
7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) 

Copyright  2017 by José-Luis Hernando and Enrique de la Fuente. Published by the EUCASS association with permission. 

Dynamic similarity of large 3D frame structures 
 

 

José-Luis Hernando and Enrique de la Fuente  

Department of Aircraft and Spacecraft 

Polytechnical University of Madrid (UPM) 

joseluis.hernando@upm.es; enrique.delafuente@upm.es 

 
 

Abstract 
Scaled down models are widely used for experimental investigations of large structures. Usually, the 
real structure is so large that the available testing facilities are not adequate, or it would be too 
expensive. Scaling is usually carried out by simple application of the Buckingham π theorem. 
However, when dynamic similarity is required in structures of different materials, the scaling process 
is not as simple, especially if the scaled model is to be fabricated in a single material. 
For complete dynamic similarity, stiffness similarity requires proper scaling of axial, bending, torsion 
and shear stiffness. This is not possible for general 3D frames with different materials. 

 
1. Introduction 

   Scaled down models are widely used for experimental investigations of large structures. Usually, the real 
structure is so large that the available testing facilities are not adequate, or it would be too expensive. Scaling 
is usually carried out by simple application of the Buckingham π theorem. The scaled model theory was first 
successfully applied to the aeroelastic problem.  There are some references of historical interest ([1]-[4]), 
classical approaches to the problem [5]-[7], a critical review [8], and later [9]-[11]. 
However, when dynamic similarity is required in structures of different materials, the scaling process is not 
as simple, especially if the scaled model is to be fabricated in a single material. 
The problem to be addressed in this paper is the design of a scale model for a frame structure made up with 
beams of different materials. We will start with 2D pin-jointed and we will finish with 3D rigid-jointed framed 
structures. 
 

2. Notation 
 
   The following symbols have been used: 

  · A bar section; E modulus of elasticity; l length; ρ density; 
  · Subscripts: m refers to the model; 0 refers to the structure. 
  · The subscript i indicates a generic bar/beam. 

  · An overline indicates a reference value of any symbol, like: ρAl , /AE l , l  

  · The λ symbol is used to specify scale factors between the model and the structure. Thus, for any x 

variable:  xλ = (x model value / x structure value) 

 
3. Truss structure  

 
   This is the simplest case study.  The general equation which gives the frequencies is the one that makes:1 
 

 2det 0ω  M K  

 

   The mass matrix is expressed in terms of i i iρ Al  of the related bars and the stiffness matrix, in terms of /i i iA E l . 

Therefore we can write the aforementioned matrix as: 

                                                 
1This matrix is called Dynamic Stiffness Matrix. 
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   2 /i i i i i iω ρ Al A E l M K  

   We will take ρAl  and /AE l as reference values for the whole structure. One of them may be arbitrarily chosen. 

The term ρAl  is to be preferred because it is a scale factor between the model and the structure mass, and also 

because it has an immediate physical meaning. Dividing all terms of the mass matrix by ρAl  and those of the 

stiffness matrix by /AE l , the system matrix obtained will be 
 

2 /
 /  

/
i i i i i iρ Al A E l

ω ρAl AE l
ρAl AE l

       
  

M K  

   The equation providing natural frequencies is: 
 

2 /
det 0

/ /
i i i i i iρ Al A E lρAl

ω
AE l ρAl AE l

              
M K  

   For there to be dynamic similarity, it must be verified for i : 
 

   
0

/ /i i i i i i
m

ρ Al ρAl ρ Al ρAl  (1a) 

 
0

/ /

/ /
i i i i i i

m

A E l A E l

AE l AE l

      
   

  (1b) 

   Accordingly, natural frequencies of the model and the structure are related through:  1/2

0 / /m AE l ρAlω ω λ λ  

where: 0) / ( )ρAl mλ ρAl ρAl  , / 0/ ) / ( / )EI l mλ EI l EI l   are the mass and stiffness scale factors, 

respectively. 

  So we can write that:   0) )i i i m i i i ρAlρ Al ρ Al λ     (2a) 

and 0 // ) / )i i i m i i i AE lA E l A E l λ         (2b) 

   The simplest case study is where all bars of the structure are of the same material and where all bars of the model 
are also of the same material (although the latter may be different from former). 
 

3.1 Plane truss of homogeneous material 

    In this case, the features of the structure material are ρ₀,E₀ and those of the model are ρm,Em. Turning to the 
equations (2), the sections of the model bars should be: 
 

10
0mi i ρAl l

m

ρ
A A λ λ

ρ
   (3) 

in which, 0/l mi iλ l l , is length scale (constant, and may be arbitrarily chosen). 

The above equation allows us to calculate the areas of the model bars once the values of ρAlλ and lλ have been 

(arbitrarily) chosen. Taking this result to the second of (2), the stiffness scale factor should be: 

20
/

0

m
AE l Al l

m

E

E 
  


   (4) 

which is determined as a function of arbitrarily taken parameters 0/l mi il l  . Taking this relation to the equation 

of frequencies similarity we obtain: 
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 1/ 2

/
0

/m
AE l Al 

  


   (5) 

Thus, the process will be as follows: 
 
1. Obtain the features of the structure material (E₀, ρ₀). 
2. Obtain the areas of the structure bars. 0iA . 

3. Select a material for the model  ,m mE ρ . 

4. Arbitrarily choose a mass scale, ρAlλ . 

5. Arbitrarily choose a length scale lλ (usually the model will be smaller, so 1lλ  , although it is not necessary). 

6. Calculate the areas of the model bars using the equation (3):   1
0 0 /mi i m ρAl lA A ρ ρ λ λ  

7. Calculate the stiffness scale factor /AE lλ  by means of equation (4): 

 

   2
/ 0 0/ /AE l m m ρAl lλ ρ ρ E E λ λ  

8. Calculate the frequency scale:  1/2

0 // /ω m AE l ρAlλ ω ω λ λ   

3.1.1. Example 1 

Consider the structure of Figure 1. Aluminium has been chosen for the structure 

 10 2 3
0 07 10  N/m , 2700 kg/mE ρ   , and wood for the model, 

10 2 310  N/m , 420 kg/mm mE ρ   . We arbitrarily take a mass scale factor 0.1ρAlλ  and a length scale 

factor of   0.2lλ  . 

 The bar sections are: 4 2
0 1 2 3 4 10  m

T

iA      

The area of the model bars, according to the equation (3): 
4 23.2143 6.4286 9.6429 12.857 10  m

T

miA       

 The stiffness scale should be: / 2.5255AE lλ   

 Accordingly, the frequency scale should be:  1/2

/ / 5.0254ω AE l ρAlλ λ λ   

 That means that natural frequencies of the model will be approximately 5 times those of the original structure. 

 
Figure 1: Example of one material, simple truss structure 
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    Natural frequencies of the model and those of the original structure have been solved using the MSC/Nastran 
programme, obtaining: 

Structure: 396.7082 405.8097 573.0233 794.5438 Hz
T

    

Model: 31.9936 2.0394 2.8797 3.9929 10  Hz
T     

Whose ratio, as it can be seen, is correct.  
 

3.2. Truss structure. Different materials 

We will assume, in general, that all bars of the original structure are of different material,  0 0,i iE  , and that all 

bars of the model are also of different materials  ,mi miE  .  In this case, when we apply (3), 

  1
0 0 /mi i i mi ρAl lA A ρ ρ λ λ . 

However, the stiffness scale factor according to (4):    2
/ 0 0/ /AE l i mi mi i ρAl lλ ρ ρ E E λ λ  

Since this scale factor must be the same for the entire structure, this requires choosing materials for the model that 

verify the relationship:    0 0/ /mi mi i iE ρ E ρ , which is obviously not possible. Actually, it may not be a serious 

problem because the ratio (E/ρ), which is called specific stiffness, is very similar for many materials. Here are some 
relationships: 
 

Table 1: Materials behaviour 

 (GPa)E   3kg/dmρ   6 2 -2/   10  m sE ρ   

Aluminium 70 2.7 25.93 

Steel 

Titanium 

Wood 

CFRP (Carbon Fiber 
Reinforced Plastic) 

210 

110 

11 

80 

7.85 

4.43 

0.42 

1.6 

26.75 

24.83 

26.19 

50 

 

    As it can be seen, they all have similar value of (E/ρ), except carbon fibre. Consequently, the stiffness scale factor 
can not be constant and the design of a scale model reproducing exactly the dynamic behaviour of the original 
structure is not possible. 
 
    To solve this issue, we proceed as follows: 
 

1. Add to each model bar a non-structural mass uniformly distributed of value miμ , to be determined. The first 

equation of (3)  is now written in the form:
1

0 0mi mi mi i i ρAl lρ A μ ρ A λ λ   

2. The value of miμ must be positive or zero, 
1

0 0 0mi i i ρAl l mi miμ ρ A λ λ ρ A    
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3. Calculate the areas of the model miA  using:  0 0 //mi i mi i AE l lA E E A λ λ , which can be replaced in the above 

equation,  1 1
0 0 0 0 0 0 // 0mi i i ρAl l mi mi i i ρAl l mi i mi i AE l lμ ρ A λ λ ρ A ρ A λ λ ρ E E A λ λ      and therefore: 

 1
0 0 0 0 // 0i i ρAl l mi i mi i AE l lρ A λ λ ρ E E A λ λ   . 

4. Determine the scale factor that verifies this equation:   1
0 0 / 0 0/mi i mi i AE l l i i ρAl lρ E E A λ λ ρ A λ λ  

 that is to say,   2
/ 0 0/ /AE l ρAl l mi mi i iλ λ λ E ρ ρ E ,  this conditions is fulfilled when 

 

   2
/ 0 0min min

/ /AE l ρAl l mi mi i iλ λ λ E ρ ρ E  

 

 where  
min

/mi miE ρ and  0 0 min
/i iρ E are the minimum value of quotients  /mi miE ρ  and  0 0/i iρ E of all 

the model and the structure materials, respectively. 
 

5. The areas of the model bars are calculated using:  0 0 //mi i mi i AE l lA E E A λ λ  

6. The distributed mass is calculated by the means of: 
1

0 0mi i i ρAl l mi miμ ρ A λ λ ρ A    (6) 

and it will be positive or zero for all bars. 
 
 Note: 
    The distributed mass miμ  may be introduced into the finite element model in two ways: 

  · adding a non-structural mass of value miμ to each bar, given by the equation (6), or 

  · adding concentrated masses at the end of each bar whose value should be / 2mi miμ l  

 
    In the physical model, there are two ways: 
 
  · Attaching to the bars a lining of a material of low rigidity which has a mass per unit length of iμ  

  · (preferable option):  converting the distributed mass iμ  into two masses concentrated at the ends of each bar 

whose value should be: / 2i mi mim μ l , where mil is the length of each model bar.  In each node, the contributions 

of the concurrent bars will be added. 

3.3. Procedure to be followed  

Ultimately, the process can be carried out following the next steps: 
 
1. Choose, among all the structure materials, the one with the least ratio 0 0/i iρ E . 

2. Choose, among all the materials used in the model, the one with the smallest ratio /mi miE ρ . 

3. Determine the stiffness scale factor with the material chosen in point 1: 
 

     2
/ 0 0 min min

/ /AE l mi mi ρAl lλ ρ E E ρ λ λ   (7) 

 
4. Determine the section of the model bar corresponding to the material chosen in point 1 by means of the equation: 

   1
0 0/mi m i ρAl lA ρ ρ A λ λ  

with 0ρ  and mρ the densities of the material chosen in point 1. 

5. For the remaining bars, determine their section using the previously calculated stiffness scale factor: 
 

  0 0 //mi i mi i AE l lA E E A λ λ  

 
6. Modify the equation (3).  Calculate the distributed masses to be added to the model bars using the equation (6): 
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1

0 0mi i i ρAl l mi miμ ρ A λ λ ρ A   

 
 This value must be positive. If this procedure is followed, it should be like this, as it will be shown in the example 
below. 

3.3.1. Example 2 

The same structure as chosen before but with different materials. We use all of them: aluminium, steel, titanium and 
carbon fibre. For the model, we will use wood (see figure 2). 

 
Figure 2: Example of a different materials simple truss structure 

     
     
And we have to follow the steps stated above. 
 
1. We chose as base material the carbon fibre which is the one with the lowest quotient E₀/ρ₀, which is the carbon 
fibre, E₀	= 108 10 MPa, ρ₀	= 1600 kg/m³. 

2. We chose wood for the whole model, 101.1 10mE   MPa, mρ = 420 kg/m³. 

3. We determine the stiffness scale factor using the carbon fibre as (7) 
 

   * 2
/ 0 0/ / 1.3095AE l m mi ρAl lλ ρ ρ E E λ λ   

4. We determine the section of the bar of CFRP in the wood model: * 4 27.619 10  mmA    

5. For the rest of the bars, determine their section using the previously calculated stiffness scale factor: 

   4 2
0 0 // 1.6666 9.9998 7.1427 10  m

T

mi i m i AE l lA E E A λ λ      

 
6. Determine the mass per unit length to be added to the three bars: 

 1
0 0 0.065003 0.36501 0.36451  kg/m

T

mi i i ρAl l m miμ ρ A λ λ ρ        

 
7. We can directly introduce this non-structural mass into the MEF, or concentrate the added mass of the bars as a 
concentrated mass at each bar end. The mass to be located at each bar end is: 

 20.65003 5.4752 5.1549 10
T

mi miμ l        

8. The frequency scale is:  1/2

/ / 3.6187ω AE l ρAlλ λ λ   

 
    The results obtained with MSC/Nastran are: 

Structure: 348.55 367.55 400.33 942.44
T

   Hz;  Model: 31.26 1.33 1.45 3.41 10
T    Hz 

which, except for rounding errors, are in the correct ratio 3.7. 
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4. Dynamically similar models of planar framework structure with beams 

 
The problem of obtaining natural frequencies of a structure of beams working axially and subjected to bending stress 
gives rise to the following symbolic equation: 

 , , , , 0f ω ρAl EI AE l   

 
There are five parameters and three primary dimensions (M, L and T), so we can take two dimensionless parameters. 
We chose as primary parameters: ρAl, EI and l. So, we can obtain the following dimensionless factors: 
 

 
 

 
 

2 2
3 2,

ω ρAl AE Al
f l l

EI EI I

  
     

 

 

      2 , ,i i i ii i
ω ρ Al AE EI l M K  

 
Therefore, we have five parameters and we can choose three as independent to build the three basic units (M, L, T). 

We chose the reference factors as independent: ,ρAl EI and l , and therefore the characteristic equation will be: 

 

   3 22  
, ,i i i i i i

AE EIρ Al lρAl
ω l l

EI ρAl EI EI l

  
         

M K  

 
For there to be dynamic similarity, all these values have to be considered, that is: 

       2 2

00 0 0

;  ;  ;  i i i i i i i i i i i i

mm m m

AE AE EI EIρ Al ρ Al l l
l l

ρAl ρAl EI EI EI EI l l

                                                     
 ;    (8) 

 
 which, depending on the corresponding scale factors: 
 

 
2

0 0 0 0 0 0 0 0;   ;   ;  mi mi mi ρAl i i i mi mi EI l i i mi mi EI i i mi i iρ A l λ ρ A l A E λ λ A E E I λ E I l λ l     

 

and the frequency scale will be:  1/23 32 2 3

00

  
;    / /m

ω EI ρAl l

m

ωρAl ρAl
ω l ω l λ λ λ λ

ωEI EI

   
     

   
 

When the materials of the structure are not the same, as is clear from the previous analysis, a non-structural mass 

mi should be added to each model beam. Otherwise, the stiffness scale factor EI can not be constant for the entire 

structure. So, the first equation of (8)  must be modified in this way 

  0 0 0mi mi mi mi ρAl i i iρ A μ l λ ρ A l   

 and the following should be verified:      0 0 0 0
/ /mi mi mi mi i i im

ρ A l μ ρAl ρ A l ρAl  , and it should logically be 

0mi  . 

    In short, the ratios which must verify the properties of the model and the structure are:  

       1 2
0 0 0 0 0 0 0 0

;  ;  / / ;   /mi mi mi ρAl l i i i mi mi EI i i mi i l mi i EI m
ρ A μ λ λ ρ A l E I λ E I A A λ I I λ EI EI       ; 

(9) 
is the bending stiffness scale factor. As in the previous case, the latter scale factor can not be arbitrarily taken. It has 

to be chosen to ensure that all values of mi  are zero or positive. To do this, the first of the (9):  
1

0 0mi ρAl l i i mi miμ λ λ ρ A ρ A    (10) 

 From the second:    0 0/ /mi i i mi EII I E E λ , which has to be introduced into the third, 

DOI: 10.13009/EUCASS2017-337



Jose-Luis Hernando and Enrique de la Fuente 
     

 8 

     2 2
0 0 0/ / /mi m l mi i EI l i miA A λ I I λ λ E E    

 
 Finally, introducing this relationship in the first equation: 

1 1 1 0
0 0 0 0

0

mi i
mi ρAl l i i mi mi i i l ρAl EI l

i mi

ρ E
μ λ λ ρ A ρ A A ρ λ λ λ λ

ρ E
   

    
 

 

  Since the stiffness scale factor is to be chosen so that 0mi  , then 0

0

i mi
EI ρAl i

i mi

ρ E
λ λ λ

E ρ
 . 

This can be achieved by choosing: 0

0 min min

i mi
EI ρAl l

i mi

ρ E
λ λ λ

E ρ

   
    

   
 

As in the previous case, in this relation,   0 0 min
/i iρ E is the minimum value of the quotient ρ/E  of all materials 

existing in the structure and  
min

/mi miE ρ is the minimum value of the E/ρ quotient of all materials chosen for the 

model. 
    With this value EIλ the rest of the parameters of the model are calculated: 

2 10 0
0 0 0 0;     ;     i i

mi m EI l mi i EI mi i i l ρAl mi mi
mi mi

E E
A A λ λ I I λ μ ρ A λ λ ρ A

E E
      

   As in the previous case, mi can be introduced as a non-structural mass added to each model beam or as two 

concentrated masses at the end of each bar / 2mi mi mim μ l .  This may be done in both the MEF (exactly with 

lumped mass model, and slightly different with coupled mass model2), and the physical model. 

4.1. Procedure to be followed  

To sum up, the procedure to be follow to build the model follows these steps: 
 
1. Arbitrarily select the mass and length scale factors, ρAlλ y lλ . The mass scale factor will determine the mass of the 

physical model: mass of the physical model = ρAlλ ×  mass of the actual structure, and the length scale factor, the 

dimension: dimension of the physical model = lλ × dimension of the actual structure. 

2. Obtain the material properties of the structure ( 0 0,i iE ρ ), their sections and moments of inertia of the beams, 

0 0,i iA I and their lengths 0 il . 

3. Select the materials to build the model and their properties ( ,mi miE ρ ). The usual practice would be choosing a 

single material for the whole model, but it need not necessarily be the case. 

4. Determine the values of    0 0 min min
/ ,  /i i mi miρ E E ρ  

5. Calculate the stiffness scale factor:    0 0 min min
/ /EI ρAl l i i mi miλ λ λ ρ E E ρ  

6. Determine the sections of the model beams,  . 2
0 0 /mi EI l m i miA λ λ A E E  

7. Determine the moments of inertia of the model beams  0 0 /mi EI i i miI λ I E E  

8. Determine the distributed mass to be added to each model bar, 
1

0 0mi ρAl l i i mi miμ λ λ ρ A ρ A   

 It has to be positive for all beams except for the one that produces  0 0 min
/i iρ E , for which it will be zero. 

9. The frequency ratio is:  0.53
0/ / /m EI ρAl lω ω λ λ λ  

 

4.1.1. Example 3 
                                                 
2 Both cases, selecting it in the properties palette 
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    Taking the example of the structure shown at the figure 3. 
     
    The features of the materials are: 
 Aluminium    E₀₁ = 7×1010 N/m², ρ₀₁	= 2700 kg/m³ 
 Steel:   E₀₂ = 21×1010  N/m², ρ₀₂	= 7850 kg/m³ 
 CFRP :   E₀₃	= 8×1010  N/m², ρ₀₃	= 1600 kg/m³ 
 
 The beams of the structure have square sections of 10, 20 and 30 cm each side: 

4 2 4 4 4 8 4
0 01 4 9 10  m ;   1 /12 1 2 3 10  m

TT

i iA I            

  We chose a single material for the model: wood (Em = 1.1×1010 N/m², ρm	= 420 kg/m³) 
 
We follow the steps set above. 
 
 
 

Figure 3: Example of different materials rigid jointed frame 

 
1. Arbitrarily select the mass and length scale factors, 

ρAlλ y lλ . We chose a 1/5 scale model with 40 percent mass: 

0.2lλ  and 0.4ρAlλ  . 

 Since the structure mass is i i iρ A lS : M = 7.0165 kg, the model mass will be Mm = 6.9165×0.4 = 2.7666 kg, as we 

will check later. 
2. Determine the properties of the structure materials ( 0 0,i iE ρ ), the beams sections and moments of inertia, 0 0,i iA I  

and the beam lengths 0il .  

4 2 8 4
0 01 4 9 10  m ; 0.083333 1.3333 6.75  10 m

T T

i iA I            

10 3 1/2
0 0 07 21 8 10  N/m; 2700 7850 1600  kg/m ;  1 1.5 2  m

TT T

i i iE ρ l               

3. Choose the materials to build the model and its properties ( ,mi miE ρ ). Taking wood for the whole model
10 2 21.1 10  N/m ,  420 kg/mm mE ρ    

4. Determine the values of     0 0 min min
/ ,  /i i mi miρ E E ρ . From data, clearly it is the carbon fibre,

  8
0 0 min

/ 10i iρ E   . For the model, there is no doubt:    10

min
/ 10mi miE ρ    

5. Calculate the stiffness scale factor 24.1905 10EIλ
   

1 m

1.5 m 1 m

Aluminium

CFR
P

Steel

0.2 m

0.3 m 0.2 m

wood

wood

wood

STRUCTURE

MODEL

1 3
4
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6. Determine the sections of the model beams, 4 26.6 80 68.572 10  m
T

miA    


 

7. Determine the moments of inertia of the model beams: 10 42.2 106.6 205.72 10  m
T

imI    
 

 

8. Determine the concentrated masses to be located at the end of each beam: / 2mi mi mim μ l , where 

0.26 2.92 0  kg/m
T

miμ     . 

 The masses at the ends of the beams are: 0.438 0  kg
T

mim      

9. The frequencies ratio is: 0/ 3.6187mω ω  . The frequencies in the model will be 3.62 times those of the original 

structure.  

 
 
 
 

4.1.2. Checking 

The model mass is: 2.8066 kg. As you will see, the quotient of the model mass and the one of the structure is: 
(2.8066/7.0165) = 0.4, as it should be. 
    The natural frequencies (obtained with Nastran) are: 

Structure: 9.4891 266.89 520.22 1049.7
T

   Hz; Model: 34.338 965.8 1882.5 3798.7
T

   Hz 

which, as it can be seen, are in the correct relation (3.6187). 
 
 

4.1.3. Remarks 

1. The structure and model natural modes are exactly the same, since both are affected by an arbitrary constant of 
proportionality. 
2. We have assumed that in the original structure there are no concentrated masses. If any, the method can be 
reformulated to take it into account. It suffices to add the concentrated masses 

0mi ρAl im λ m  to the analogous 

positions of the model. 
 

5.   3D-Structure of beams.  General case 
 
In this case, the most general dynamic stiffness matrix may be written as: 

          2 , , , ,i i i S ii i i i
ω ρ Al AE EI GK GA l M K  

 where: 
 

  ·  
i

GK  is the torsional stiffness of the beams, G is the shear modulus and K is the torsional stiffness constant. 

  ·  s i
GA  is the shear stiffness of the beams, SA is the shear effective area: S SA k A , where Sk  is the shear 

stiffness factor.  In general that will have little significance, but it is easy to include it. 
 

    From those 7 parameters, we will take as independent: ,ρAl EI and l , with which we nondimensionalise the 

others: 

       3 2 22  
, , , ,Si i i i i i i i

AE EI GK GAρ A l lρAl
ω l l l

EI ρAl EI EI EI EI l

  
         

M K  

  In order to have a complete dynamic similarity, the following equalities must be verified. Taking into 
account previous explanations, we will introduce from the beginning the non-structural mass to the model beams: 
 

1
0 0

0

  i i i i i i i i
mi mi mi ρAl l i i

m

ρ Al μ l ρ Al
ρ A μ λ λ ρ A

ρAl ρAl
   

      
   
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   2 2 2
0 0

0

/i i
mi EI l i i mi

m

AE AE
l l A λ λ A E E

EI EI
   

        
   

   
0 0

0

/ /  i i
mi i EI i mi

m

EI EI
I I λ E E

EI EI

   
        

   
 

   
0 0

0

/ /i i
mi i EI i mi

m

GK GK
K K λ G G

EI EI

   
        

   

   2 2 2
, ,0 0

0

/ /S Si i
S mi S i EI l i mi

m

GA GA
l l A A λ λ G G

EI EI
   

        
   

 

0

;  i i
mi l oi

m

l l
l λ l

l l

        
   

 

 
When these conditions are fulfilled, the frequency scale is 
 

  1/23 32 2 3

00

  
/ /m

ω EI ρAl l

m

ωρAl ρAl
ω l ω l λ λ λ λ

ωEI EI

   
      

   
   

As before, the stiffness scale factor is chosen to ensure that the non-structural masses added to the model are all 
positive or zero, which has to be positive or zero: 
 

  1 1
0 0 0/ 0mi ρAl l i mi EI l i mi iμ λ λ ρ ρ λ λ E E A       

 

From where:   0 0/ /EI ρAl l mi mi i iλ λ λ E ρ ρ E  

This is achieved, for example, by making:    0 0min min
/ /EI ρAl l mi mi i iλ λ λ E ρ ρ E  

5.1. Procedure to be followed  

   The procedure follows these steps: 
 
1. Arbitrarily select the mass and length scaling factors, ρAlλ and lλ . The mass scale factor will determine the mass 

of the physical model: 
 mass of the physical model = ρAlλ × mass of the real structure 

 and the length scale factor, the dimension: 
  dimension of the physical model = lλ × dimension of the actual structure 

 

2. Obtain the properties of the structure materials   0 0 0, ,i i iE G ρ , the sections and moments of inertia of the beams, 

 0 0,i iA I , the torsional stiffness constant, 0 iK , the effective shear areas ,0S iA , and their lengths 0 il . 

3. Select the materials to build the model and their properties  , ,mi mi miE G ρ . The usual practice would be 

choosing a single material for the whole model, but it need not necessarily be the case. 

4. Determine the values of  0 0 min
/i iρ E and  

min
/mi miE ρ . 

5. Calculate the stiffness scale factor.    0 0 min min
/ /EI ρAl l i i mi miλ λ λ ρ E E ρ  

 
6. Determine the sections of the model beams, 
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 2
0 0 /mi EI l i i miA λ λ A E E   (11) 

7. Determine the moments of inertia of the model beams 

 0 0 /mi EI i i miI λ I E E    (12) 

8. Determine the torsional stiffness constants of the model sections,  0 0 /mi EI i i miK λ K G G  

 
9. Determine the shear effective areas or the shear stiffness constants of the sections, 

  2
, ,0 0 0/ /S mi EI l S i i mi i mik λ λ k G G A A  

10. Determine the distributed mass to be added to each model bar, 
1

0 0mi ρAl l i i mi miμ λ λ ρ A ρ A   

 which will be positive for all the beams except for the one producing  0 0 min
/i iρ E  for which it will be zero. 

11. The frequency ratio is  1/23
0/ /m EI ρAl lω ω λ λ λ  

5.1.1. Example 4 

    To verify the above, we will consider the structure shown in Figure 4, consisting of four beams of variable tubular 
section. 
     

 
Figure 4: Example of 3D structure made of two different materials and variable cross sections 

   
 
1. Arbitrarily select the mass and length scaling factors, 

ρAlλ and lλ . The mass scale factor will determine the mass of 

the physical model. We will choose: 0.4ρAlλ  and 0.6lλ  . 

 

2. Obtain the properties of the structure materials  0 0 0, ,i i iE G ρ .  One of the beams is CFRP (E = 80 GPa, ρ = 

1600×10⁻¹²  t/mm³, ν = 0.3) and the remaining three of steel, (E = 190 GPa, ρ = 7850×10⁻¹²  t/mm³, ν = 0.28 ). 

 the sections and moments of inertia of the beams,  0 0,i iA I the torsion constants,  0 iK , the effective shear areas 

,0S iA , and their  lengths  0 il : 

CFRP

Steel
Steel

Steel

500

400

300

Ravg = 20 mm,
t = 1 mm

Ravg = 30 mm,
t = 1.5 mm

Rmedio = 40 mm,
t = 2 mm

Ravg = 30 mm,
t = 1.5 mm

Ravg = 20 mm,
t = 1 mm

DOI: 10.13009/EUCASS2017-337



Dynamic similarity of large 3D frame structures 

 13

       2 2 4 4

0 0/ 2 / 2 ;   / 2 / 2 / 4i avg avg i avg avgA π R t R t I π R t R t                

   4 4

0 ,0 0/ 2 / 2 / 2;   0.5;   111.803 mmi avg avg s i iG π R t R t k l        
 

 

3. Select the materials to build the model and their properties  , ,mi mi miE G ρ . The usual practice would be 

choosing a single material for the whole model, but it need not necessarily be the case. For the model, we chose an 
aluminium alloy, whose properties are: (Em = 72 GPa,   ρm= 2700×10⁻¹² t/mm³,   νm = 0.33 ) 
 

4. Determine the values of   0 0 min
/i iρ E and  

min
/mi miE ρ  

5. Calculate the stiffness scale factor 0.128EIλ   

6. Determine the sections of the model beams,  2
0 0 /mi EI l i i miA λ λ A E E  

For the structure of steel beams, 00.9382716mi iA A  

For those of CFRP, 00.39506173mi iA A  

7. Determine the moments of inertia of the model beams: 
For steel beams, 00.128 190 / 72mi iI I   

And for those of CFRP: 00.128 80 / 72mi iI I   

8. Determine the torsional stiffness constant of the model sections, 
 For steel beams 00.35097222mi iK K  

 And for those of CFRP 00.14550427mi iK K  

9. Determine the shear effective areas or the shear stiffness constants of the sections, 
 For those of steel , 0.51953125S mik    

And for those of CFRP, , 0.51153846S mik   

10. Determine the distributed mass to be added to each model bar, which will be positive for all the beams except for 

the one that produces  0 0 min
/i iρ E for which it will be zero. 

For steel beams: 
9 10

05.23 10 27 10mi i miμ A A    


 

 And for those of CFRP, 
9 10

01.06 10 27 10mi i miμ A A    


, which is zero, as it should be. 

11. The frequencies ratio is: 0/ 1.2171612mω ω   

 
     The results obtained by MSC/Nastran for the frequencies are (Hz): 
 

Real 445.36 499 626.02 686.59 690.64 691.01 944.64 963.76 1231.50 1346.5
T

     

Model 542.05 607.3 761.9 835.6 840.5 840.9 1149.6 1172.9 1450 1637
T

    

 

 And those of the scaled model with  , (Hz): 

445.34 498.97 625.95 686.48 690.54 690.90 944.51 963.62 1231.59 1346.54
T

    

 Which gives a percentage error  
 

Error = 20.34 0.65 1.2 1.5 1.5 1.5 1.4 1.4 0.79 0.39 10
T      %  

 
    The difference (non-zero) between the results of the actual structure and the scaled model is due to two factors: 
 
1. The properties of the section entered into Nastran with a small number of significant figures. 
2. The Poisson modules of the materials involved are not the same, which causes a (very small) difference between 
torsional and shear stiffness, which can not be reproduced exactly. 
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    In any case, it can be seen that the influence of both factors is negligible. 
 

5.1.2. Example 5 

    If the previous example is modified by adding a concentrated mass of 70 kg at the apex, the changes of the model 
are trivial: it suffices to add a mass of 70×0.4 = 28 kg. The resulting frequencies are obtained with the corresponding 
scale. Indeed, the result is better than the previous case, because the beams are forced to work primarily with axial 
load, whose rigidity is exactly scaled. 
 

5.1.3. All the structure beams are of the same material 

    In case there is only one material in the structure, the problem is quite simple, since: 
 
1. There is no need to introduce distributed masses to adjust the stiffness scale factor. 
2. The dimensions and geometry of the beams sections are subject to the same length scale factor. That is to say, if 

the section of the structure is tubular, for example, outer and inner radius R and r , in the model would be l R and 

l r respectively. 

3. The only difference would be between the structure and the model Poisson modules. If they are not the same (it 
would be strange if they were), there will be a small scale difference in shear modulus G, which would affect 
torsional stiffness and shear stiffness. In any event, the effect would be very small. 
 

6. Scaling factors of cross-sectional dimensions 
 
   A desirable feature of a dynamically similar model is that the cross-sections of the model are geometrically similar 
to those of the original structure. It is therefore appropriate to find the scale factors of the section dimensions which 
have to be applied in these cases. 

   Assume that the sections of the original structure are tubular with outer and inner radii 0iR and 0ir , respectively. 

The question we want to answer now is: can the cross-section be tubular as well in the model?  If so, how do you get 
the inner and outer radii? 
 From the Expression (11), 
 

  2
0 0 /mi EI l i i miA λ λ A E E  

 

 that is to say:    2 2 2
0 0 /mi mi EI l i i miπ R r λ λ A E E   

 
 and from the  (12), 
 

  0 0 /mi EI i i miI λ I E E  

 

 that is to say,    4 4
0 0/ 4 /mi mi EI i i miπ R r λ I E E   

 
 From these two equations we obtain: 
 

   

    

1/22 2
0 0 0 0

1/2
2 2 2 2 2 2

0 0 0 0 0

2 / / / / / 2

/ 2 / / / 2

mi l i i EI l i i mi

l i i EI l i i i mi

R λ I A π λ λ A E E π

λ R r π λ λ R r E E





   

     
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   

    

1/22 2
0 0 0 0

1/2
2 2 2 2 2 2

0 0 0 0 0

2 / / / / / 2

/ 2 / / / 2

mi l i i EI l i i mi

l i i EI l i i i mi

r λ I A π λ λ A E E π

λ R r π λ λ R r E E





   

     

 

 
As it can be seen, both radii scale in the model section:  
 

1. It is not equal to the general length scale, l . 

2. It is different for inner and outer radii. 
3. The scale of both radii depends on the material of the actual structure. 
 
  As a remarkable conclusion, note that neither the outer radius nor the inner radius of the section explicitly appears 
in the actual structure. This means that, whatever the geometry of the actual section, a tubular section can always be 
used for the model. Having said that, the section of the original structure must have identical moments of inertia, 
because it has been established this way in the previous explanation, where there was only a moment of inertia. 
 
 

7. Conclusions 
 
   A procedure to construct dynamically similar scaled models of frame structures has been presented. In the most 
general 3D case, the procedure produces exact similarity of the dynamics of the structure, except for minor 
discrepancy arising from the impossibility of scaling properly the effect  of the Poisson ratio. In any case, the 
difference is quite small. General, variable beam cross section as well as non-uniform material is addressed in the 
paper. Finally, the procedure is illustrated with a number of examples. 
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