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Abstract
Stability of self-similar hypersonic flows over a flat plate in presence of local thermodynamic equilibrium
conditions is studied by means of linear Parabolized Stability Equations (PSE). A spectral collocation nu-
merical method together with a finite difference-based marching scheme are used to solve the equations,
while the gas mixture and transport properties are computed with a table look-up procedure. High tem-
perature effects are found to destabilize the second Mack mode regardless of the adiabatic/isothermal wall
condition considered. On the other hand, nonlocal effects show a Mach-dependence influence: stabilizing
at lower Mach, while destabilizing at higher ones.

1. Introduction

Laminar-turbulent boundary layer transition is a key aspect in the design phase of vehicles traveling at hypersonic
speeds, such as future cruise spaceplanes and atmospheric re-entry capsules. When a flow undergoes the turbulent
regime, severe increments in drag and heat flux are observed on the body surfaces, compromising not only the vehicle
performances but also its integrity. Accurate physics-based engineering tools to estimate transition locations are thus of
paramount importance in order to reduce the design margins and build more efficient and cheaper vehicles. A practical
example is the optimization of re-entry spacecraft Thermal Protection Systems (TPS), where a proper sizing of the heat
shield can avoid the employment of additional material, reducing the overall system weight and mission costs.

Despite the continuous advancement of our knowledge about the fluid stability and transition phenomenon, many
questions still have to be answered. This is particularly true in regard to hypersonic flows (see for an overview Reed et
al.22,23), due to the difficulties in conducting ground test and in-flight experiments and the complexity in modeling high
temperature gas flows. For these reasons, in order to have accurate stability analysis and reliable transition predictions
in high Mach regimes, both advanced transition and aerothermodynamic models are required.

Calculations based on Linear Stability Theory (LST) represent the most widespread technique to conduct bound-
ary layer stability analysis. In this framework the flow is considered inhomogeneous only along the direction normal to
the wall (i.e. parallel flow assumption), thus neglecting nonlocal effects such as the boundary layer growth and curva-
ture. On the other hand, the Parabolized Stability Equations (PSE) method10,9 overcomes this drawback by extending
the stability investigation to flows weakly dependent also on the streamwise direction. Moreover, with the nonlinear
PSE development1,2 the transition process can be described up to the turbulent onset, which makes the PSE results
comparable in accuracy to the DNS ones, but at a much lower computational cost.

Stability studies at high Mach regimes dealing with high temperature effects such as chemical reactions and
vibrational energy relaxation, have extensively preferred the LST framework over other stability techniques. Malik
et al.16 assumed the flow to be in thermal and chemical equilibrium (i.e. Local Thermodynamic Equilibrium, LTE),
Stuckert et al.27 introduced in the analysis finite rate chemistry (i.e. Chemical NonEQuilibirum, CNEQ), while Hudson
et al.11 considered the effect of both thermal and chemical nonequilibrium (i.e. TCNEQ). All these studies proved
that high temperature effects bring a non-negligible contribution to the boundary layer stability. In fact, in presence of
reactions and vibrational relaxation the thermal boundary layer usually cools down, leaving the flow more subjected
to second-mode disturbances. The first extension of the PSE technique to high enthalpy flows is due to Chang et al.4

for LTE conditions, and Johnson et al.13 for TCNEQ. Despite the fact that some PSE codes have been developed in
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the past, there is no extensive literature about their application to hypersonic flows. Moreover, the problems reported
often concern validations against in-flight or ground test experiments (see for example Malik15 and Johnson et al.12),
while there is a lack of benchmark results which could help a direct verification of a new PSE code. The PSE analysis
of high Mach flows highlighted a modification of the disturbances growth rate peaks levels and positions, compared to
their LST counterparts, leading to direct and sensible consequences not only on stability, but also on transition-location
estimations. Moreover, specific features like detection of unstable supersonic modes, not visible in the parallel flow
limit assumption, were found4, even if not yet fully explained.

In this work the stability of hypersonic flows over adiabatic and isothermal flat plates, in chemical and thermal
equilibrium, is studied by means of linear PSE. The influence on the nonparallel effects of infinite rate chemistry and
transport and thermodynamic properties variations is investigated at different Mach numbers. The PSE solver employed
was developed in the framework of the VKI Extensible Stability and Transition Analysis (VESTA) toolkit20. The PSE
algorithm, originally written only for flows in Calorically Perfect Gas (CPG) conditions, has been extended to include
flows in LTE regime. The results described in this work represent a first verification of the new code and a step towards
the inclusion of finite rate chemistry and nonlinearities.

2. Problem formulation

2.1 Governing equations

The Navier-Stokes equations for a gas mixture in local thermodynamic equilibrium do not formally change compared
to the ones describing a calorically perfect gas. The fact that chemical reactions occur, in this case at an infinite rate,
leads to variable specific heats, and makes internal energy and transport properties depend on any two thermodynamic
variables (here chosen as pressure and temperature) instead of the sole temperature dependence for CPG flows. Being
the continuity and momentum equations purely mechanical in nature, they are not influenced by the chemistry, while
the energy equation slightly modifies compared to the one in CPG conditions, since the effect of diffusion has to be
included and enthalpy can not longer be written as a simple multiplication of temperature and specific heat at constant
pressure. The Navier-Stokes equations are given in nondimensional invariant form for a gas in LTE conditions, in
absence of body forces. Superscripts qi denote vectorial contravariant variables, whereas subscripts qi denote vectorial
covariant variables (see Pinna et al.21). Also, indexes following a comma denote spatial derivatives (e.g. ui

, j = ∂ui/∂x j).
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+ (u jρ), j = 0 (1a)

ρ
∂ui

∂t
+ ρu jui

, j = −gi j p, j +
1

Re
T

i j
, j (1b)

ρ
∂h
∂t

+ ρu jh, j = Ec
(∂p
∂t

+ u j p, j
)

+
1

RePr
q f

j
, j +

Ec
Re

gikT
k jui

, j (1c)

where gi j is the metric tensor, ρ the density, ui the velocity component in different spatial directions, p the pressure, h
the enthalpy and T the stress tensor defined as:

Ti j = λgi juk
,k + µ

(
g jkui

,k + giku j
,k

)
(2)

where µ and λ are respectively the first and second viscosity coefficients. Moreover, the heat flux, neglecting radiation
and the Dufour’s effect, takes the form

q f
j = −k f rgi jT, j +

ns∑

s=1

hsJ j
s = keqgi jT, j (3)

where T is the temperature, k f r the "frozen" thermal conductivity, J j
s the diffusion mass flux of the sth species and keq

is an equivalent thermal conductivity, here used to rewrite the equation in terms of a Fourier’s law. The nondimension-
alization, whose details are described in §2.2.2, leads to the appearance of the Reynolds number Re, Prandtl number
Pr and the Eckert number Ec.

For a gas in LTE conditions the mixture molecular weight variation has to be taken into account, thus the equation
of state, with the apexˆdenoting dimensional quantities, becomes:

p̂ = ρ̂
R̂

M̂diss
T̂ , where M̂diss =

( ns∑

s=1

Ĉs

M̂s

)−1

(4)
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in which M̂diss is the molecular weight of the dissociated gas mixture, Ĉs and M̂s are respectively the mass fraction
and molecular weight of the sth species and R̂ is the universal gas constant. Eq. (4) can be simplified by introducing
the compressibility factor ζ = M̂undiss/M̂diss and the specific gas constant of the undissociated gas Re

p̂ = ρ̂ReT̂ζ (5)

which in nondimensional form reads:
Hp = ρTζ (6)

where H = Ec · cpe/Re. Eq. (1) together with Eq. (6) constitute the problem governing system of equations, which has
to be closed by the definition of the transport and thermodynamic gas mixture properties through proper modeling.

2.1.1 Mixture gas properties

In the LTE limit, flow properties depend on the variable mixture composition, which is defined by the minimization of
its Gibbs free energy with proper mass balance constraints (see Scoggins et al.26). An air-5 model (N2,O2,N,O,NO)
with undissociated composition of 79% N and 21% O is adopted in this work, which takes into account the following
reactions:

N2 � 2N

O2 � 2O

NO� N + O
(7)

Transport and thermodynamic properties are obtained from the library MUTATION++ based on kinetic theory (see
Magin et al.14 and Scoggins et al.25). Tables of gas properties are generated within the library in the pressure range
200 − 8000 Pa and temperature range 50 − 5000 K. The desired values are then obtained by interpolation from these
tables.

For the computations within the calorically perfect gas model, transport properties are assumed being dependent
only from the temperature, trough the Sutherland’s law. The first viscosity coefficient µ̂ is thus modeled according to:

µ̂ = µ̂re f

( T̂
T̂re f

) 3
2 · T̂re f + Ŝ

T̂ + Ŝ
(8)

where, if not otherwise specified
µ̂re f = 1.716 · 10−5 Kg/(m · s)

T̂re f = 273.15 K

Ŝ = 110.6 K

(9)

For the second viscosity coefficient Stokes’s hypothesis is applied, thus λ̂ = − 2
3 µ̂. Thermal conductivity is also

automatically defined since constant Prandtl number and specific heat (respectively equal to Pr = 0.7 and cpe =

1.0045 kJ/(kgK), if not otherwise specified) are assumed, hence k̂ = cpeµ̂/Pr. An air gas constant Re = 287.05 J/(kgK)
is adopted.

2.2 Parabolized Stability Equations

Parabolized Stability Equations are derived by following the classic approach adopted in perturbation theory. Every
flow quantity q is decomposed into a mean part q̄, the laminar base flow, plus a perturbation component q′:

q(xi, t) = q̄(xi) + q′(xi, t) (10)

Contrary to LST, the parallel flow assumption is not applied within the PSE framework, meaning that the base flow
depends not only on wall-normal direction, but also on the streamwise one. The latter dependence though is considered
"weak", in the sense that the flow variation over one disturbance wavelength is negligible. The spanwise component
however, is not taken into account in this work, since only 2D flows are studied.

By inserting the expression (10) into the Navier-Stokes equations, subtracting the equation satisfied by the base
flow and dropping second and higher order terms (linearization), the equations governing the motion of the perturba-
tions are obtained. The main concept of the PSE development rests on the decomposition of every disturbance (or
mode) q′ into a slowly varying amplitude (or shape) function and a fast-oscillatory wave function:

q′(x1, x2, x3, t) = q̃(x1, x2)︸   ︷︷   ︸
shape function

exp
( ∫ x1

x1
0

α(ξ)dξ + βx3 − ωt
)

︸                                ︷︷                                ︸
wave function

+c.c. (11)
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where c.c denotes the complex conjugate. This decomposition is appropriate as long as the perturbations and their
characteristics vary slowly in the streamwise direction (allowing the simplification q̃,11 = 0) and they are subjected
eventually only to convective instability. Substituting the ansatz (11) into the perturbation equations and applying the
aforementioned hypothesis the PSE in CPG and LTE conditions are obtained. Regardless of the aerothermodynamic
model used, the equations can be rearranged in the matrix form:

L q̃ + M q̃
,1

+ α,1Na q̃ = 0 (12)

where q̃ = [ũ1, ũ2, ũ3, T̃ , p̃] is the vector of the perturbation variables and the L, M and Na matrices are functions of the
mean flow quantities and the stability parameters.

In order to solve the problem, Eq. (12) is not sufficient, since the variation of α introduces one additional un-
known. The way to close the problem is solving the ambiguity in the decomposition (10). This is translated in imposing
a proper normalization condition on q̃ at a fixed boundary height location or in an averaged sense, by means of an in-
tegral norm. Following the explanation in9, the desired closure expression finally takes the form:

∫

Ω

q̃†q̃
,1

dy = 0 (13)

where Ω indicates the domain in x2. Different normalization conditions can be employed depending on the selected q̃
components. Chang et al.3 showed that the PSE results are basically independent on the chosen norm and on the x2

location it is applied. Different norms lead to different partitions (11), but the physical solution q′ substantially does
not change. In this work we chose to normalize by considering all the five elements of the q̃ vector.

2.2.1 Initial and boundary conditions

Eq. (12) and Eq. (13) constitute an initial boundary value problem. Hence a proper initialization and boundary condi-
tions are required. Homogeneous boundary conditions are applied for the temperature and velocity components both
at the wall and at the boundary layer edge. A compatibility condition is instead applied on the pressure variable: in this
case it consists in rewriting the x2-momentum equation at the boundaries. In summary we have:

ũi = T̃ = 0, p̃,2 = X0 at x2 = 0

ũi = T̃ = 0, p̃,2 = Xe at x2 = x2
e

(14)

where X0 and Xe represent the remaining terms of the x2-momentum equation. Initial conditions are obtained by
performing a local LST calculation, thus in general:

q̃ = q̃
LS T

at x1 = x1
0 (15)

2.2.2 Nondimensionalization and scaling considerations

All variables are nondimensionalized according to their free stream values, denoted by the subscript e. The reference
quantities are length δe, velocity Ue, time δe/Ue, density ρe, temperature Te, pressure pe, enthalpy he, viscosity µe λe,
and conductivity ke. The free stream dynamic pressure has been chosen for the nondimensionalization: pe = ρeUe

2.
Fixed quantities are used as reference in the PSE computation: Ue0, νe0 (kinematic viscosity) and δe0, which

give the fixed Reynolds number Re0 = Ue0δe0/νe0. The reference length scale is defined according to the Blasius scale

δe(x̂1) =

√
νe0 x̂1

Ue0
(16)

In this way δe0 = δe(x̂1
0), where x̂1

0 is an arbitrary reference position. In the current implementation all the quantities
have been nondimensionalized according to the correspondent reference values at the initial marching position. In par-
ticular, this leads to the equivalence Re0 = x1

0 = x̂1
0/δe0. The nondimensional frequency is defined as F = 2π f̂ νe0/Ue0

2,
where f̂ is in Hertz, which satisfies the relation F = ω/Re0.

On the contrary, local stability analysis uses the local length scale δe(x̂1) (also referred in the following as le) and
Reynolds number Re = Ueδe/νe. All the results presented in this work are converted, in the postprocessing of the PSE
solution, to the local scale (denoted here with the superscript ∗, but dropped in the following). For this purpose it is
useful to recall the following relations:

α∗ = α
Re
Re0

ω∗ = ω
Re
Re0

Re =
√

xRe0 (17)
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2.2.3 Measures of growth

Within the PSE theory, perturbations grow and decay with different rates. In general the growth rate of a quantity q̃ can
be written as:

γq̃ = −=(α) +<
(1
q̃

q̃,1
)

(18)

According to the quantity q̃, different definitions are possible. The ones used in this work are based on:

• maximum of the streamwise fluctuation u1′′
max : q̃ = ũ1

• maximum of the mass flux fluctuation (ρu1)′′max : q̃ = (ρu1)′, where

(ρu1)′ = (ρ̃ū1 + ρ̄ũ1) (19)

where the symbol ′′ denotes what in the experiments is the root-mean-square of the physical perturbation profile,
mathematically equal to the module of the relative perturbation q′. In addition, in the same way, it is possible to define
the physical wave number as:

σ = <(α) + =
(1
q̃

q̃,1
)

(20)

2.3 Numerical implementation

The tools used in this work to perform the stability computations have been developed within the VESTA toolkit20.
The derivation of the PSE equations in both CPG and LTE conditions was done by means of the VESTA Automatic
Derivation and Implementation Toolkit (AD&IT) written in Maxima and Matlab languages (see Groot8 and Pinna21).
It consists of a computer algebra system, which allows to obtain stability equations for different stability theories, flow
regimes and coordinate systems, in an automatic, error-free manner. It has to be highlighted that the two different types
of aerothermodynamic models refer to two different PSE analytic developments, meaning that the CPG solutions are
not obtained as a limit of the LTE equations. PSE constitutes an initial boundary value problem, solvable by a marching
technique. A first order backward Euler method is used to discretize the streamwise derivatives, while the wall-normal
ones are approximated by a Chebyshev spectral collocation method based on Lagrangian polynomia defined on Gauss-
Chebishev-Lobatto points. A Malik mapping is adopted to cluster points close to wall, to have a better resolution of the
boundary layer. The same spectral method and mapping procedure are also used to perform spatial LST calculations:
global solutions of the eigenvalue problems are obtained by means of a QZ algorithm, while a local solver based on
a Newton eigenvalue-searching technique performs sweepings over different Reynolds numbers. All the mean flows
considered were calculated from the self-similar boundary layer solution, both for the CPG and LTE assumption. For
further details about the numerical method generally used in VESTA and the structure of the PSE algorithm refer
respectively to Pinna20 and Zanus28.

3. Results

The verification of the CPG PSE solver was already done in Zanus28. The verification of the LTE solver is here done
through a comparison against literature results for a wide range of Mach numbers: from subsonic to high supersonic
and hypersonic regimes. In facts, nothing prevents to use the PSE LTE code also in the CPG limit, while its correct
implementation still can be tested. The verification test cases consist of adiabatic and isothermal flat plate flows, on
which 2D disturbances (i.e. β = 0) are analyzed. The subsonic and supersonic studied cases are reported in Tab. 1, with
the corresponding literature references. In the following, the superscript ˆ denoting dimensional quantities has been
dropped.

Table 1: Studied test cases in subsonic and supersonic regimes

Me Te [K] pe [Pa] F Ref.

0.5 206 1500 4.00 · 10−5 Bertolotti1

1.6 206 1500 4.00 · 10−5 Bertolotti1

4.5 123 1500 1.53 · 10−4 Salinas24

The first comparison is done against the PSE results of Bertolotti1 in CPG conditions, for two flows respectively
at Mach 0.5 and 1.6. The same computations were performed by means of PSE and LST, both in the CPG and in

5
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the LTE limits, in order to highlight respectively eventual nonparallel and high temperature effects. Fig. 1 shows, as
expected, that in low Mach regime the calorically perfect gas assumption holds. The growth rate curves of the first
Mack mode obtained by the CPG and LTE solvers basically superimpose each other in the Me = 0.5 case and present
a minimal shift in the Me = 1.6 one. Nonparallel effects are known to be negligible for 2D modes on a flat plate flow.
Nevertheless, as the Mach increases, an accentuated shift of the growth rate curve towards higher Re numbers and a
reduction of the maximum peak is visible. This show a slight tendency to stabilize the flow. Both PSE codes reproduce
the literature results with good accuracy.

600 800 1000 1200 1400 1600 1800
-1

0

1

2

3

4

5

6

7
10-3

500 600 700 800 900 1000 1100 1200

-5

0

5

10

15

10-4

Figure 1: Growth rate in both CPG and LTE conditions: comparison against PSE in Bertolotti1 and LST results.
Flow cases: Me = 0.5, Te = 206 K, F = 4.00 · 10−5 (right), Me = 1.6, Te = 206 K, F = 4.00 · 10−5 (left)

The second verification features a Mach 4.5 flow previously studied by Salinas24, by means of PSE in CPG
conditions. In this case the so-called second Mack mode is excited. Contrary to the previous test cases, the effect of the
local thermodynamic assumption is here more visible and produces the same consequences regardless of the stability
theory considered. It leads to a shift of the growth rate curve towards higher Re numbers and an increment of the
maximum peak, hence it has a destabilizing effect. On the other hand, by comparing PSE and LST results of the same
aerothermodynamic model, it is clear that nonparallelism increases the instability region of the mode, moves the peak
position towards higher Re, but at the same time lowers it, resulting in a slight stabilization.
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Figure 2: Growth rate in both CPG and LTE conditions: comparison against PSE in Salinas24 and LST results.
Flow case: Me = 4.5, Te = 123 K, F = 1.53 · 10−4
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The differences between the LTE and CPG results are not due to flow chemistry in this case (the compressibility
factor ζ is constantly equal to 1 across the boundary layer), but to the different physical and transport models. Even
if the flow is non-reactive, it is possible to have for example variable specific heats due to molecules vibrational
excitation. Fig. 3 shows the comparison between the two models for the dynamic viscosity and the thermal conductivity
coefficients. There are evident discrepancies between the curves modeled by the empirical Sutherland’s law and the
ones computed by MUTATION++.
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CPG Re=1200
LTE Re=1700
CPG Re=1700
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LTE Re=1700
CPG Re=1700

Figure 3: Nondimensional first viscosity and thermal conductivity coefficients in CPG and LTE conditions at different
streamwise locations. Flow case: Me = 4.5, Te = 123 K, F = 1.53 · 10−4, Re0 = 800

The chosen cases to directly verify the PSE solver against literature results computed in LTE, are the flat plates
studied by Malik et al.16 by means of LST and reproduced also by Marxen et al.19 by means of DNS (see Tab. 2). Fig. 4
compares VESTA nondimensional streamwise velocity and temperature self-similar mean flow profiles against the
results obtained by Marxen et al.19, with Navier-Stokes equations, and by Malik et al.16 by solving the boundary layer
equations. In order to compare the results in CPG conditions, the reference quantities in Sutherland’s law were changed
according to the values reported in16. There is overall a good agreement with the DNS solution, but a remarkable
difference compared to Malik et al.16. This is due to different calculations of the gas mixture properties. Marxen et
al.19, in fact, coupled their CFD solver with the MUTATION library, a previous version of MUTATION++.
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Marxen et al. 2011 - DNS
Malik et al. 1991 - BL theory
VESTA self similar
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Marxen et al. 2011 - DNS
Malik et al. 1991 - BL theory
VESTA self similar

Figure 4: Streamwise velocity and temperature nondimensional mean flow profiles for the adiabatic Mach 10 flat plate
case (see Tab. 2): comparison against Marxen et al.19 and Malik et al.16.

Despite the fact that this problem represents a benchmark case in hypersonic stability, at the author’s knowledge,
there are no examples of related PSE computations in literature. Chang et al.4 reproduced the growth rate as a function
of frequency at Re = 2000 with their PSE solver applied in the parallel flow limit, but they did not study eventual
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Table 2: Studied test cases in hypersonic regime

Me Te [K] pe [Pa] Wall B.C. F Ref.

8 350 3596 ∂Tw/∂y = 0 3.40 · 10−5 -
10 350 3596 ∂Tw/∂y = 0 3.40 · 10−5 Malik et al.16/ Marxen et al.19

10 350 3596 Tw/Te = 3.43 3.40 · 10−5 -
12 350 3596 ∂Tw/∂y = 0 3.40 · 10−5 -

nonparallel effects. Fig. 5 displays the evolution of the streamwise velocity disturbance growth rate for a fix reduced
frequency F = 3.40 · 10−5, computed by means of LST and PSE, in both CPG and LTE conditions. The reference
solution of Malik et al.16 is also marked. Even if the application of the high temperature gas model in the stability
computations does not remarkably affect the growth rate peak maximum value, it leads to an evident shift of the
curves towards lower Reynolds numbers. Most importantly, it gives inconsistent conclusions regarding the influence
of nonparallel effects. In the CPG limit nonlocal effects tend to stabilize the flow with an upstream shift of the growth
rate peak, while in LTE conditions there is a slight destabilization of the flow with a downstream movement of the
maximum peak.

1000 1500 2000 2500 3000

-2

-1

0

1

2

10-3

Figure 5: Growth rate in both CPG and LTE conditions: comparison against LST results and Malik et al.16.
Adiabatic flow case: Me = 10, Te = 350 K, F = 3.40 · 10−5

The PSE analysis captures oscillations in the growth rate that are not present in the LST counterpart, which
decays more slowly, extending the instability region further downstream. They are stronger in the LTE case, even if
additional simulations showed that an increment in the marching step can produce a moderate amplitude damping.
This behavior was already reported by Chang et al.4, for a different test case, and it was attributed to the presence of
supersonic modes. Supersonic modes are characterized by a phase speed cr < 1 − 1/Mae, and contrary to the subsonic
ones they do not exponentially decay towards the freestream, but they manifest an oscillatory behavior also outside
the boundary layer. Nevertheless, they are not acoustic waves since the amplitude of these oscillations is subjected to
attenuation. Malik et al.17 state that within LST, unstable supersonic modes generally appear when Dirichlet boundary
conditions are applied. However, for this particular problem they claimed that extending the boundary layer edge im-
posing vanishing perturbations and applying the more correct asymptotic boundary conditions led to identical stability
results16. Asymptotic and non-reflecting boundary conditions were also adopted within the PSE approach by Chang
et al.4. On the other hand, supersonic mode capturing seems to be a feature of the PSE analysis itself. In particular,
stronger consequences on the growth rate were reported with the chemical equilibrium model.

In order to exclude eventual modes synchronization from the possible causes of the solution oscillatory behavior

8
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(see Fedorov et al.7,6), the phase speed diagram of the main discrete modes involved in the interested spatial domain
were analyzed by means of a frequency sweeping within the LST in LTE conditions. The coexistence of multiple modes
with identical shapes and phase speeds was speculated to cause the PSE algorithm to loose track of the Mack modes
evolution. This coexistence is precisely what occurs at a synchronization point. Fig. 6 shows that the synchronization
of modes S and F (according to the nomenclature in Fedorov5) occurs before the oscillations start, with no other modes
found that could lead to further synchronizations.

1000 1500 2000 2500 3000

0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.7

0.8

0.9

1

1.1

1.2

1+1/M
e

1-1/M
e

Figure 6: Phase speed diagram computed by LST. Adiabatic flow case: Me = 10, Te = 350 K, Re = 2000

The PSE solver seems to correctly track the same mode identified by the LST. Fig. 7 displays a comparison of the
amplitude functions of the streamwise velocity and pressure perturbations, normalized by the maximum amplitude of
the streamwise velocity, computed by means of PSE and LST, at different Reynolds numbers. Despite some amplitude
differences, accentuated in particular inside the oscillatory region, both analysis retrieve the same perturbations shapes.
On the other hand, disturbances computed by PSE do not decay towards the freestream in the same way as the LST
ones, but they show oscillations that persist also outside of the boundary layer (the boundary layer height is about
ye/le = 26). This confirms the observations made by Chang et al.2.
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(b) Re=2200
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Figure 7: Amplitude functions of the streamwise velocity and pressure perturbations at different Reynolds numbers:
comparison between the PSE and LST results in LTE conditions. Adiabatic flow case Me = 10, Te = 350 K, F =

3.40 · 10−5

Moreover, plotting the streamwise velocity disturbance phase speed (Fig. 8) highlights a region around Re=2150
where the mode is supposed to be supersonic. The behavior of the curve further downstream, although already seen
for example in Fig.8 in Marxen et al.18, is not yet explained and needs additional investigations. Also, the pressure
perturbation contour plot (real part), not shown here, puts in evidence a wave structure appearing on the downstream
zone of the domain. This was identified in Chang et al.2 (see Fig.17 of the cited reference) as a intermediate region in
the mode switching from subsonic to supersonic.
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Figure 8: Phase speed of the streamwise velocity disturbance. Adiabatic flow case: Me = 10, Te = 350 K, F =

3.40 · 10−5

Further studies are required in order to better understand and investigate the phenomena leading to the appearance
of eventual unstable supersonic modes. To this end, the development of more consistent freestream boundary conditions
(whether asymptotic or non-reflecting) will be pursued. Even if the boundary layer domain has been extended in the
wall normal direction, and even if no perturbation oscillations were found to reach the upper computation domain
boundary, the consequences of applying one type of boundary condition rather than another are still not clear.

An additional verification of the VESTA PSE algorithm is carried out by comparing in Fig. 9 the amplitude func-
tions of the second Mack mode disturbance at Re=2000. All quantities are normalized with the maximum amplitude
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of the streamwise velocity. The results obtained fit quite accurately the DNS ones and display some discrepancies
compared to the LST curves, especially regarding the temperature perturbation. This is caused by the differences in
the mean flow (Fig.4), since the regions of stronger variations coincide both for velocity and temperature. It is worth
highlighting that the disagreement between the DNS and LST pressure curves close to the wall is just caused by a
different nondimensionalization of the quantity. By making the pressure perturbation nondimensional with the mean
boundary layer pressure value, as done in Malik et al.16, the PSE result better matches the LST one. It is therefore
reasonable to think that the DNS pressure disturbance would also behave in the same way. This was not pointed out in
Marxen et al.19.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

Figure 9: Amplitude functions of the second Mack mode: comparison against Marxen et al.19 and Malik et al.16.
Adiabatic flow case Me = 10, Te = 350 K, F = 3.40 · 10−5, Re = 2000

Apart from differences which can be easily explained mainly with discrepancies in the mean flow models, the
PSE code can be considered verified against the presented literature results for CPG and LTE conditions. In the
following a study is carried out on how high temperature and nonlocal effects are affected by variations in the Mach
and wall boundary condition. The following PSE simulations exhibit the same oscillatory phenomenon in the growth
rate described in Fig.5, as well as the same features in the disturbance phase speed and pressure field plots. To have
a better visualization of the results, the oscillations, which always occur at the end of the growth rate curve, were
removed in Fig.11 - Fig.12.
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Figure 10: Streamwise velocity and temperature nondimensional mean flow profiles at Mach number 8,10, and 12, for
freestream conditions of Tab. 2 and adiabatic wall. The arrow indicates increasing Mach

11

DOI: 10.13009/EUCASS2017-288



PSE OF CHEMICALLY REACTING BOUNDARY LAYER FLOWS

The effect of varying the Mach number is investigated by considering two additional flows at Mach 8 and 12,
with the other same freestream conditions of the previously studied Mach 10 flow (see Tab. 2). The streamwise velocity
and temperature profiles of the mean flows are collected in Fig.10. Increasing Mach leads to a hotter boundary layer. As
a consequence, there is a stabilization of the second Mack mode as Fig.11 shows. The LTE results in Fig.11(a) reveal
that nonparallel effects tend to become more significant as the Mach is increased, leading to a more unstable behavior.
The same trend is observed in the CPG analysis (Fig.11(b)). However, in this case nonlocal effects gain importance
more slowly with increased Mach, resulting that at Mach 12 LST still predicts a more unstable disturbance than PSE.
This explains the inconsistency observed in Fig.5 when interpreting the nonparallel effects. It has to be noticed that in
LTE, PSE shifts the growth rate towards higher Re than LST, while the shift appears in the opposite direction in the
CPG solution. Accounting for high temperature effects also within the same stability theory is fundamental as Fig.11(c)
displays. The LTE model predicts a more unstable boundary layer with an early appearance of a narrower instability
region.
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Figure 11: Growth rate at different Mach numbers. Adiabatic flow case: Te = 350 K, F = 3.40 · 10−5
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Finally, the effect of wall cooling is considered by taking the Mach 10 flow and imposing a wall temperature
Tw = 1200 K. The temperature mean flow becomes colder and almost no chemical activity occurs. Fig.12(a) shows the
growth rate curves, computed by means of both parallel and nonparallel analysis in LTE conditions, for an adiabatic
and an isothermal wall. As expected the cooling effect destabilizes the 2D second Mack mode and shifts the curves
towards higher Re numbers: in this sense the PSE and LST solutions behave in the same way. In LTE nonlocal
effects have the same influence found in the adiabatic case at the corresponding Mach. Nevertheless, Fig.12(b) shows
the behavior in CPG conditions is different whether an adiabatic or isothermal wall is considered. While the former
predicts a stabilization due to nonlocal effects, the latter shows a destabilization. Hence, most probably nonparall effects
do not vary with the Mach number in the same way depending on the wall boundary condition. The importance of
correctly taking into account high temperature effects is again evident when the LTE PSE results with the corresponding
counterparts in CPG conditions are compared. Fig.12(c) shows that also with an isothermal wall the LTE model leads
to a shift of the growth rate maximum towards lower Re. However, compared to the adiabatic wall, it produces a weaker
destabilization of the flow.
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Figure 12: Growth rate: comparison between adiabatic and isothermal wall boundary condition. Flow case: Me = 10,
Te = 350 K, F = 3.40 · 10−5
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4. Conclusions

Stability of 2D disturbances in hypersonic flows over adiabatic and isothermal flat plates were studied by means of
linear PSE, both for calorically perfect gas and local thermodynamic equilibrium conditions. The code was successfully
verified against the literature. Some discrepancies were found in the high Mach test cases, but they can be related to
differences in the mean flow computations due to the utilization of different aerothermodynamic models.

Accounting for high temperature effects revealed to be very important for the flow stability analysis. Not only
it changes the growth rate curves within the same stability theory, but it can also lead to different quantitative and
qualitative conclusions regarding the influence of nonparallel effects. Generally, considering the flow in LTE conditions
rather than in CPG highlights a tendency to stabilize the first Mack mode at subsonic and low supersonic Mach numbers
and to destabilize the second Mack mode in high supersonic and hypersonic regimes. In this regard it acts on the
boundary layer stability like a cooling effect, since chemical activity usually cools down the temperature mean flow. It
also produces a shift of the growth rate curve, but its direction depends once again on the regime. It was towards higher
Reynolds numbers for the subsonic and supersonic cases, and towards lower Re for hypersonic cases.

Nonlocal effects have an influence on stability which depends on the Mach number. It was found, for the
second Mack mode, that nonparallelism can switch from being stabilizing to destabilizing as the Mach increases. The
destabilizing effect becomes stronger with increased Mach. The same trend can be observed also in the CPG limit,
but the impact seems to be much smaller. The result is that at a specific Mach, discordant conclusions can be drawn
about nonlocal effects, depending on the flow assumption considered. Moreover, the PSE analysis predicts a smaller
instability region compared to the LST one, slightly moving it towards higher Re in LTE and towards lower Re in CPG.

The known destabilizing effect of wall cooling on the second Mack mode due to an isothermal wall boundary
condition is not affected by the flow assumption adopted. The same conclusion of the adiabatic case can be inferred,
but the destabilizing effect of assuming LTE is weaker with an isothermal cold wall.

Oscillations in the growth rate right after the instability region were found in all the PSE test, especially in LTE,
as already reported in literature. The likely cause of this phenomenon seems to be confirmed by a switching of the
tracked mode from subsonic to supersonic. However, further investigation is needed for a better understanding.

5. Acknowledgments

This research is made possible thanks to the financial support provided by the Fonds de la Recherche Scientifique
through their FRIA fellowship program.

References

[1] F. P. Bertolotti. Linear and nonlinear stability of boundary layers with streamwise varying properties. PhD
Thesis, The Ohio State University, 1991.

[2] C. L. Chang, M. Malik, G. Erlebacher, and M. Hussaini. Compressible stability of growing boundary layers
using parabolized stability equations. AIAA Paper 91-1636, 1991.

[3] C.-L. Chang, M. R. Malik, G. Erlebacher, and M. Y. Hussaini. Linear and nonlinear PSE for compressible
boundary layers. ICASE Report N. 93-70, NASA, 1993.

[4] C.-L. Chang, H. Vinh, and M. R. Malik. Hypersonic boundary-layer stability with chemical reactions using pse.
In AIAA, editor, 28th Fluid Dynamic Conference, 1997.

[5] A. V. Fedorov. High-speed boundary layer instability: old terminology and a new framework. AIAA Journal,
49(8), August 2011.

[6] A. V. Fedorov. Transition and stability of high-speed boundary layer. Annual Review of Fluid Mechanics, 43:79–
95, 2011.

[7] A. V. Fedorov and A. P. Khokhlov. Prehistory of instability in hypersonic boundary layer. Theoretical and
Computational Fluid Dynamics, 14:359–375, 6, 2001.

[8] K. Groot. Error free derivation of Parabolized Stability Equations. Short Training Report, Von Karman Institute,
2013-06.

[9] T. Herbert. Parabolized stability equations. In AGARD, editor, Special Course on Progress in Transition Mod-
eling, number R-793, 1993.

[10] T. Herbert and F. P. Bertolotti. Stability analysis of nonparallel boundary layers. Bulletin of the American Phys-
ical Society, 32:2079, 1987.

14

DOI: 10.13009/EUCASS2017-288



PSE OF CHEMICALLY REACTING BOUNDARY LAYER FLOWS

[11] M. L. Hudson, N Chokani, and G. V. Candler. Linear stability of hypersonic flow in thermochemical nonequi-
librium. AIAA J., 35(6), 1996.

[12] H. B. Johnson and G. V. Candler. Hypersonic boundary layer stability analysis using pse-chem. In AIAA, editor,
35th AIAA Fluid Dynamics Conference, Toronto, Ontario, Canada, 2005.

[13] H. B. Johnson and G. V. Candler. Pse analysis of reacting hypersonic boundary layer transition. In AIAA, editor,
30th AIAA Fluid Dynamics Conference, Norfolk, VA, 1999.

[14] T. E. Magin and G. Degrez. Transport algorithms for partially ionized and unmagnetized plasmas. Journal of
Computational Physics, 198:424–449, 2, 2004.

[15] M. R. Malik. Hypersonic flight transition data analysis using parabolized stability equations with chemistry
effects. Journal of Spacecraft and Rockets, 40(3), 2003.

[16] M. R. Malik and E. C. Anderson. Real gas effects on hypersonic boundary-layer stability. Physics of Fluids A,
3(5):803–820, 1991.

[17] M. R. Malik and R. E. Spall. On the stability of compressible flow past axisymmetric bodies. Journal of Fluid
Mechanics, 228:443–463, 1991.

[18] G. Marxen O. Iaccarino and T. Magin. Direct numerical simulations of hypersonic boundary-layer transition
with finite-rate chemistry. Journal of Fluid Mechanics, 755:35–49, 2014.

[19] O. Marxen, T. Magin, G. Iaccarino, and S. G. Shaqfeh. A high-order numerical method to study hypersonic
boundary layer instability including high-temperature gas effects. Physics of Fluids, 23, 2011.

[20] F. Pinna. Numerical study of stability of flows from low to high Mach number. PhD thesis, Von Karman Institute
- Università degli Studi di Roma La Sapienza, 2012.

[21] F. Pinna and K. Groot. Automatic derivation of stability equations in arbitrary coordinates and different flow
regimes. In AIAA, editor, 44th Fluid Dynamic Conference, 2014.

[22] H. L. Reed, R. Kimmel, S. Scheider, and D. Arnal. Drag prediction and transition in hypersonic flow. AIAA
Paper 97-1818, 1997.

[23] H. L. Reed, E. Perez, J. Kuehl, T. Kocian, and N. Oliviero. Verification and validation issues in hypersonic
stability and transition prediction. Journal of Spacecraft and Rockets, 52(1):29–37, 2014.

[24] H. Salinas. Stabilité linéaire et faiblement non linéaire d’une couche limite laminaire compressible tridimen-
sionnelle par l’approche PSE. PhD thesis, École National Supérieure de l’Aéronautique et de l’Espace, 1998.

[25] J. B. Scoggins and T. E. Magin. Development of mutation++: multicomponent thermodynamic and transport
properties for ionized plasmas written in c++. In AIAA, editor, 11th AIAA/ASME Joint Thermophysics and Heat
Transfer Conference, number AIAA 2014-2966, 2014.

[26] J. B. Scoggins and T. E. Magin. Gibbs function continuation for linearly constrained multiphase equilibria.
Combustion and Flame, 162, 2015.

[27] G. Stuckert and H. L. Reed. Linear disturbances in hypersonic chemically reacting shock layers. AIAA J., 32(7),
1994.

[28] L. Zanus. Analysis of a compressible boundary layer flow by means of parabolized stability calculations. Re-
search Master report 2016-28, von Karman Institute, June, 2016.

15

DOI: 10.13009/EUCASS2017-288


