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Abstract 
Method of simulation of three-dimensional flow over real bodies based on numerical solution of 
Navier-Stokes equations with nonequilibrium physical-chemical processes in Martian atmosphere.  
The method is based on implicit monotone approximation scheme and modified Newton-Raphson 
technique for solution of nonlinear difference equations. As an example, three-dimensional hypersonic 
flow over a segmental-conical body similar to the Martian space vehicle “ExoMars” is studied. For 
two trajectory points in Martian atmosphere and two angles of attack of free stream high-temperature 
gas flow in the vicinity of space vehicle is analyzed.  Influence of catalytic properties of descent 
module surface on aerodynamic heating is shown.   

1. Introduction 

Descent space vehicles are key elements of interplanetary space investigations. Such vehicles are very significant, 
since they allow delivering research equipment to other planets.  Nowadays investigations of Mars planet are carried 
out. Space vehicles, developed for descent on Mars, are ordinarily have segmental-conical shape, which consists of 
front part (spherical shape, blunted circular cone shape with large half-angle) and converging conic afterbody with 
spherical or butt end. Such shape allows increasing drag coefficient and thus providing stability of a vehicle during 
the flight along trajectory, so that conditions of ballistic descent are satisfied. However, vehicle should be oriented at 
angle of attack , relative to free stream,  in order to achieve more effective aerodynamic deceleration. As result, flow 
over the vehicle is essentially non-symmetric, and three-dimensional effects like flow separation on the leeward side, 
reversed flow in base region, evolution and structure of separation zone  play important part.   
Furthermore, descent vehicles enter Earth and Martian atmospheres at high velocities (M = 30), and this leads to 
significant influence of physical-chemical processes on flow and heat transfer in the vicinity of the vehicle [1]. 
Martian atmosphere consists mainly of carbon dioxide (98 %) and 100 times more rarefied, than Earth atmosphere, 
nevertheless, high descent velocities lead to strong aerodynamic heating of vehicle surface.   
Currently mathematical simulation for aerodynamic characteristics of segmental-conical bodies is actively 
developed, which allows obtaining detailed flow pattern. Experimental studies of this field are rather, since they 
can’t simulate real flight conditions.  
One of main goals of this work is testing of developed method and programs, using calculation of flow over 
segmental-conical body. Previously this method is employed to direct numerical simulation of laminar-turbulent 
transition on basis of Navier-Stokes equations and supersonic flow over segmental-conical body on basis of 
Reynolds equations with two-parameter differential turbulence model [2]. In this work three-dimensional hypersonic 
flow over segmental-conical body, similar to Martian space vehicle “ExoMars”, is considered. Simulation is based 
on numerical simulation of Navier-Stokes equations jointly with nonequilibrium physical-chemical processes.  
Solution is carried out using original software package HSFlow with effective parallel algorithm for supercomputers.  

2. The problem statement 

Within the framework of continuum mechanics motion of gas medium in general case is described by three-
dimensional Navier-Stokes equations for chemically nonequilibrium gas mixture. These equations express laws of 
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mass, moment and energy conservation and can be written in conservative form in arbitrary curvilinear coordinate 
system ξ, η, ζ (where x = x(ξ,η,ζ), y = y(ξ,η,ζ), z = z(ξ,η,ζ) −Cartesian coordinates)  
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Here Q − vector of conservative dependent variables,  E, G, F — flux vectors in curvilinear coordinate system, S  — 
source vector. Vectors Q, E, G, F, S are related to corresponding vectors Qc, Ec, Gc, Fc, Sc in Cartesian coordinate 
system by formulas  
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where J = ∂(x ,y, z )/∂(ξ, η, ζ) − transformation Jacobian. 
 
Curvilinear coordinate system (ξ, η, ζ) is used for discretization on uniform grid: arbitrary computational grid in 
Cartesian coordinate system is mapped on uniform grid in curvilinear coordinate system.  
Cartesian components of flux vectors Qc, Ec, Gc, Fc, Sc for three-dimensional Navier-Stokes equations are as follows:  
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where u, v, w — Cartesian components of velocity vector V,  p - pressure, ρ — total density of gas mixture,  iρ — 
density of i-th gas mixture component (i = 1, …, K); K — the number of gas mixture species, 
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mixture species correspondingly, τ - symmetric viscous stress tensor, related to  strain velocity tensor s by linear 
dependence τ = − μs. 

Components of strain velocity tensor s for compressible gas are as follows: 
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Heat flux vector q  is determined by following expression: 

( )
1

grad
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i
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i
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=

= −λ + +∑q τV I . 

Here iI  — diffusive flux vector of i-th mixture species, which in this work is determined on basis of Fick law with 
approximation of binary diffusion model: 

( )gradi
i iD C= −ρI , 
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where μ, λ and Di — coefficients of molecular viscosity, thermal conductivity and diffusion.  

 

For calculations of viscosity coefficient dependency  T
T

ω

∞ ∞
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is used (in this work ω = 0.731), thermal 

conductivity coefficient is determined from expression for Prandtl number Pr 0.7pcμ
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λ
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coefficients Di — from expression for Schmidt number Sc 0.5i
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 for all species of gas mixture. Index “∞” 

corresponds to free stream values.  
Set of equations (1) is closed by algebraic equations: equation of state for gas mixture 
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where R − universal gas, M — molar weight of gas mixture; and also by relationships for sum of mass fractions and 
diffusive fluxes of gas mixture components:  
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In this work 8 - species gas model, representing Martian atmosphere (K=8: O, N, NO, O2, N2, CO2, CO, C), is 
considered. Species generation rates are determined on basis of mass action law, and chemical reaction rate constants 
are calculated according to Arrhenius equation: 

, 

where kf(b),i — forward (f) and back (b) chemical reaction rate constants, Af(b),i, Bf(b),i, Df(b),i – approximation 
coefficients, Т – temperature of molecule translational motion, i – number of chemical reactions. Forward and back 
chemical reaction rate constants are taken from [3]. 
The following 12 dissociation and exchange reactions are taking into account in simulation of chemical processes in 
Martian atmosphere: 

N2 + M ↔ N + N + M 
O2 + M ↔ O + O + M 
CO + M ↔ C + O + M 
NO + M ↔ N + O + M 

CO2 + M ↔ CO + O + M 
NO + O ↔ N + O2 
N2 + O ↔ NO + N 
CO + O ↔ O2 + C 

CO2 + O ↔ O2 + CO 
CO + N ↔ NO + C 

CO + CO ↔ CO2 + C 
NO + CO ↔ CO2 + N 

Here M – catalytic particle, which can be any of species in the mixture.  
Static enthalpy of gas mixture species is given by following formula  
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formation enthalpy of gas mixture component. Values of vibrational temperatures and formation enthalpies, used in 
this work, are given in Table 1. 

 Table 1: Vibrational temperatures and formation enthalpies  

Chemical 
species 

Vibrational temperature 

viT , K 
Formation enthalpy 

0
ih ,  J × mole/kg  

O 0.0 15.6×106 
N 0.0 33.9×106 

NO 2791.0 3.02×106 
O2 2256.0 0.0 
N2 3354.0 0.0 

CO2 960.0 
1190.0 
3380.0 

-8.37×106 

CO 3122.0 -4.06×106 
C 0.0 59×106 

 
 

Calculations are carried out for laminar flow. On the outer boundary of the computational domain either Dirichlet (on 
the front part) or extrapolation boundary conditions are set. Free stream mass fractions are similar to those in Martian 
atmosphere: CO2 0.97C = , N2 0.03C = , for other mixture mass fractions are equal to zero.   

On the solid boundary of computational domain non-slippery boundary conditions ( 0, 0, 0u v w= = = ), conditions 
for heat flux and species mass fractions are set. On the assumption of low heat-conducting non-ablative heat 
shielding convective heat flux dissipates because of radiation, the following equation is valid: 

( )* * *4 *4n
w wq T T∞= εσ − , 

where * n
wq  − projection of heat flux on the normal to the body surface,  ε  – emissivity of the body surface, value of 

which is taken to be equal to 0.9, *σ  – Stefan-Boltzmann constant. Dimensional quantities are marked by superscript 
“*”. 
For mass fractions of gas species on the surface following conditions are set: 
— catalytic surface with respect to atomic oxygen and nitrogen  

CONO CO2 0
w ww

CC C
n n n

∂∂ ∂
= = =

∂ ∂ ∂
, O N 0w wC C= =  , 

— and absolutely non-catalytic surface 

COO NO CO2 0N

w w w ww

CC C C C
n n n n n

∂∂ ∂ ∂ ∂
= = = = =

∂ ∂ ∂ ∂ ∂
. 

On the boundary of computational domain, coinciding with symmetry plane y = 0, symmetry boundary conditions 
are set. On the degenerate surfaces, obtained as a result of symmetry axis rotation, extrapolation of dependent 
variables is set.  
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Uniform free stream is used as initial conditions with subsequent development of flow field during solution of 
unsteady problem. Time step is gradually increased for as far as flow field is formed.  
 

2.1 Approximation of differential equations 

Formulated initial-boundary problem is solved numerically on basis of finite volume method. Once applied to 
Navier-Stokes equations (1), it gives difference conservation laws  

 

n 1 n 1 n 1 n 1 n 1 n 1
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where n − time layer number; ∆t− time step; i, j, k and hξ, hη, hζ — node numbers and steps for coordinates ξ, η, ζ 
correspondingly. 
For approximation of convective component of flux vectors E, G and F at half-integer nodes Godunov type 
monotone scheme [4, 5] and approximate Roe method [6] for solution of Riemann problem are used. Formulas for E 
and G, F are similar, so below only E flux vector is considered. For E flux vector: 
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Where Φ( ( )iϕ λ ) — diagonal matrix, elements of which are φ(λi), and λi — eigenvalues of operator A = ∂E/∂Q.  
RLR = R(QLR) — matrix, columns of which are eigenvectors of operator А. Φ(φ(λi)), RLR, RLR
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where c — local value of sound speed. 
Solution of Riemann problem for chemically non-equilibrium gas mixture is reduced to solution of nonlinear system 
of algebraic equations. Approximate method  of solution of this problem is its splitting using generalized coordinates 
and representation of some averaged state of corresponding Jacobian matrix A  (e.g., = /∂ ∂A E Q  for ξ  direction, 

here E  is a convective component of the corresponding flux) in diagonal form : 1= ,−A RΛR  where Λ  – diagonal 
matrix, elements of which are eigenvalues of the matrix A . 
For operators ∂G/∂Q and  ∂F/∂Q representation of eigenvalues and eigenvectors is carried out using the same 
formulas with replacement of  ξ with η and ξ with ζ correspondingly. 
A function φ(λi), providing entropy condition for physically correct choice of numerical solution, has the following 
form: 

2 2

,
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,
2

⎧ λ λ > ε
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λ ≤ ε⎪ ε⎩

 

where ε − dissipation parameter of numerical scheme.  
In order to increase approximation order (to second) for interpolation of dependent variables on the boundary of 
elementary cell, minimal derivatives principle (MUSCL) [7-9] is used 
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For approximation of diffusive components of flux vectors E, G and F central-difference numerical scheme of 
second approximation order is used. For derivative calculation the following formulas are used 

( )1, , , ,1, ,
2
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i j k h +
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1
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∂
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∂ς
U U U U U  

Here ( )T1 2, , ... , , , , ,KC C C u v w T=U  — vector of primitive dependent variables of the problem. In this work      
K = 8 and the total number of dependent variables is 12. 
It seems that derived implicit nonlinear numerical scheme is absolutely stable for the linear problem. 
 

2.2 Solution of nonlinear difference equations 

As a result of described approximation of RANS equations and corresponding boundary conditions, integration of 
nonlinear partial differential equations reduces to solution of nonlinear system of algebraic equations  

( ) 0=R X , 
where X  - vector of dependent variables (node values of gas-dynamic variables, including boundary nodes). This 
problem is effectively solved using iterative Newton method, clear advantage of which is a quadratic convergence 
rate. For solution of nonlinear finite-difference equations modified Newton-Raphson is used: 
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numerical solution regularization parameter of Newton method relative to initial approximation τk  is determined as 
follows: 
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As iterative process converges 1kτ → , and convergence rate theoretically tends to quadratic one.  

The most labor-consuming algorithm elements in Newton method realization are matrix ( )0 0
/= ∂ ∂D F Xk k

generation and following solution of linear system of equations with this matrix.  
Since in approximation of equations at every cell only several neighbor nodes are used (in three-dimensional case 25 
nodes for TVD scheme), laboriousness of Jacobian matrix generation is ( )O N , where N  — number of nodes for 
finite-difference problem.  
RAM memory space and CPU time necessary for solution of linear system of algebraic equations on nonlinear 
iteration  
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Testing of software package HSFlow is fulfilled using problem of three-dimensional hypersonic flow over 
segmental-conical body, having shape similar to Martian space vehicle “ExoMars”. 
Results of test calculations show that in three-dimensional flow over space vehicle at angle of attack 100 surface 
heating is rather less, than in axisymmetric flow. Windward surface of the reversed cone (in base part of the vehicle) 
experiences higher heat loads, than leeward surface, and temperature difference is about 300 K for trajectory point II.  
It is also shown than catalytic property of a surface strongly influences the vehicle heating. For both trajectory points, 
the front surface temperature for catalytic surface is 400 K higher, than for non-catalytic.  
Pressure distribution becomes sufficiently nonsymmetrical with angle of attack change, and pressure on the 
windward part is 1.3 higher, than on leeward. Temperature distribution is uniform along the front surface. This is 
specified by physical-chemical processes. 
At both trajectory points chemical reactions are rather intensive both behind the shock wave and in the wake behind 
the vehicle, where nearly 80% of initial carbon dioxide dissociates into СО and О.  
The reported study was funded by the Russian Science Foundation (project no. 14-19-00821-П). 
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