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       Abstract 

 
This work is a numerical and experimental study of fluid-structure interaction at Mach 5.8. Numerical results from 

low- and high-fidelity models are shown and compared. Procedures and details of the generation of the numerical mesh 

are given. The mesh topology shape, irrespective of flow direction, shock position, and sonic line location can lead to 

non-physical results if not optimised. Orthogonality of the cells to the wall is fundamentally important to reach 

numerical convergence and reliable results. Under an inviscid point of view, piston theory is confirmed to be an 

appropriate tool in the evaluation of the inviscid pressure over the plate, as it showed good agreement with the empirical 

data. Concerning the viscous aspects, the shear stress and heat transfer histories shared the same frequency with the  

structural, and their spatial distribution present a degree for hysteresis. Finally, the boundary layer height changes not 

only according to local slope and speed of the wall, but it is a function of the actual structural mode of vibration. 

Nomenclature 

Flow Variables: 

q  =  Heat flux rate on the plate 

p  =  Pressure 

τ  =  Shear stress on the plate 

a  =  Sound speed 

St  =  Stanton number 

Cf  =  Skin friction coefficient 

M  =  Mach number 

 

Structural Variables 

l  =  Beam element’s length 

L =  Plate length 

T =  Period of oscillation 

th  = Plate’s thickness 

w  = Structural displacement 

θ  = Local slope 

ω  = Frequency (= 2πf)  

E  =  Young’s modulus 

I  =  Inertia of the beam cross-section 

M  = Mass matrix 

K  =  Stiffness matrix 

D̅  =  Damping matrix 

ζ  =  Damping ratio 

α,β  =  Rayleigh coefficients 

Other Variables 

x  =  Coordinate tangent to the wall 

y  =  Coordinate normal to the wall 

t  =  Time 

η  =  Ratio between pressure with 

3D effects and 2D pressure 

 

Subscripts: 

w  =  At the wall 

S  =  Structure 

1  =  1st mode 

2  =  Post-shock conditions or 2nd mode 

3  =  3rd mode 

∞  =  Freestream conditions 

 

Abbreviations: 

BL =  Boundary layer 

LE =  Leading edge 

PT1=  Pressure transducer near the hinge line  

PT2=  Pressure transducer near the trailing edge 

PT3=  Pressure transducer beneath the plate 

TE =  Trailing edge 

TUSQ = Wind tunnel at University of  

Southern Queensland 
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1. Introduction 

Empirical data on fluid-structure interaction (FSI) in hypersonic flow is limited. The majority of the experimental work 

took place in the late 50s and 70s with hypersonic flutter being the main concern for the early supersonic and hypersonic 

experiences that culminated in the development of the test aircraft such as the X-15. The main models made use of 

semi-rigid wings and fins where the airplane’s support was represented by a system of springs and flexures [1-11]. By 

the 1980’s, however, the majority of the flutter facilities were dismantled resulting in a dramatic fall in high-speed FSI 

research and development [12,13].  

 

Whilst the majority of these experiments were focussed on structural instabilities, very little research was done in terms 

of viscous effects and how the dynamics of the boundary layer was coupled with the structural displacement [10,11].  

 

The last ten years have seen a renewed interest in fluid-thermal-structure interaction in hypersonic flows because of 

the increasing computational power now available. Special emphasis has been given to numerical simulations and 

low-fidelity models (LFMs) [14]. The inviscid aspects are generally modelled by the piston theory [15], while the 

viscous heating is modelled using the Eckert reference enthalpy method [16,17]. The structural dynamics are often 

reduced to the first 6 modes which are the most energetic [18]. As regards the actual shape of the boundary layer, the 

momentum displacement thickness is computed a priori and superimposed on the model, changing the shape of the 

surface [12,19].  

 

However, experiments conducted in this area remain limited [20-24] and possible validation of numerical codes, on 

the basis of empirical data produced thus far, has proven challenging. This justifies the need for fundamental 

hypersonic FSI experiments to further understand the underlying physics and to enhance the fidelity of numerical 

simulation. 

 

Recent studies have analysed the influence of structural dynamics on the boundary layer shape and stability. From a 

numerical point of view, Riley et al. [25-26] highlighted the incidence of high-frequency acoustic disturbance on the 

transition location for a generic metal panel subjected to buckling. More recently, Currao et al. [21] analysed the 

boundary layer thickness over an oscillating cantilevered plate using high-speed imagery from a schlieren system. 

These empirical observations showed that the boundary layer height is not simply a function of freestream conditions, 

local slope, and speed of the wall. Thus, the wall fluxes (shear stress and heat flux) are also dependent on the structural 

mode of deformation. 

 

The present work is a numerical and experimental study, which develops on the empirical findings of Currao et al. 

[21] in a more systematic way. Numerical results are compared against a LFM and validated through experiments in 

terms of displacement and pressure. Wall fluxes and boundary layer are analysed spatially and temporally. Finally, it 

is shown that the boundary layer thickness cannot be considered only a function of the local plate slope and free-stream 

condition, as perturbations in the downstream flow can affect the boundary layer upstream and vice versa. When quasi-

steady conditions apply, the boundary layer can more realistically be considered a function of the instantaneous 

structural deformed shape.  

2. Experimental Set-Up 

The Facility 

The facility used for the experiments was the free-piston driven compression-heated Ludwieg tube, TUSQ [27], located 

at the University of Southern Queensland in Toowoomba, Australia. TUSQ is capable of producing approximately 200 

ms of hypersonic flow at a nominal Mach number of 5.85. The tunnel offers a high level of reproducibility and 

consistency across different runs, with the mean pressure change less than 5%. The fluctuations in the freestream 

pressure are confined to around 100 Pa (Figure 1); whilst the free stream Mach number is set to 5.8 with a small spatial 

uncertainty of ~0.3%. In order to preserve a high level of fidelity keeping the general applicability of the results shown, 

numerical data will refer to nominal free stream conditions except when directly compared with particular experimental 

runs (Table 1).  
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Figure 1. Freestream pressure history. 

 

Table 1. Condition used for the numerical simulations. RUN475 refers to the mean freestream conditions 

during the actual experiment. 

Condition M∞ p∞ T∞ Tw Re∞ 

  (Pa) (K) (K) (1/m) 

Nominal 5.85 755 75 290 7.16e6 

RUN475 5.85 659.30 (±50) 70.24(±1.55) 289.15 7.16e6 

 

Experimental model: HyFoil  

The model, designated HyFoil0.3, was manufactured entirely out of aluminium and was composed of two parts, the 

support (rigid) and the oscillating plate (Figure 2). The support was a 100 mm long and 10 mm thick plate, with a 

leading edge wedge angle of 45 degrees, an AOA of 20 degrees and a leading edge radius of 500 µm. Its function was 

compressing the flow over the oscillating plate, which was cantilevered at the support’s trailing edge (TE), in order to 

ensure oscillations of the desired amplitude. The plate, 130 mm long and 2mm thick, had material properties that 

deviated slightly from the nominal values for Al-6061-T6. The oscillating plate was cut from a large panel with a 

nominal thickness of 2 mm, and it underwent a series of non-destructive tests to establish flexural modulus (E) and 

damping ratio (ζ). The first was obtained via a static test. The plate was cantilevered and a point load was applied at 

the trailing edge by hanging a known mass from the plate. Thus, the displacement was compared with the numerical 

solution for a plate with the same properties. In a similar fashion, the damping ratio was obtained by removing the 

point load and studying the free oscillations. These measurements were made using a laser scanner with an accuracy 

of the order of 50 µm. The material properties are reported in Table 2.  

 

Table 2. Plate’s properties 

Length Width Thickness E ρ ζ 

(mm) (mm) (mm) (GPa) (g/cc)  

130 (±0.1) 80 (±0.1) 1.95 (±0.02) 52.7(±0.5) 2668.75 0.0038 

      

 

 
 

Figure 2. Technical details of the experimental set-up.  
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The type of constraint and the nature of the flow, forced the plate to oscillate mainly following the first mode, which 

is shown in Figure 3. As the plate motion was primarily two-dimensional (2D), the numerical simulations shown in 

this work assumed a 2D flow around the plate neglecting border effects. Such an assumption drastically reduced the 

computational time without introducing decisive approximations, which are discussed in the section devoted to the 

numerical validation.  

 

   
1st mode: f1 = 87.37 Hz 2nd mode: f2 = 308.52 Hz 3rd mode: f3 = 541.97 Hz 

   

Figure 3. Modes of the plate and respective frequency (contours show displacement). 

 

Pressure Measurement and Flow Visualization 

Experimental data were comprised of point pressure measurements and image tracking of the displacement. The former 

were obtained by three pressure transducers, two located on the top of the plate and the third in the recirculation region 

beneath the plate (Figure 2 and Figure 4). The uncertainty in the measurement is limited to ±50Pa. 

 

  
  

Figure 4. a) Schematic of the experiment and b) Mach distribution from numerical results. 

 

   

   
   

Figure 5. Schlieren flow visualization and plate’s deflection tracking. The plastic hoses are connected to the 

pressure transducers: PT1 (near the hinge), PT2 (near the trailing edge) and PT3 (beneath the plate). 

DOI: 10.13009/EUCASS2017-299



HYPERSONIC FLUID-STRUCTURE INTERACTIONS ON A CANTILIVERED PLATE 

     

 

 

 

5 

Additionally, the experiment was recorded through a schlieren system to investigate the flow structure and to evaluate 

the plate’s deformation history (see Figure 5). 

3. Low-Fidelity Model (Inviscid) 

The plate is modelled as a cantilevered beam. With a thickness to length ratio of O(1e-3), sections are assumed always 

normal to the beam axis making use of the widely-known Euler-Bernoulli beam model appropriate [28]. The equation 

describing the motion of the beam can be written as: 

 

𝐷
𝜕4𝑤

𝜕𝑥4
= 𝑝(𝑥, 𝑡) − 𝜇

𝜕2𝑤

𝜕𝑡2
,                                                                           (1) 

 

where, D = EI/(1-υ2), and µ is the mass per unit length and p is the aerodynamic pressure, which requires additional 

modelling. The equation is solved using the Galerkin orthogonal decomposition method. Each element can be 

described using four nodal displacement variables: 

 

𝑤(𝑥, 𝑡) = 𝑁𝑗(𝑥)𝑤𝑗(𝑡), 𝑗 = 1,2. .                                                                  (2) 

 

where N(x) is the shape function vector, 𝒘(𝑥) = [𝑤1 𝜃1 𝑤2 𝜃2]
𝑇 is the nodal vector and j the node number. For 

a single element beam, the finite element model (FEM) can be written as: 

 

𝑀𝒘̈ + 𝐷̅𝒘̇ + 𝐾𝒘 = 𝑓                                                                                 (3) 

 

with 

 

𝑀 =
𝜌𝐴𝐿

420
[

156 22𝑙 54 −13𝑙
22𝑙 4𝑙2 13𝑙 −3𝑙2

54 13𝑙 156 −22𝑙
−13𝑙 −3𝑙2 −22𝑙 4𝑙2

] , 𝐾 =  
𝐷

𝑙3
[

12 6𝑙 −12 6𝑙
6𝑙 4𝑙2 −6𝑙 2𝑙2

−12 −6𝑙 12 −6𝑙
6𝑙 2𝑙2 −6𝑙 4𝑙2

],         (4.1 − 4.2) 

 

𝑓 =
𝑙

2
𝑝(𝑥, 𝑡) [

1
𝑙 6⁄
1

−𝑙 6⁄

] , 𝐷̅ = 𝛼𝑀 + 𝛽𝐾.                                             (4.3 − 4.4) 

 

Where f is the aerodynamic load and D the damping matrix. M (mass matrix) and K (stiffness matrix), here represented 

in their original form, are modified with the Timoshenko shear stress correction [28]. Being the main contribution, in 

terms of effective mass, given by the first two modes, a Rayleigh (2-modes) damping model is used [29]. α and β, or 

mass and stiffness damping coefficients respectively, are obtained given the first two natural frequencies (ω1, ω2) and 

the damping ratios (ζ1, ζ2): 

 

𝛼 = 2𝜔1𝜔2

𝜁1𝜔2 − 𝜁2𝜔1

𝜔2
2 − 𝜔1

2 , 𝛽 = 2
𝜁2𝜔2 − 𝜁1𝜔1

𝜔2
2 − 𝜔1

2 .                                                    (5) 

 

The aerodynamic pressure is modelled via the piston theory [15]: 

 

𝑝(𝑥, 𝑡) = 𝑝2 (1 +
𝛾 − 1

2

𝑣(𝑡)

𝑎2

)

2𝛾 𝛾−1⁄

,                                                                 (6) 

 

Where the subscript 2 refers the condition behind the leading edge shock. The piston speed v(t) is defined as: 

 

𝑣(𝑡) = [1 0 1 0]
𝒘̇

2
+ [0 1 0 1]𝑈2

𝒘

2
.                                                        (7) 

 

Finally, a non-linear model is adopted to take moderately large deflections into account [30]. When the beam is 

deflecting the actual distance between the two nodes j and j+1 of the beam element, ∆xj, is smaller than l: 

 

Δ𝑥𝑗 = 𝑙(1 − cos 𝜃𝑗)~𝑙 𝜃𝑗
2 2⁄ ,                                                                        (8) 
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This results in an over estimation of the nodal moments. Thus, the aerodynamic load vector f is corrected, reducing the 

nodal moments appropriately as follows: 

 

𝑓𝑗 =

[
 
 
 

𝑓𝑗
𝑡𝑗

𝑓𝑗+1

𝑡𝑗+1]
 
 
 

⇒  

[
 
 
 
 

𝑓𝑗
𝑡𝑗 − 𝑓𝑗𝑙Θ𝑗

𝑓𝑗+1

𝑡𝑗+1 − 𝑓𝑗+1𝑙Θ𝑗+1]
 
 
 
 

, 𝑤𝑖𝑡ℎ Θ𝑗 = ∑
𝜃𝑖

2

2

𝑗−1

1

.                                               (9) 

4. High Fidelity Modelling: Numerical Methodology 

Mesh Details 

The mesh is created via ANSYS/ICEM CFD. Using the strategy of “blocking”, the mesh was divided in outer flow 

and boundary layer. The latter is an o-grid (or circular) block around the plate, characterised by first cell height (∆yw), 

top cell eight (∆ye), height of the boundary layer block (δO-GRID) and average length of the cell (∆x) (Table 3). 

 

Table 3.  Details of the o-grid parameters. 

Location δO-GRID ∆yw ∆ye ∆x 

 (µm) (µm) (µm) (µm) 

Leading Edge ~2 0.2-2 7-20 2-4 

Flat plate ~20 30 30-70 ~250 

     

The convergence of the simulation was extremely sensitive to the shape of the o-grid at the stagnation point. It was 

necessary to match the edge of the o-grid with the curved standing shock. Finally, all the cells on the wall had to be 

orthogonal to the wall. Details of the mesh are given in Figure 6. 

 

  
  

Figure 6. Mesh details. a) Near the LE, the o-grid edge is aligned with the curved shock and the cells follow 

the shape of the sonic line. b) Where the mesh is not aligned perfectly with the shock non-physical waves 

are created. 

 

It was extremely challenging if not generally impossible, to align perfectly a strong (curved) shock with the mesh grid 

[31]. When this happened, the shock generated spurious waves every time it moved from one cell to another one, or 

went through a “cell-step”. Local refinement with hanging nodes, based on local gradient, proved to have limitations. 

Additionally, a general refinement enhanced this phenomenon. The strategy used in this work was to minimize the 

strength of the spurious waves, reducing cell growth ratio and cell misalignment in the region spanning the shock. To 

facilitate this trial-and-error process it is advisable to create a grid block to include the shock layer. Two typical cases 

of fair and poor alignment are shown in Figure 7. 
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Figure 7. Numerical shadowgraph of the results from two different meshes with a) fair and b) poor shock 

alignment. 

 

Convergence Criterion 

The numerical simulations were performed using ANSYS Fluent 17.0. An implicit second-order upwind solver was 

used to produce the steady solution. The steady solution was used to initialize the transient FSI simulation; being the 

flow fully established in the first half a millisecond of flow. The steady initialization dramatically reduced the 

computational time without visibly affecting the quality of the solution. The residuals of continuity, energy and 

momentum equations were checked with every iteration to monitor the convergence. In order to make the convergence 

criteria generally applicable, the residual (Res) of a conserved variable (W), and the square root of the average of the 

squares of the residuals (RMS) are defined as: 

 

𝑅𝑒𝑠(𝑊) =  
𝜕𝑊

𝜕𝑡
,                                                                                   (10) 

 

𝑅𝑀𝑆(𝑊) =  √∑ (
𝜕𝑊

𝜕𝑡
)

2

.                                                                              (11) 

 

Every simulation converged to a value of scaled RMS residuals smaller than 1e-6. The scaled RMS residual is 

defined as the ratio of the RMS residual to the largest value of the RMS residual during the first five iterations. The 

domain was solved via a density-based, cell-centred, second-order upwind solver. A blending factor of 80% between 

first and second order was used to solve the cells near the shock.  

 

Mesh Independency Study 

The most sensitive parameter in the mesh independence study was the first cell height to the wall (Table 4).  

 

Table 4. Grid independence study in the y-direction: refinement in the first cell height of the o-grid. 

Convergence criterion = |∆q| = 1%. 

Mesh name ∆x ∆yw q at x = 212 mm max(RMS) 

 (µm) (µm) (kw/m2)  

MESH1 500 60 7.93(+6.15%) < 1e-6 

MESH2 500 30 7.47 < 1e-6 

MESH3 500 15 7.51(+0.53%) <1e-6 

     

Table 5. Grid independence study in the x-direction: refinement in the cell-length of the o-grid over the flat 

plate. Convergence criterion = |∆q| = 1%. 

Mesh name ∆x ∆yw q at x = 212 mm max(RMS) 

 (µm) (µm) (kw/m2)  

MESH3 1000 30 7.55(+1.10%) < 1e-6 

MESH2 500 30 7.47 < 1e-6 

MESH4 250 30 7.48(+0.2%) <1e-6 
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As regards the x-direction, the mesh was over-refined as the optimal value was chosen to minimise the spurious 

oscillations generated by LE shock and mesh misalignment. The grid independence study is shown in Table 5. 

5. Comparison with experiments 

In Figure 8(a), the pressure trend near the hinge (PT1 at x = 215 mm) and near the trailing edge (PT2 at x = 110 mm) 

are in good agreement with the experiment. Close to the hinge, the fluctuations of pressure are mainly due to the 

unsteadiness of the freestream pressure. PT1 and numerical results are in good agreement. As regards PT2, the 

discrepancies are smaller than 13% while PT3 and numerical simulations present negligible differences (Figure 8(b)). 

 

 

 
 

Figure 8. Comparison between numerical results and experiments in terms of pressure: a) at two different 

locations, near the hinge and close to the TE, and b) under the plate. 

 

The discrepancies between PT2 and numerical simulations can be explained in terms of 3D effects. Bonney [32,33] 

developed a relation for subsonic and supersonic flow to determine the extent of the 3D effects caused by corners and 

sharp changes in leading-edge curvature. According to Bonney, the pressure tip losses on the plate are confined to a 

Mach cone with an angle of 𝜇 = sin−1 1 𝑀2⁄  and with the apex on the corner of the plate (as shown in Figure 9).  
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Figure 9. Pressure distribution on a sharp plate with AOA = 20o using the conical theory. 

 

Referring to Figure 9, a relationship between the actual pressure affected by the tip loss (p3D) and the pressure without 

border effects (p) can be written as: 

 

𝑝 − 𝑝𝑒𝑑𝑔𝑒

𝑝3𝐷 − 𝑝𝑒𝑑𝑔𝑒

= 
2

𝜋
sin−1 √

tan 𝜇′

tan 𝜇
                                                                     (12) 

 

Where 𝜇′ < 𝜇, is the angle of a ray emanating from the plate corner within the Mach cone. pedge is assumed to be the 

pressure behind the shock, which is clearly an approximation, especially because downstream of the hinge the thickness 

of the oscillating plate is only one fifth that of the upstream rigid plate, resulting in more spillage over the edges. PT2 

is within a region of overlap, where the pressure is determined as  

 

𝑝3𝐷
𝐼𝐼 (𝜇′) = 2𝑝3𝐷(𝜇′) − 𝑝.                                                                           (13) 

 

Thus, it is possible to define a parameter η as: 

 

𝜂𝑇𝐻 =
𝑝3𝐷

𝐼𝐼

𝑝
, 𝜂𝑒𝑥𝑝 =

𝑝𝑒𝑥𝑝

𝑝𝐶𝐹𝐷

, 𝑎𝑡 𝑥 = 215 𝑚𝑚                                                   (14) 

 

where subscripts TH and exp denote the theoretical and actual value of η respectively. η is a parameter indicative of 

the incidence of the 3D effects on the evaluation of the pressure; it is equal to one if there are not 3D effects or PT2 is 

outside the Mach cone, otherwise it will be generally η < 1 being pedge < p2. Table 6 shows a comparison in terms of η 

between conical theory and experiment showing a fair agreement. In order to match ηEXP, pedge must be 400 Pa smaller 

than what was assumed in the Equation (12). To conclude, considering the uncertainties in the pressure measurement 

(±50Pa), the discrepancies in terms of pressure, between PT2 and numerical results, can be considered justified. 

 

Table 6. Conical theory results at x = 215 mm. 

 η Equivalent Pedge (Pa) 

From theory 0.98 6712 (= P2) 

Actual Value ~0.93 6312 (-6.0%) 

   

Finally, in Figure 10 the computed TE displacement history is in good agreement with the experimental data, especially 

in terms of frequency. Discrepancies in amplitude are limited to 0.2 mm (or 40% of the plate thickness) and related to 

the aforementioned pressure differences between numerical results and experimental data.  
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Figure 10. Comparison with experiment in terms of (lower) TE displacement. a) TE displacement history b) 

Amplitude spectrum of the TE displacement. 

6. Comparison between High- and Low-Fidelity Models 

The LFM is a design tool, only used to rapidly estimate amplitude and frequency of the plate’s oscillation (Table 7), 

whilst maintaining a reasonable level of fidelity in terms of pressure and structural deformations (Figure 11).  

 

Table 7. Comparison between ROM and High fidelity simulation in terms of computational performance. 

Type of model Software Analysis N0 of cores Flow time Comp. time 

Low-fidelity Matlab Inviscid 1 200 ms 5 mins 

High-Fidelity ANSYS/Fluent Viscous 25 200 ms 8 to 50 days 

      

In Figure 11, numerical simulations are in good agreement with the (inviscid) low-fidelity model. The pressure is found 

to be only a function of the local slope, being in Equation (7) 

 

𝑤̇ ≪  𝑈2𝜃.                                                                                         (15) 

 

To conclude, viscous effects can be assumed somewhat negligible to the correct evaluation of deformation history and 

the problem can be considered quasi-steady. 
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Figure 11. Comparison between analytical and numerical model: a) Pressure along the plate for every time 

step and the piston theory law. b) TE displacement from LFM and high fidelity simulation. 

7. Viscous Aspects 

To begin with, there is no phase delay between the moving wall and the boundary layer (BL), confirming the 

aforementioned quasi-steady nature of the problem. This is shown in Figure 12, where heat flux rate and skin friction 

not only are in phase with each other (respecting the Reynolds analogy) but they share the same frequency with the 

oscillating plate (ωS).  

 

 

 
 

Figure 12. a) Stanton number and b) skin friction coefficient histories on the plate. Each line is representative 

of a specific location on the plate relative to the hinge (x = 100 mm). The location of the PTs (110 and 215 

mm) are indicated in black. 
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As expected, the wall fluxes near the trailing edge present a certain amount of hysteresis, which is absent or small in 

the proximity of the hinge (M2θ ≈ 0) where the piston theory is more linear. This is most probably due to the inertia of 

the boundary layer, which is normally thicker in hypersonic flows. However, the change in the BL thickness does not 

have an effect on the external pressure as the cantilevered plate is in a region of weak-interactions [17] or: 

 

𝜒̅ =
𝑀2

√𝑅𝑒2

√𝐶2 < 0.01 < 3.                                                                         (16) 

 

In Figure 12 the wall fluxes present a special feature as, for θ < 0, they increase near the hinge (M2θ = 0) and decrease 

near the TL, even though M2θ  ≤  0 everywhere at every time step. Thus, the BL thickness does not only depend on the 

freestream pressure, as perturbations within the BL can travel upstream reducing the local δ even where the external 

pressure is decreasing due to the local deflection of the plate. This feature of the BL is confirmed by the numerical 

results shown in Figure 13.  

 

 

 
 

Figure 13. Numerically derived shapes of a) the BL and of b) the cantilevered plate for every millisecond of 

the first period (T). Trends in black refers to t = 0, T/2 and T, whilst the trends in grey refers to the time 

steps in the middle. N1 and N2 represent the nodes where the BL height remains constant with time. 

Table 8. Comparison among different sources in terms of second node position (N2). 

Source Constraint L (mm) δ/L xN2/L M2 

Currao [21] Fixed-Free 70 0.014-0.050 0.88 3.33 

This work Fixed-Free 130 0.015-0.022 0.38 3.33 

      

The BL and the plate share the same characteristic frequency (ωS) but they have different modes of oscillation. The 

boundary layer’s mode presents two nodes, N1 (at the root) and N2 (at x/L = 0.38). These findings are in agreement 

with empirical data from Currao et al. [21] as shown in Table 8. 

 

DOI: 10.13009/EUCASS2017-299



HYPERSONIC FLUID-STRUCTURE INTERACTIONS ON A CANTILIVERED PLATE 

     

 

 

 

13 

For this case, under the hypothesis of quasi-steady flow and weak interactions, the local BL height at x = xj, is only a 

function of the plate shape and of the boundary layer height upstream the plate, or 

 

𝛿(𝑥𝑗 , 𝑡) =  𝛿(𝑥𝑗 ; 𝜃(𝑥, 𝑡), 𝛿(0), ) 

 

𝑤𝑖𝑡ℎ {
𝑤̇ ≪ 𝑈2𝜃

𝜒̅ < 3
                                                                      (17.1 − 2) 

8. Conclusion 

Validation data was provided for a simple configuration, an oscillating plate cantilevered at the trailing edge of a 

support inclined of 200 with respect to the hypersonic flow. The piston theory is confirmed to be a reliable tool to 

compute the inviscid external pressure under the assumption of weak viscous interactions. The problem is quasi-steady, 

as the dynamic term in the definition of the piston speed is small. Wall fluxes near the trailing edge of the plate present 

a certain degree of hysteresis, most probably due to the inertial effects of the boundary layer. The boundary layer 

thickness cannot be considered solely a local function of slope and structural speed as disturbances within the BL can 

travel upstream and downstream. Under the assumption of a quasi-steady regime, calculating the boundary layer’s 

initial shape a-priori and using the piston theory to estimate the boundary layer thickness evolution could lead to strong 

approximations especially when the determination of viscous aspects, like the separation point in shock-wave boundary 

layer interaction problems, plays a role.  
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