
7TH EUROPEAN CONFERENCE FOR AEROSPACE SCIENCES (EUCASS) 

Estimation of Regions of Attraction of Spin Modes 
 
 

Alexander Khrabrov, Maria Sidoryuk, and Dmitry Ignatyev  
Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, Russia 

 
 

Abstract 
Recently developed quantitative methods for analysis of nonlinear systems are applied to spin studies. 
The parameters of spin modes of a general aircraft are calculated using numerical continuation on a 
parameter. Polynomial approximations of the reduced 5th order system with account of significant 
nonlinearities in aircraft aerodynamic coefficients are derived near a number of stable spin equilibrium 
points and validated by simulation. For the calculated polynomial approximations, low bounds of 
ellipsoidal approximation of regions of attraction are estimated using special optimization tools. The 
estimated sizes of attraction regions for different spin modes can serve as additional information about 
aircraft susceptibility to spin and relative danger of particular spins.  

1. Introduction 

Spin remains one of the most dangerous phenomena encountered in flight. Its prediction and recovery have attracted 
the attention of many researchers and engineers for many years. Adequate prediction of spin and investigation of 
susceptibility of an aircraft to spin motion are important to ensure the flight safety. Prediction of spin motion as a 
clear nonlinear phenomenon is based on a technique of numerical continuation of equilibrium solutions of nonlinear 
aircraft dynamics on a parameter and their local stability analysis [1-5]. Susceptibility to spin motion is closely 
related to the size of regions of attraction (ROA) of stable spin modes. Computing the exact regions of attraction for 
nonlinear dynamic systems is a very difficult and unsolved problem for high order systems. The significant research 
efforts were devoted to the estimation of the ROA invariant subsets [6-8].  
Recently, significant research has been performed on the development of nonlinear analysis tools for robustness 
analysis of nonlinear polynomial systems, and computing regions of attraction [9–18]. These tools use polynomial 
sum-of-squares (SOS) optimization [18-19] and can only be applied to systems whose dynamics are described by 
polynomial vector fields. All previous research concerning ROA estimation was directed to analysis of normal flight 
regimes and validation of control system performance in a nonlinear problem definition [9-10, 17].  
The idea of this paper is to apply the nonlinear ROA estimation technique to analysis of dangerous flight regimes 
such as spins. The size of regions of attractions in this case can be considered as a metric for estimation of the 
relative danger of different spin modes. 
Spin equilibrium solutions depending on parameters are calculated for the 8-th order nonlinear autonomous system 
of ordinary differential equations, which corresponds to the six degree of freedom aircraft motion under a standard 
assumption of constant altitude. A traditional continuation on a parameter technique is used.  A nonlinear 
mathematical model of aerodynamic characteristics of a generic airliner is used. The model is valid in a wide range 
of angles of attack and sideslip angles with account of intensive rotation effects about all three axes. The various 
types of wind tunnel experimental results were included in the aerodynamic model for adequate spin investigations: 
the results of steady aerodynamic characteristics investigations for various angles of attack and sideslip, small 
amplitude forced oscillations data in pitch, yaw and roll and results of rotary balance measurements.  
After calculation of exact (in terms of the accepted aerodynamic model) spin equilibrium curves depending on the 
control surface deflections, regions of attraction of particular stable equilibrium points are estimated. For this 
estimation the simplified 5th order equations of aircraft dynamics are used. To justify this simplification, it is shown 
that parameters of spin equilibria are close to each other considering the 8-th order and approximate 5th order 
equation systems, and dynamics of perturbed motion near stable spins are also similar. For the 5th order system 
multivariable polynomial approximations are developed around a number of calculated stable spin equilibrium 
points. Both, the aerodynamic model and the dynamic equations are approximated. 
As computing the exact ROA is very difficult even for this simplified task formulation, a usual restriction of search 
to ellipsoidal approximations of the ROA is used. The lower bounds ellipsoidal approximations are computed using 
Lyapunov functions and recent results connecting non-negative polynomials to semi-definite programming. A 
special iteration procedure with 4th order multivariable polynomials is used to compute Lyapunov functions and inner 
ellipsoidal approximations to the ROA. The analysis is performed using software available in public domain [21-23].  
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The paper is arranged as follows. Aerodynamic model used for spin parameters calculation, methods and results of 
investigation of spin equilibrium solutions are described in Section 2. Polynomial approximation of the 5th order 
aircraft motion equations near stable spins are described in Section 3. Outline of regions of attraction estimation 
technique used in the paper, and results of the size of the ROA estimation for a set of spin modes comparing their 
relative danger, are given in Section 4.     

 2. Spin calculation 

Calculation of spin modes parameters is based on a technique of numerical continuation of equilibrium solutions of 
nonlinear aircraft dynamics on a parameter. This requires an appropriate mathematical model of aerodynamic 
coefficients in a wide range of angles of attack and sideslip angles accounting possible intensive rotation. This model 
is essentially nonlinear. 

2.1 Aerodynamic model for spin calculation 

The aerodynamic model for high angles of attack conditions is usually formulated by using experimental data 
obtained in a wind tunnel from static, small amplitude forced oscillations (in pitch, roll and yaw) and rotary balance 
tests. At high angles of attack the aircraft motion with intensive rotation may strongly influence the vortical and 
separated flow, and the aerodynamic coefficients become strongly depend on an aircraft conical rate / (2 )b VωΩ =  
where ω  is angular rate, b is the wing span, and V is the magnitude of the aircraft velocity. This dependence can be 
described by the following way [1]: 
 

s.r .
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a ai a iq a ir aiC C q C rC rα δβ += +      
 

where iC ( , , , , ,i X Y Z l m n= ) are non-dimensional aerodynamic forces and moments, α, β are angles of attack and 
sideslip, ( , , )e a rδ δ δ δ=  are deflections of elevator, aileron and rudder, respectively, , ,a a ap q r  are roll, pitch and 
yaw rate projections of angular rate on wind-body axes, respectively, connected with the body  axes angular rates as 
follows: 
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The force and moment representation coefficient used in the work for spin parameter calculation is the following: 
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An example of roll moment dependence on sideslip angle β  and non-dimensional angular rate, showing strong 
nonlinear dependencies is presented in Figure 1. 

 2 

DOI: 10.13009/EUCASS2017-312



ESTIMATION OF SPIN MODES REGIONS OF ATTRACTION 

 

 

 

Figure 1: Roll moment dependence on sideslip angle and non-dimensional angular rate  

      
To facilitate the implementation of the continuation technique, the nonlinear experimental dependencies ( , )iC α β∆  
( , , ,i Y l m n= ) in (1) are approximated by 3rd order polynomials of β   
 

2 3
2 3( , ) ( ) ( ) ( ) ( ) ,i io i i i

C C C C Cβ β β
α β α α β α β α β∆ = + + +  

 
and ( , )i aC pα∆  ( , ,i Y l n= ) are approximated by similar 3rd order polynomials of ap , using standard least-square 
approach. In Figure 1 markers correspond to the wind tunnel experimental data and solid and dashed lines are their 
polynomial approximation. 
 

2.2 Steady-state spin parameters calculation 

The aerodynamic model (1) is used for computational investigation of airliner spin dynamics and further estimates. 
The continuation and bifurcation analysis methodologies were used effectively in flight dynamics during last four 
decades. A usual way to analyse the aircraft spin dynamics is considering the eighth order autonomous system of 
motion equations obtained from the full six-degree of freedom motion equations in an assumption of fixed altitude 
[1]: 
 

8 8 8( , )=x F x δ       (2) 
 

where the state vector is 8
8

'( , , , , , , , )V p q r Rα β θ φ= ∈x ,  and control vector includes control surface deflections 
3( , , )e a r Rδ δ δ δ ′= ∈ .  The equilibrium states are defined by the system of algebraic equations: 

 

8 8( , ) 0δ =F x       (3) 
 
The equilibrium solutions of this system define an aircraft motion along a helical trajectory with vertical axis of 
rotation. At high angles of attack and fast rotation such solutions correspond to equilibrium spin modes. During 
continuation of the equilibrium solutions of the eighth order system (2) their local stability analysis using the 
linearized system of equations is also performed.  A result of continuation of solutions of system (3) on rudder 
deflection rδ  as a parameter with other control deflection fixed 5deg, 0e aδ δ= − = , is shown in Figure 2. Stable 
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equilibrium solutions are marked by red circles. Marker colors for qualitatively different types of instability are listed 
in Figure 2.  
Analysis shows that stable spin modes exist in a wide range of control deflection parameters, in some parameter 
ranges there are two or more stable steady-state spins.  For example, in Figure 2 there are two stable right spins in 
interval 25deg 30degrδ< <  and two left spins in 22deg 19degrδ− < < − . Depending on the initial state values, the aircraft 
can enter into one of these spins. Possibility of entering into a particular spin mode and hence, a relative danger of 
different spins, is closely related to the size of region of attraction of this particular stable spin. However, estimation 
of the ROA of high order highly nonlinear systems is a tedious and non-resolved problem. Nevertheless, recent 
achievements in estimation of the ROA of polynomial systems [18-19, 21] allow to apply these methods to 3-5 
degree polynomial systems and medium number of states. For this reason, it was decided to apply these techniques to 
estimation of the ROA size of stable spins using polynomial approximations of the reduced 5th order aircraft 
dynamics. A relation between spin parameters calculated for the 8th order and 5th order systems is presented below. 
 

 
 

Figure 2: Equilibrium solutions for different rudder deflections, 5, 0e aδ δ= − =  
The reduced 5th order aircraft dynamics equation system is obtained from the 8th order nonlinear spatial aircraft 
motion neglecting the gravitational force in comparison with the inertia and aerodynamic forces (that is reasonable 
for fast rotations) and assuming flight speed to be constant. It has the form:  
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For the reduced 5th order system (4) the same continuation procedure on a parameter rδ  is applied. Figure 3 presents 
one curve showing spin parameters depending on rudder deflections for the 8th order and 5th order systems together, 
with flight speed fixed at the value of spin equilibrium calculated for the  8th order system at 30degrδ = − : V= 77.81 
m/s. It can be seen that α  and  β  parameters coincide very well, while p,q,r values differ essentially. At the same 
time, the continuation procedure for the 5th order system was performed with variable speed V, changing along the 8th 
order spin curve. The result of this continuation is shown in Figure 3 by black line.  It can be seen that this black 
curve coincides very closely with the original 8th order equilibrium curve. So, spin parameters calculated according 
to the reduced system are very close to the exact values if the velocity value of spin motion is correct. 

Simulation shows that most trajectories near stable spin equilibria calculated according to the 8th order and 
5th order motion equations are similar.  Figure 4 shows comparison of such trajectories for both systems. Entering 
into spin motion from a straight-and-level flight according to the full spatial 12th order and 5th order motion equations 
are also reasonably similar, as shown in Figure 5.  

 
 

Figure 3: Equilibrium solutions for different rudder deflections. 
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Figure 4: Comparison of trajectories near spin motion according to 8th order and 5th order equations  

 
Figure5: Entering into spin motion from a straight-and-level flight: 12th order and 5th order equations 
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 3.  Polynomial approximation of 5th order aircraft motion near stable spins  

To construct a polynomial approximation of the 5th order aircraft motion system near a stable spin equilibrium, the 
nonlinear aerodynamic coefficients (1) and equations (4) were approximated by polynomials. Note, that nonlinear 
aerodynamic coefficients have already a 3rd degree polynomial form in sideslip and angular rate components.  
Equations (4) have a degree two polynomial form in angular rates. So, it is necessary to approximate the 
aerodynamic coefficients in alpha angle near each of the considered spin equilibrium. The least-square 
approximation of the look-up table data was used for fitting the data. An example of ( , )iC α β∆  ( , , ,i Y l m n= )  and 

( , )i aC pα∆ ( , ,i Y l n= ) fitting near spin equilibrium at 30deg, 5deg, 0r e aδ δ δ= − = − = , for which  angle of attack is 
equal to 54.84degsα =  is shown in Figure 6. Sideslip angle β  in this polynomial approximation ranges uniformly in 
interval [-20o  20o], non-dimensional angular rate ˆ: apΩ =  ranges in interval [-0.24  0.24]. 
In the present paper, the following stable spin equilibrium points listed in Table 1 are considered for the ROA 
estimations.  They are taken from two curves in Figure 2 and then adjusted according to the reduced system (4).    
 

Table 1: List of estimated stable spins 
 

No ,degrδ  V, m/s 
sα , deg sβ , deg ps, rad/s qs, rad/s rs, rad/s 

1 -30  77.82 54.84 2.34 -1.007 0.029 -1.433 

2 -20  83.81 50.07 2.43 -1.109 0.037 -1.332 

3 -20 101.80 36.76 5.34 -1.525  -0.046 -1.153 

4  0 119.79 30.04 4.23  -1.828 -0.012 -1.067 

5  0 174.33 17.62 -0.39  3.618  0.155  1.160 

6  20 114.38 31.51 -6.59  1.752 -0.097  1.089 

7  30 106.38 34.81 -6.87   1.593 -0.099  1.122 

8  30 78.40 54.30 -1.78   1.023  0.047  1.425 

 
For each equilibrium point (each sα ) a polynomial approximation around sα is calculated separately in intervals from 
[-15o   15o] up to [-23o   23o] ranges, depending on the nonlinearity extent.  
In addition to aerodynamic coefficient nonlinearities, system (4) is nonlinear due to trigonometric terms. 
Trigonometric functions of angle of attack were approximated by 3rd order polynomials for each considered stable 
spin mode around an appropriate angle of attack value sα . Trigonometric functions of β  were approximated by 3rd 
order polynomials near 0β =  since sideslip angle is small in spin motions.  Fitting the equations, 

cos sin and sin cosD X Z L X ZC C C C C Cα α α α= − − = − +  data rather than CX  and CY  were fitted  for accuracy 
increasing. This is justified by the structure of the equations. 
A degree nine polynomial model is obtained after replacing all non-polynomial terms with their polynomial 
approximations. The polynomial approximation to the original nonlinear model is only valid within a certain region 
of state-space, for different spin modes these regions differ. A result of approximation of right sides of equations (4) 
near spin mode No 8 (see Table 1) is shown in Figure 7. Then the polynomials were reduced to the forth order ones 
rejecting high order and small amplitude terms. 
To validate the polynomial approximation, the numerous simulations have been performed by perturbing the states 
from the stable spin equilibrium conditions and compared to the original model.  Most state trajectories are similar 
for both the polynomial and the original model. The validation approach is heuristic, however, it provides some 
assurance that the developed polynomial model has captured the dynamic characteristics of the original model. 
Figures 8 and 9 demonstrate examples of trajectories of the original system (4) and its polynomial approximations 
for different initial conditions. It can be seen that the 3-rd order truncated polynomial approximation gives poor 
coincidence, while the 4th order approximation gives rather satisfactory results. 

 

 7 

DOI: 10.13009/EUCASS2017-312



A.Khrabrov, M.Sidoryuk and D.Ignatyev  

 
Figure 6: Look-up table data and polynomial fit  for ( , )iC α β∆  and ( , )i aC pα∆  

 
 

 
Figure 7:  Original model and polynomial fit  for right  sides of equat ions (4)    
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Figure 8: Comparison of time histories of motion parameters for 5th order equations and polynomial approximations 

 

 
Figure 9: Comparison of time histories of motion parameters for the original 5th order equations and polynomial 

approximations for different initial conditions. 
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4. Regions of attraction estimation 

Formally, the ROA of an autonomous nonlinear dynamical system of the form 
 

0( ), (0)x f x x x= =      (5) 
 

where nRx∈  and n n: R Rf →  is a multivariable polynomial, is defined as follows. Assume that 0x  is an 
asymptotically stable equilibrium. Without loss of generality let 0 0x = . The ROA is defined as  
 

{ }n
0 0R : if (0) then lim ( ) 0

t
x x x x t

→∞
ℜ = ∈ = = . 

 
Computing the exact ROA for nonlinear dynamical systems is a very difficult task. There has been significant 
research devoted to estimating invariant subsets of the ROA [6-8]. The approach taken in this paper follows the 
approach adopted in recent years [9-17]. It supposes to restrict the search to ellipsoidal approximations of the ROA. 
Given an nxn matrix 0TN N= > , define the shape function ( ) : Tp x x Nx=  and level set { }n: R : ( )x p xβ βε = ∈ ≤  

( )p x  defines the shape of the ellipsoid and β  determines the size of the ellipsoid βε . The choice of p reflects the 
importance of certain directions in the state space. N is usually taken to be diagonal.  Given the shape function p, the 
problem is formulated as finding the largest ellipsoid βε  contained in the ROA:  
 

* max subject to ββ β ε ⊂ ℜ= . 
 

Since determining the best ellipsoidal approximation to the ROA is still a sophisticated computational problem, 
lower and upper bounds for * *( )β β β β≤ ≤  are computed instead.  If the lower and upper bounds are close then the 
largest ellipsoid level set is approximately computed. The lower bounds give a guaranteeing estimate of the ROA. 
They are computed using Lyapunov functions and recent results connecting sums-of-squares polynomials to semi-
definite programming.  Computing these bounds is based on the following important theorem [20]: 
 If there exists  0γ >  and a polynomial Lyapunov function n: R RV → such that 
 

( ) ( )
{ }
{ } { }

n

n

0 0 and 0 0

: R : ( ) is bounded

R : ( ) ( ) 0 0

V V x x

x V x

x V x f x

γ

γ

γ

= > ∀ ≠

Ω = ∈ ≤

Ω ⊂ ∈ ∇ < ∪

    (6) 

 
then for all x γ∈Ω , the solution of Equation (5) exists, satisfies ( )x t γ∈Ω  for all 0t ≥ , and γΩ ⊂ ℜ .  
A Lyapunov function V satisfying these conditions, provides an estimate of the region of attraction. A first Lyapunov 
function candidate is a quadratic function T

linV x Px=  where 0P > is a solution of the Lyapunov equation  
 

0

, :T

x

fA P PA I A
x =

∂
+ = − =

∂
 

 
This function satisfies the theorem conditions for sufficiently small 0γ >  and can be used to compute a lower bound 

on *β  by solving the optimizations: 

{ }n* : max subjec R : ( ) ( 0t )to x V x f xγγ γ Ω ⊂ ∈ ∇ <=    (7) 

*: max subject to
γββ β ε Ω= ⊂      (8) 

 
For constructive solving of such optimization problems with set containment constraints it was proposed to replace 
them by sufficient conditions involving non-negative polynomials [13-14, 17-19].  A multivariate polynomial h(x) is 
non-negative if there exist such polynomials {g1,…gn} that h=g1

2+… gn
2 (sufficient condition).  Polynomials that can 

be constructed in this way are called sum-of-squares (SOS) polynomials and optimization methods exploiting these 
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polynomials are known as SOS-optimization. Thus, the optimization task (8) is replaced firstly by a sufficient 
condition 
 

, (x)

*

: max subject to s( ) 0

( ( ))s( ) ( ( )) 0
s

x

p x x V x x
β

β β

β γ

= ≥

− − − − ≥ ∀
 

 
and then by an SOS optimization problem: 
 

*

: max subject to s( ) SOS

( ( ))s( ) ( ( )) SOS

x

p x x V x

β β

β γ

= ∈

− − − − ∈
 

 
where s(x) is a decision variable. 
The algorithm for the ROA estimation is taken from [21, 23]. It consists in performing the so called V-s iterations: 
 

1. γ  step: hold V fixed and solve for s2 and *γ  

2

*
2 2,

: max subject to ( )
s SOS

VV s f l SOS
xγ

δγ γ γ
δ∈

 = − − − + ∈ 
 

 

2. β  step: hold V , *γ fixed and solve for s1 and β  

( )
1

*
1,

max subject to ( )
s SOS

p s V SOS
β

β γ β γ
∈

= − − − − ∈  

3. V step: hold s1, s2, β , *γ  fixed and solve for V satisfying: 

*
2 2

*
1 1

( ) SOS

( )s ( ) SOS SOS (0) 0.

VV s f l
x

p V V l V

δγ
δ

β γ

 − − − + ∈ 
 

− − + − ∈ − ∈ =

 

 
Here 1 1

Tl x xκ= − , 2 2
Tl x xκ= − , 7 6

1 2 10 10κ κ − −= = ÷ . Steps 1-3 are repeated as long as the lower bound β  continues to 
increase. Software for V-s iterations were taken from open-source tools [21-23].  
Figure 10 shows a result of 20 V-s iterations with quartic Lyapunov functions for the first spin equilibrium point 
from Table 1, projections on different state coordinate planes are shown. Black lines show increasing sublevels of 
Lyapunov function ( )V x γ= , and magenta lines show increasing with iterations ellipsoids  ( ) Tp x x Nx=  which 
interior is a guaranteed part of the  ROA. The center of the ellipsoid is at the spin equilibrium. Weighting matrix N in 
this study was taken to be identity. The length of a semiaxis of the ellipsoid along α  and β  direction is about 30 
deg (recall 55degsα  ), that is rather substantial. 

Another estimation of the ROA for the same spin equilibrium was performed with matrix 
N=diag(5.25,5.25,1.31,1.31,1.31) supposing that region of attraction is 2.5 times larger in p, q, r directions than in 

,α β  direction. The result of this estimation is shown in Figure 11 together with the previous result.  In this case, the 
ellipsoid is much larger in the p, q, r directions. Note, that both ellipsoids give the guaranteed estimation of the ROA. 
This means that the union of these ellipsoids is also the ROA. This remark gives a way of increasing the obtained 
ROA estimations. It is worth to say that in multidimensional systems, regions of attraction have usually very intricate 
form. This can be seen from examples of cross-sections of the ROA of spin equilibrium points calculated by direct 
simulation in [4]. 
Results of similar estimations of the ROA for other spin equilibrium points listed in Table 1 are given in Figure 12. It 
can be seen that due to lateral aerodynamic asymmetry, right and left spins have different sizes of the ROA, and 
hence, different probability of entering into these spins. Comparison of the ROA for two spins existing for the same 
parameter values,  20o

rδ = −  (regimes No 2: 50o
sα = , and No 3: 37o

sα = in Table 1) shows that the second spin 
mode has the larger ROA size and hence, is more probable. Comparison of the ROA for two different spins at 

30o
rδ =  (regimes No 7, 35o

sα =  and No 8, 54o
sα = ) shows that in this case the ROA sizes are almost equal, and 

they are equally probable.  
Note, that even for neutral rudder and aileron defections, and the elevator position near straight-and-level flight, there 
are two stable spin modes  (regimes No 4: 30o

sα = , and No 5: 18o
sα = ) with the notable ROA sizes, the ROA for 

the spin equilibrium with positive roll rate is larger  than for spin with negative roll rate, that is the first spin is more 
probable. 
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Figure 10: Projections of sublevel sets of Lyapunov functions and estimated ellipsoidal approximations  

 
 

 
Figure 11: Projections of sublevel sets of Lyapunov functions and estimated ellipsoidal approximations for 

N=diag(5.25,5.25,1.31,1.31,1.31) (V1,p1),  and N=diag(1,1,1,1,1) (V2,p2). 
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Figure 12: Projections of sublevel sets of Lyapunov functions and estimated ellipsoidal approximations for spin 
regimes from Table1 

 5. Conclusions 

Recently developed quantitative methods for analysis of nonlinear systems used so far for robustness analysis of 
normal flight regimes has been applied to analysis of dangerous flight regimes such as spins. The parameters of spin 
modes of a general aircraft were calculated using numerical continuation on rudder deflection as a parameter. Then 
multivariable polynomial approximations of the reduced 5th order system near a number of stable spin modes were 
calculated and validated by simulating from different initial conditions. Lower bounds on the regions of attraction for 
a set of stable spin equilibrium were estimated using SOS optimization, which allows to establish guaranteed 
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stability regions for the nonlinear systems. It is important to note that the ROA analysis accounts for significant 
nonlinearities in the aircraft dynamics. The size of regions of attractions can be considered as a metric for estimation 
of the relative danger of different spin modes, and as a probability of entering in a particular spin mode in the case of 
several stable spin modes for the same set of parameter values. 
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