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Abstract 
Three-dimensional flow over a segmental - conical body is studied using numerical simulation. 
Nonmonotonic behavior of normal force, acting on the body in supersonic flow, depending on the 
angle of attack is analyzed. Numerical simulation is based on the solution of Reynolds-averaged 
Navier-Stokes (RANS) equations with two-parameter q-ω turbulence model as a closure. Parallel 
computations are carried out on multiprocessor supercomputer using original software package 
HSFlow.  

1. Introduction 

Currently new reentry space vehicles and space vehicles for Mars exploration are developed. Generally, these 
vehicles have segmental - conical shape, which consists of front part (spherical shape, blunted circular cone shape) 
and narrowing afterbody with spherical or butt end. Such shape is optimal for requirements of ballistic descent and 
can be used for descent with lift-drag ratio 0.3 – 0.6. It is known that segmental – conical shape has some features in 
behavior of aerodynamic characteristics, depending on angle of attack, Mach number and Reynolds number. It 
especially takes place in transonic flows. Earlier such investigations were generally carried out using experimental 
techniques. Currently there is an opportunity for determination of aerodynamic characteristics of segmental-conical 
bodies using numerical simulation that allows obtaining detailed flow pattern. 

One peculiarity of flow over segmental-conical body at small angles of attack and small supersonic velocities is 
negative values of normal (lift) force [1]. It is clear that segmental front surface at positive angle of attack can 
produce only positive normal force. Therefore negative value can only be related to forces, acting on the conical 
afterbody part, in the vicinity of which there is a complex separated flow. It should be noted that at small supersonic 
velocities pressure at the back surface is of the same order of magnitude as at the front surface. Therefore insufficient 
pressure redistribution along conical surface at non-zero angle of attack can produce substantial change in total 
normal force. At high supersonic velocities normal force is mainly produced by a frontal surface and it is positive 
within the entire range of positive angles of attack.  
This work concerns the numerical investigation of three-dimensional supersonic flow over segmental-conical body, 
similar to Martian space vehicle ExoMars [2]. It is assumed that the vehicle surface is isothermal. Nonmonotonic 
behavior of normal force, acting on the vehicle in supersonic flow and depending on angle of attack and Mach 
number, is analyzed.  Simulation is based on numerical solution of unsteady Reynolds-averaged Navier-Stokes 

equations (RANS) with two-parameter q-ω turbulence model as a closure [3]. Solution is fulfilled using original 
software package HSFlow [4] with effective parallel algorithm for computations on multi-processor supercomputers. 

2. The problem statement  

For numerical analysis RANS equations with q-ω turbulence model in arbitrary curvilinear coordinate system 

, , , where x = x(,,), y = y(,, z = z(, - Cartesian coordinates, are written in divergent form 
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Here Q is a vector conservative dependent variables, E, G, F – flux vectors in curvilinear coordinate system, S – 
source vector. Vectors Q, E, G, F, S are related to corresponding vectors Qc, Ec, Gc, Fc, Sc in Cartesian coordinate 
system by following formulas: 
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Cartesian components of vectors Ec, Gc, Fc, Sc for three-dimensional RANS equations (with use of Favre 

averaging) are as following: 
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where   symmetric viscous stress tensor, related to strain velocity tensor by linear dependency 

 =   ( + T)s, 
 

and heat flux vector I is calculated using formula   
 

I =  ( + T)grad(T) + V, 
 

 and   molecular viscosity and heat conduction coefficients, T and T  turbulent viscosity and turbulent heat 
conduction coefficients, self-diffusion vectors are determined using relations: 
 

T

1

( )grad( )
Pr

q  qI


 ,   T

2

( )grad( )
Pr

  I


  . 
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General numerical investigations are carried out for perfect gas model. In present work two-parameter differential 
q- turbulence model [5]  is used with following parameters for turbulent viscosity 

2
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where C11 = C12 = 0.5, C22 = 0.833, C23 = 2.4, Pr1 = 2, Pr2 = 2, rw  wall distance. 
 

Molecular viscosity coefficient depends on temperature according to Sutherland law: 
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where T
 = 110.4 K  for air; values of molecular and turbulent Prandtl numbers Pr = cp/ = 0.7,  PrT = Tcp/T = 

0.9 are constant. 

Cartesian coordinates x = xL  y = yL , z = zL  are divided by characteristic linear size L in order to obtain 

dimensionless coordinates, time  t = / tL V  is divided by characteristic value / L V
 

in order to obtain 

dimensionless time, velocity components u = uV , v = vV , w = wV  are divided by free stream full velocity 

value V, pressure 
2( ) p V  is divided by doubled free stream dynamic pressure, the rest of gas-dynamic variables 

are divided by their free stream values. Symbol overline means that the variable is dimensionless, symbol  denotes 
free stream value of the variable. 

In process of dimensionless variables obtaining basic similarity parameters arise in RANS equations:  = cp/ cv  

adiabatic exponent, М = V/a  free stream Mach number (  sound speed), Re = (VL)/  Reynolds 

number, Pr  Prandtl number. RANS equations in dimensionless form are solved numerically.  

On the solid wall boundary conditions for velocity components are u = 0, v = 0, w = 0. Temperature of the surface 

either obey adiabatic condition (Tw/n = 0) or isothermal condition (T = Tw = const). Boundary conditions for 

turbulent characteristics on the solid wall are pulsation attenuation qw = 0 and frequency impermeability w/n = 
0. 
On the outer boundary of computational domain radiation conditions, corresponding to divergent wave, are set. 
These conditions, written in Riemann invariants, are as follows: 
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3=2,   4=2,   5= ,  6=2,   7=2, 

determining direction of disturbance propagation relative to   = const, are analyzed.  At i  0 (“inflow boundary”) 

corresponding invariant on inflow boundary is calculated using free-stream values of gas-dynamic variables, at i >0 
linear extrapolation i on values of gas-dynamic variables, corresponding to internal points of the computational 
domain, is used.  
If boundary of the computational domain coincides with symmetry plane, boundary condition of variables 
extrapolation from internal points of computational domain is used.  

 

2.1 Equation approximation 

 
Initial-boundary problem, formulated above, is solved numerically on basis of finite volume method. When applied 
to RANS equations Eq. (1) it allows obtaining difference analogs of conservation laws  

 

 
 

where n  number of time layer, i, j, k and h, h, h   node numbers and space steps in coordinates , ,  
correspondingly. 
For monotone difference scheme calculation of fluxes in half-integer nodes is fulfilled on basis of Riemann problem 
solution. This problem reduces to solution of nonlinear system of algebraic equations. Approximate technique of 
solution for this problem can be representing of Jacobian matrix in form 

 

A =  RR-1, 
where   diagonal matrix, elements of which are eigenvalues of the operator A. 
For approximation of convective component of flux vectors E, G, F in half-integer nodes Godunov-type monotone 
difference scheme [6, 7] and approximate Roe method [8] for Riemann problem solution are used. Since formulas for 

flux vectors E, G, F are similar, below only flux vector E is considered. Approximation for flux vector E is as 
follows: 
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where a  local speed of sound.  

Function φ(i) that ensure fulfillment of entropy condition for physically correct choice of numerical solution has 
following form:  
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where   dissipative parameter of a difference scheme. It is generally assumed in calculations that  = 10-3. 

To increase approximation order (to the second) minimal derivative principle (MUSCL) [9 - 11] is used for 
interpolation of dependent variables on the edge of an elementary cell.  
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For approximation of the diffusive component of flux vectors E, G and F on the edge of an elementary cell second 
order accuracy central difference scheme is applied. Calculation of derivatives is carried out using following 
formulas:  
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Here U  vector of non-conservative variables. 
Stencil of the difference scheme, which is used for approximation of RANS equations, consists of 33 points. It seems 
that implicit nonlinear difference scheme is unconditionally stable for the linear problem.  

 

 

2.2 Solution of nonlinear finite-difference equations 

As a result of described approximation of RANS equations and corresponding boundary conditions, integration of 
nonlinear partial differential equations reduces to solution of nonlinear system of algebraic equations  

  0R X , 

where X  - vector of dependent variables (node values of gas-dynamic variables, including boundary nodes). This 
problem is effectively solved using iterative Newton method, clear advantage of which is a quadratic convergence 
rate. For solution of nonlinear finite-difference equations modified Newton-Raphson is used: 
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where  
0 0

/  D R Xk k
 — Jacobian matrix, k , 0k  — iteration numbers, 0 k k ,  [ ]R X k  — residual vector. 

Expression  1 [ ] [ ] D R X Y
o

k k
k  is a solution of linear system of equations  [ ] [ ]D Y R X

o

k k
k . In process of 

numerical solution regularization parameter of Newton method relative to initial approximation k  is determined as 

follows: 
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As iterative process converges 1 k , and convergence rate theoretically tends to quadratic one.  

The most labor-consuming algorithm elements in Newton method realization are matrix  
0 0

/  D F Xk k

generation and following solution of linear system of equations with this matrix.  
Since in approximation of equations at every cell only several neighbor nodes are used (in three-dimensional case 33 

nodes for TVD scheme), laboriousness of Jacobian matrix generation is ( )O N , where N  — number of nodes for 

finite-difference problem.  
RAM memory space and CPU time necessary for solution of linear system of algebraic equations on nonlinear 
iteration  
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considerably depend on matrix  
0

/ R X
k

sparseness degree. When Navier-Stokes equations are approximated 

using second order difference scheme, operator  
0

/ R X
k

has sparse block 33-diagonal structure, and its 

elementary block is a dense matrix 77. Preliminary calculations showed that convergence of nonlinear iterative 
process considerably depends on points in approximation stencil, using for convective component, and also for direct 
derivatives of dissipative component of Reynolds equations.  Use of corner points in approximation stencil for mixed 
derivatives of dissipative component has weak effect on convergence of nonlinear iterations. Hereupon, and also in 

order to reduce RAM memory space and total number of arithmetic operations, diagonals in operator  / R X , 

corresponding to mixed derivative are neglected. As a result, operator  / R X for three-dimensional case has 

block 13-diagonal structure. 
Solution of linear system of algebraic equations, obtained on nonlinear iteration, is carried out with use of 
Generalized minimal residual algorithm GMRes [12], which is the most reliable and fast, according to numerical 
experiments [13]. 

 

3. Simulation of flow over segmental-conical body  

As an example of a segmental-conical body Martian space vehicle of “ExoMARS” project is used [2]. Calculations 

are carried out for supersonic flow at free stream Mach numbers M∞ = 1.7, 2.027, 2.5, Reynolds number 
* * * 6

,1Re / 4.1 10U         m-1, temperature 
* 217 KT  ,  γ = 1.4, and turbulent parameter q∞ = 0.01. The body 

surface is isothermal - 
* 300 KwT  . Coordinates are divided by characteristic size 0.095R   m, corresponding to 

Reynolds number 
5Re 3.895 10   . For simulation axial coordinate system, associated with the body surface, is 

used. Computational domain and numerical grid fragment in the plane ( , )x y are shown in Fig. 1. The main part of 

investigations is fulfilled using grid with 529×200×41 nodes, where 529 correspond to the number of nodes along the 
body surface, 200 – the number of nodes in normal-to-body direction, 41 – the number of nodes in rotational 
direction. The grid is clustered in the vicinity of the body surface in order to resolve laminar and turbulent boundary 
layers. The grid is splitted into 96 blocks in order to carry out parallel computations using multiprocessor 
supercomputers. Computational time on 4 cluster nodes, each with 24 cores, is approximately twenty-four hours. It 
should be noted that for single processor use of the software package HSFlow the maximum computational grids for 
such problem statement [14, 15] have less than 500000 nodes.  
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Figure 1: Computational grid. a) Domain with blocks; b) fragment of grid in the plane ( , )x y
 

In practice, at these values of Mach and Reynolds numbers there is a laminar flow in boundary layer on the 
windward side of a blunted body. In the leeward separation region transitional or turbulent flows are realized because 

of the mixing layer instability [16]. Therefore, in present work RANS equations with two-parameter q - ω turbulence 
model are used, which allow adequate modeling of boundary layer state for this case. In Fig. 2 – Fig. 4  characteristic 
fields of local Mach number, temperature and turbulence parameter q are given for qualitative analysis of flow 
pattern. According to these data, there is a vast separated flow in the base region with high temperature values. 

Behavior of turbulence parameter q indicates turbulent state of gas flow in separation zone. On the windward side of 
the body flow in the boundary layer remains laminar.  

 

 

 

 

Figure 2: Field of Mach number at free stream Mach number M∞ = 1.7 
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Figure 3: Field of static temperature at free stream Mach number M∞ = 1.7 

 

 
 

 

Figure 4: Field of turbulence parameter q at free stream Mach number M∞ = 1.7 

 

The problem solved using time-relaxation method. Behavior of lift coefficient, depending on dimensionless time, is 
shown in Fig. 5. Three curves in the plots correspond to total normal (lift) force and to forces, acting on windward 
and leeward body surfaces. According to these data time relaxation for normal force, acting on windward surface, is 
faster, than time relaxation for leeward surface. Contribution of the force component, acting on the windward 
surface, to the total normal force is always positive, and on the leeward surface – is negative. Thus, when windward 
and leeward forces are of the same order at small supersonic free stream velocities, flow regimes are possible, for 
which total normal (lift) force becomes negative within some range of positive angles of attack (Fig. 6). 

 

DOI: 10.13009/EUCASS2017-283



AERODYNAMIC PECULIARITIES OF 3D SUPERSONIC FLOW OVER SPACE VEHICLE 

 9

 

Figure 5: Dependency of lift coefficient on dimensionless time at M = 2.027 and AoA = 3○ 

 

 

 

Figure 6: Lift coefficient as a function of angle of attack for three flow regimes: M = 1.7, 2.027, 2.5 
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Data on Fig. 6 illustrates behavior of the total normal force, depending on angle of attack for various values of Mach 
number. According to these dependencies there is a negative value of normal force at positive values of angle of 
attack within the range of Mach number values M = 1 ÷ 2. Contribution of windward part to the total normal force 
changes weakly and absolute value of  leeward part contribution decreases, as Mach number increases from 1.7 to 
2.5 (Fig. 7, 8). As a result, total normal force at Mach number M=2.5 is positive for all angles of attack, considered 
in the work.  
 

 
 

Figure 7: Dependencies of lift coefficient – total, on the windward part and on the leeward part – on angle        
 of attack for values of free stream Mach number M = 1.7 

 

 

Figure 8: Dependencies of lift coefficient – total, on the windward part and on the leeward part – on angle        
 of attack for values of free stream Mach number M = 2.5 
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Dependency of pressure coefficient in the symmetry plane for  free stream Mach number 1.7 is shown in Fig. 9. 
According to these data absolute value of pressure coefficient on the windward surface considerably greater than 
absolute value of pressure on the leeward surface. However, contribution of windward part to normal force is of the 
same order magnitude as the contribution of leeward part, because of geometrical features of segmental-conical 
bodies, having rather large leeward surface.  

 
 

 
 

Figure 9: Distribution of pressure coefficient on the body surface at free stream Mach number M = 1.7 
 

Behavior of drag force dependency on angle of attack with maximum value at non-zero angle of attack is shown 
in Fig. 10. Such character of drag force coefficient dependency remains even at Mach number M = 2.5, at which 
there is no negative normal force. Considerable contribution to nonmonotone behavior of drag coefficient is made by 
base pressure, which substantially increases with decrease of Mach number [1]. 

 
 

   
 

Figure 10: Dependency of drag coefficient on angle of attack for three flow regimes 
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4. Conclusion 

On basis of numerical simulation, three-dimensional supersonic flow over segmental-conical body, having surface 
shape, similar to Martian space vehicle “ExoMARS”, is studied. Simulation is based on the numerical solution of 
unsteady RANS equations with two-parameter differential turbulence model. Solution of the problem is carried out 
using original software package HSFlow with effective parallel algorithm for computations on supercomputers.  
Nonmonotonic dependency of normal (lift) and longitudinal (drag) forces on the angles of attack is shown. In 
particular, negative normal force arises at positive angles of attack of free stream. Analysis of basic flow parameters 
allows determining main causes for such behavior. 
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