
ṁO2

ṁCH4

, (16)

J =
ρ0

CH4
(u0

CH4
)2

ρ0
O2

(u0
O2

)2
. (17)

The values of these parameters are quite similar to those of the C-60 configuration studied in the Mascotte test rig and
further details can be found in Juniper et al.12

Table 1: Load points describing parameters.
? : low annular velocity load point.
† : high annular velocity load point.

LOx post GCH4 post Global parameters

ṁO2 [g.s−1] 141 ṁCH4 [g.s−1] 430? or 860† pc [MPa] 11.7
T 0

O2
[K] 100 T 0

CH4
[K] 300 E [-] 0.328? or 0.164†

ρ0
O2

[kg.m−3] 1122 ρ0
CH4

[kg.m−3] 88 J [-] 7.41? or 29.6†

u0
O2

[m.s−1] 10.0 u0
CH4

[m.s−1] 97.2? or 194.4†

ReO2 [-] 2.60 × 105 ReCH4 [-] 2.74 × 106? or 5.48 × 106†

The annular GCH4 stream is modulated by prescribing a sinusoidal incoming acoustic perturbation at the stream’s inlet
boundary. The amplitude of the prescribed acoustic velocity signal is about 10% of the annular bulk velocity i.e. 10
m.s−1 or 20 m.s−1 depending on the load point. The simulated modulated operating conditions are gathered in Table 2.
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A red cross denotes an operating point that was not treated to manage available computational resources. Reference
simulations with no modulation have been performed so that the effects of the modulation can be easily assessed.

Table 2: List of modulated operating points.

Injection conditions Modulation frequencies [Hz]

u0
CH4

[m.s−1] E [-] J [-] 500 1000 2000 3500 5000 8000

97.2 0.328 7.41 " " " " " "

194.4 0.164 29.6 % " " " " "

3.2 Flow solver

The present Large Eddy Simulations are carried out using the flow solver AVBP developed at Cerfacs and IFPEN.
It is used to integrate the filtered three-dimensional compressible Navier-Stokes equations for reacting multispecies
mixtures on unstructured meshes (Schönfeld and Rudgyard,25 Gourdain et al.8). The discretization employs a Two-Step
Taylor-Galerkin scheme (TTGC) which is third order in space and time (Colin and Rudgyard5). Characteristic boundary
conditions (Thompson,30 Poinsot and Lele20) are employed to allow the acoustic forcing of the computational domain,
as well as to control the amount of acoustic energy entering and leaving the domain, see Selle et al.27 AVBP’s real-gas
extension (Pons et al.,22 Schmitt et al.23, 24) employed in the present calculations and developed at EM2C and Cerfacs
takes into account thermodynamic non-idealities through the use of cubic equations of state, the Soave-Redlich-Kwong
(SRK) equation being employed here (Soave29). The real-gas transport properties are represented by making use of
Chung’s laws (Chung et al.4). Numerical schemes and characteristic boundary conditions are adapted to comply with
the real-gas thermodynamics. Subgrid-scale momentum fluxes are modeled by the Wall Adapting Large Eddy (WALE)
model (Nicoud and Ducros14) as it is well-suited for shear flows, its eddy-viscosity vanishing in purely strained regions
of the flow. Subgrid-scale energy and species fluxes are approximated by constant turbulent Prandtl and Schmidt
numbers Prt = Sct = 0.75. Chemical conversion is represented with the infinitely fast chemistry model IFCM described
in Schmitt et al.23 It was shown by Pons et al.21 that, for stretched counter-flow high pressure methane-oxygen flames,
chemical times defined as the inverse of the extinction strain rates are always several orders of magnitude below the
characteristic mixing and acoustic times related to the present numerical configuration. Equilibrium mass fractions
are then tabulated in terms of the mixture fraction and its variance which are both transported, and the following
species are retained in order to properly estimate the equilibrium burnt gases temperature at any mixture fraction:
CH4, O2, CO2, H2O, CO and H2. The species source terms are then computed according to the procedure detailed by
Schmitt et al.23 Injector walls are treated as Neumann boundary conditions through the enforcement of wall stresses
deduced from a mixed law of the wall (typical logarithmic law or linear law depending on the local mesh resolution).
Synthetic anisotropic turbulence is injected at the domain inlets by enforcing mean and RMS profiles for each velocity
component as well as for deviatoric Reynolds stresses. These profiles result from the LES of a periodic pipe flow
setup with similar Reynolds number and grid resolution. This synthetic turbulence field is defined by constructing of
set of solenoidal modes employing the method from Kraichnan and Celik,13 so that no acoustic noise is produced.
This set of modes ends up constituting a Passot-Pouquet spectrum.17 The tetrahedral mesh employed counts 2.5 × 106

vertices (14.5×106 elements). It is refined within the highly stratified region around the dense oxygen jet, with the finer
resolution corresponding to 7 elements per injector lip thickness and 25 elements per LOx post diameter and gradually
coarsened further downstream.

3.3 Results and analysis

For the sake of clarity, comparison of only some of the simulations is performed here. The set of points selected allows
an adequate analysis of the model defined previously. This set includes the following modulated operating points: 1000
Hz, 2000 Hz, 5000 Hz and 8000 Hz with u0

CH4
= 97.2 [m.s−1], as well as the corresponding modulation-free simulation.

However, all simulated operating points will serve to compare the proposed flame response model.

3.3.1 Instantaneous flow visualizations

The main characteristics of the reactive coaxial jet flows resulting from both modulated and non-modulated compu-
tations are illustrated by instantaneous snapshots in Figure 5. The red iso-contour of oxygen mass fraction is here
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employed as a tracker of the flame front. The inner dense jet gets corrugated, the strong density gradients then rapidly
decaying downstream due to the enhanced mixing. The inner jet also tends to shed dense oxygen pockets in an intermit-
tent fashion. As justified in the previous section through the derivation of the flame response model, the light annular
jet opening is quite low for this kind of setup, and the oxygen mass fraction iso-line demonstrates that the reactive
region remains close to the inner oxygen core. Examination of the modulated cases snapshots motivates the division of
these operating points into two groups. On the one hand, cases modulated at 1000 Hz and 2000 Hz do not significantly
depart from the previous description of the non-modulated flow dynamics. On the other hand, modulations at 5000
Hz and 8000 Hz significantly affect the dynamics of the flow. At these frequencies, the shed vorticity disturbances
are much shorter and enhance flame wrinkling when they are convected downstream. These shorter vortical structures
tend to cause the early destabilization of both streams, one consequence being a drastically shortened dense inner core.
Time-averaged results actually demonstrate that characteristic lengths of the flame are strongly reduced as well. Due
to the more intense viscous dissipation resulting from their shorter scales, these energetic coherent structures rapidly
decay, and even disappear within fully developed turbulence scales even before flowing past the flame tip.

3.3.2 Characterization through first and second order statistical moments

The aforementioned varying destabilization length of the inner oxygen jet can be evaluated in detail through Figure 6.
While the 1000 Hz operating point almost perfectly matches the non-modulated computation in terms of mean axial
velocity, increasing the modulation frequency gradually shifts the accelerating region upstream. This steep velocity
increase corresponds to the end of the intact oxygen core, where high-velocity gases are free to flow inward to the
jet axis. The spatial evolutions of resolved turbulent kinetic energy support the explanation suggested earlier: the
curves extracted from higher frequency (5000 and 8000 Hz) cases indicate that the inner jet is destabilized at about
5 LOx post diameters from the injection plane, compared to about 10 at lower frequencies (1000 and 2000 Hz) and
in the unmodulated case. Mean and RMS density plots are shown in Figure 7 and again illustrate the shortening
of the dense core at higher frequencies, while fields of oxygen mass fraction and temperature demonstrate that the
statistical structure of the flame is not really altered, apart from being shifted upstream. Before tackling the question
of the heat release rate response, it is worth examining its mean spatial distribution for each frequency of modulation.
For that sake, the time-averaged heat release rate is integrated over thin slices extending over the full domain in the
transverse directions. The resulting data is plotted in Figure 8. Here the difference in behavior between lower and
higher frequency operating points is striking. Although the decay in heat release rate beyond 10 LOx post diameters
does not differ significantly from case to case, the high-frequency cases involving the generation of shorter coherent
structures displays a sharp peak close to the injection plate, where these vortices are more energetic whereas they will
be rapidly damped downstream.

3.3.3 Spectral analyses

Some of the numerical probes positions available are shown in Figure 9. Examining the Power Spectral Density (PSD)
of velocity signals recorded in the annular destabilizing jet (probe P1b) gives additional insight into the jet dynamics,
see Figure 10. The signature of the modulation is always visible, the modulation frequencies being revealed by vertical
dashed lines. It is especially interesting to point out the gradual increase of the response amplitude with the forcing
frequency for the radial velocity component, whereas it remains fairly constant for every modulation frequency for
the axial component. This illustrates again the production of shorter coherent structures at higher forcing frequencies
evoked earlier. Additionally, high-frequency harmonics are revealed for 5000 Hz and 8000 Hz operating points. It also
appears that higher-frequency modulations spread broad-band energy over the entire spectrum. This may be explained
by the corresponding gradual decrease of the difference between the jet natural frequency and the modulation frequency.
The annular jet Strouhal number St = f hCH4 / ue, with hCH4 the annular channel thickness, is then given as an additional
abscissa in Figure 10. The unmodulated simulation displays a dominant response of the annular jet for St = 0.36,
which appears to be close to the typical value of 0.3 measured for round gaseous jets by Crow and Champagne.6 The
spectrum obtained from the other unmodulated simulation with a doubled methane injection velocity, not shown here,
yields the same natural Strouhal number. The same data from probe P2e is plotted in Figure 11. The probe is located
at the mean tip of the dense core (20 LOx post diameters), and is expected to give insight into the oxygen jet dynamics.
One finds that the spectral contents of the velocity signals do not differ much at this location. We then conclude that
even though the modulation drastically shortens the dense jet, its hydrodynamic behavior remains relatively unaffected.
In the framework of combustion instabilities analyses, the heat release rate response of the flame is of prime interest.
To this purpose, a PSD of the computational domain-integrated heat release rate is given in Figure 12, together with
a coherence spectrum for the correlation between annular injection velocity (probe P1a) and domain-integrated heat
release rate. Both illustrate a strong response of the flame to the modulation, regardless of the forcing frequency.
The strong signal-to-noise ratio obtained for each case is favorable to the determination of accurate transfer function
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(b) 1000 Hz modulation.
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Figure 5: Superimposed instantaneous cuts of axial velocity (white to red) and of density within the dense oxygen jet
(gray scale). Red: iso-contour of oxygen mass fraction YO2 = 0.5.

estimates from the LES signals. Some correlations at harmonics of the modulation frequencies are also revealed for
the 5000 Hz and 8000 Hz pulsations.

4. Model validation against LES data

Numerical transfer functions between methane injection velocity and total heat release rate can be computed from the
LES output signals:
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(a) Time-averaged axial velocity.
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(b) Resolved TKE.

Figure 6: Characterization of the dense oxygen jet dynamics at each modulation frequency through first and second
order moments profiles along the jet axis. Black: modulation-free case. Red: f = 1000 Hz. Blue: f = 2000 Hz. Green:
f = 5000 Hz. Cyan: f = 8000 Hz.
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(a) Mean density.
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(b) Mean oxygen mass fraction.
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(c) Mean temperature.
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(d) RMS of density.
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(e) RMS of oxygen mass fraction.

0 5 10 15 20 25 30 35 40
x/dLOx [-]

0

200

400

600

800

1000

T
rm

s
[K

]

(f) RMS of temperature.

Figure 7: Characterization of the flame structure at each modulation frequency through first (top row) and second order
moments (bottom row) profiles of scalars along the flame axis. Black: modulation-free case. Red: f = 1000 Hz. Blue:
f = 2000 Hz. Green: f = 5000 Hz. Cyan: f = 8000 Hz.

FLES (ω) =
Ŝ u′Q̇′ (ω)

Ŝ u′u′ (ω)
, (18)

where Ŝ u′Q̇′ is the cross-power spectrum of u′ and Q̇′ signals, and Ŝ u′u′ is the power spectrum of u′. Bode diagrams for
all available numerical data points are plotted together with the transfer function deduced from the low order model in
Figure 13. The displayed model outputs are obtained for sets of parameters that are given in the caption of the figure.

One observes a fairly good agreement between the model and the LES outputs for both gain and phase and for both
load points. The low-pass gain cutoff and the linear evolution of the phase are successfully captured by the model. It
is especially encouraging to point out that between the two load points, L is the only parameter that has been adjusted
to fit the LES data. This tends to demonstrate the generic validity of the model. In addition, it can be noted that the
reduction of L from the ’low-velocity’ to the ’high-velocity’ load point is consistent with the numerically observed
flame shortening resulting from the increased momentum flux ratio. Still, some minor discrepancies for the phase
predictions can be seen. In addition, the null response expected at 3500 Hz for the ’high-velocity’ load point is not

10

DOI: 10.13009/EUCASS2017-369



RESPONSE OF A TRANSCRITICAL COAXIAL FLAME TO FUEL INJECTION RATE MODULATIONS

0 5 10 15 20 25 30
x/dLOx [-]

0

5

10

15

20

25

30

q̇ 0
[M

W
.m
−

1
]

Figure 8: Distribution of the time averaged heat release rate over the flame axis after integration over the transverse
directions (y and z) of the domain. Black: modulation-free case. Red: f = 1000 Hz. Blue: f = 2000 Hz. Green: f =

5000 Hz. Cyan: f = 8000 Hz.
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Figure 9: Depiction of the numerial probes locations.
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(a) Axial velocity component.
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Figure 10: Power spectral densities of velocity components recorded at P1b. Computed using Welch’s method, averag-
ing is carried out over 22 blocks using Hann’s window, 50% overlapping, zero-padding. The spectral resolution is 205
Hz. Black: modulation-free case. Red: f = 1000 Hz. Blue: f = 2000 Hz. Green: f = 5000 Hz. Cyan: f = 8000 Hz.

observed numerically. These deficiencies can be thought to be related to the mean flame structure dependency with
respect to the modulation frequency, which is not taken into account by the model.
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Figure 11: Power spectral densities of velocity components recorded at P2e. Computed using Welch’s method, averag-
ing is carried out over 22 blocks using Hann’s window, 50% overlapping, zero-padding. The spectral resolution is 205
Hz. Black: modulation-free case. Red: f = 1000 Hz. Blue: f = 2000 Hz. Green: f = 5000 Hz. Cyan: f = 8000 Hz.

102 103 104 105

Frequency [Hz]

102

103

104

105

106

107

108

P
S

D
(Q̇
′ )

[W
2
.H

z−
1
]

(a) Integrated heat release rate PSD.
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Figure 12: Spectra computed using Welch’s method, averaging is carried out over 22 blocks using Hann’s window,
50% overlapping, zero-padding. The spectral resolution is 205 Hz. Black: modulation-free case. Red: f = 1000 Hz.
Blue: f = 2000 Hz. Green: f = 5000 Hz. Cyan: f = 8000 Hz.

5. Summary and conclusions

The dynamics of a transcritical coaxial flame is considered in this article. A low-order model representing the unsteady
heat release rate produced by a fluctuating fuel injection velocity is derived for small disturbances. It assumes that the
modulation of the injection rate produces hydrodynamic disturbances that act on the flame front by inducing fluctuat-
ing flame stretch rates. Using a one-dimensional approximation, the perturbed velocity field is modeled by a traveling
sine signal. Assuming that chemical times are short compared to the mixing times, the temporal response of the total
heat release rate of the flame can be expressed, provided that the mean heat release rate distribution is known. The
definition of an ’equivalent flame’ through simplification of this mean flame structure into a rectangular function allows
to circumvent the need for numerical simulations and to obtain the flame transfer function. Large-Eddy Simulations
confirmed the flow dynamics anticipated through the model derivation process. They show the production and convec-
tion of vortical structures along the flame front, the flame opening angle remaining low and the flow mainly axial. It
is observed that the modulation of the annular stream, though fairly low (10% of the bulk velocity) could significantly
alter the mean flow and flame structure beyond a certain critical Strouhal number, in the range [0.04 ; 0.07] in the
present setup. The model was finally confronted to the extensive numerical simulation database that had been built and
proved to predict the flame response amplitude efficiently. Some small discrepancies are observed in terms of phase
predictions, which might be due to the numerically observed frequency-dependent mean flame structure.

12

DOI: 10.13009/EUCASS2017-369



RESPONSE OF A TRANSCRITICAL COAXIAL FLAME TO FUEL INJECTION RATE MODULATIONS

0 2000 4000 6000 8000 10000
Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n
[-

]

0 2000 4000 6000 8000 10000
Frequency [Hz]

−10

0

10

20

30

40

50

P
h

as
e

[r
ad

]

0 2000 4000 6000 8000 10000
Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n
[-

]

0 2000 4000 6000 8000 10000
Frequency [Hz]

−5

0

5

10

15

20

P
h

as
e

[r
ad

]

Figure 13: Bode diagrams resulting from the LES (symbols) and from the low order model (continuous line).
First row: 97.2 m.s−1 methane bulk velocity. Model inputs: ε0 = 100 s−1, L = 18.5 dLOx, l = 7 dLOx, ue = 100 m.s−1.
Second row: 194.4 m.s−1 methane bulk velocity. Model inputs: ε0 = 100 s−1, L = 14 dLOx, l = 7 dLOx, ue = 200 m.s−1.
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