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Abstract
This work is concerned with the development of a scheme and algorithms for guidance, navigation and

control, including attitude determination and control, for formation flying of small satellites via differential
drag only along low Earth orbits. It includes ‘real-life’ features: a high variability air density, an attitude
control algorithm for ballistic coefficient modulation, an attitude determination algorithm processing gy-
roscopes and typical vector measurements, and several relative navigation filters using relative position
sensing and based on various air density design models. The realistic GNC/ADC scheme is tested under
high integrity conditions. It enables closure of an initial distance of 70 km down to 2 km within eight orbits
for two nanosatellites on low Earth orbits similar to the International Space Station. The degradation in
the performances as compared to an ideal guidance scheme is due to the high variability of an unknown
air density, the relative navigation errors, and the attitude control errors, in order of dominance. The best
relative navigation filter appears to be a robust H∞ filter. A comparison of that filter with the various
Kalman filters shows a quicker convergence, a lesser sensitivity to the jumps in the air density, a similar
steady-state accuracy, albeit with a noisier behavior.

1. Introduction

Spacecraft formation flight has been identified as a critical enabling technology for various scientific, commercial, and
military space missions. Formation flight maintenance via differential aerodynamic drag has obvious advantages for
nanosatellites with no or limited means of propulsion. Station keeping with differential drag is a proven concept and
has been successfully demonstrated by OrbComm [1] for constellation station keeping of their satellites in supplement
to propellant-based station keeping.

This paper investigates the guidance navigation and control performances of a couple of nanosatellites that ex-
ploit differential drag to achieve and maintain formation flight in low Earth orbits. The guidance algorithm introduced
in [2, 3] guarantees convergence of relative motion to the origin in minimum time under limiting assumptions: prede-
termined differential drag modes, instantaneous switching among them, and perfect relative motion information. The
first assumption relies on the perfect knowledge of the ballistic coefficients and of a constant air density. The second
assumptions assumes an ideal mechanism for attitude or ballistic coefficient switching. The third assumption assumes
a perfect navigation system. In this paper, all three assumptions are relaxed and a scheme for guidance, navigation
and control is proposed and tested under ‘realistic’ conditions. Several ‘real-life’ features were added: a high vari-
ability air density, an attitude control algorithm that enables maneuvers to modify the ballistic coefficient, an attitude
determination algorithm processing typical vector measurements available for small satellites, and several relative nav-
igation filters based on various air density information modeling. The contribution of this paper are twofolds: A/ in
the realm of relative navigation in the presence of high air density variability it introduces several filters based on
various modeling assumptions on the air density and the relative motion equations: 1/ constant density perturbed by
an additive white noise, 2/ constant density perturbed by a random walk, 3/ uncertain density of polytopic type, 4/

perfect information. Assumption 3 lends itself to a novel robust H∞ relative navigation filter. B/ it introduces a feasible
architecture, as shown in Fig. 1, for the GNC/ADC system for formation flight via differential drag onboard nonpropul-
sive small satellites and verifies the performances via realistic simulation conditions. The truth dynamics environment
includes high-order gravity modeling for the orbit, drag and gravity-gradient torques as perturbations for the rotation,
attitude control via reaction wheels and magnetorquers with continuous wheels desaturation, attitude determination via
gyroscopes and typical line-of-sight measurements using state-of-art quaternion Kalman filtering.
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Figure 1: block diagram

Section 2 presents the relative navigation modeling and filters. Section 3 describes the attitude determination
modeling and algorithm. Section 4 describes the attitude control modeling and algorithm. Section 5 presents the
guidance scheme. Section 6 describes the satellites dynamics simulator. Section 7 shows the numerical results and
Section 8 draws conclusions.

2. Relative Navigation

2.1 Preliminary results

Let r = (x, y, z) denote the position vector of the Follower S/C resolved along the frame LL. According to Ref. [4], the
equations governing the dynamics of r can be approximated by a set of linear differential equations that account for
the J2 affect and a differential drag as follows:

r̈ + C ṙ + Kr = d (1)

where, the forcing function d, which stems from the differential drag, has the following expression:

d = −1
2

(
1
βF
− 1
βL

)
rre f n2σ2


0
1
0

 , (2)

the damping matrix C and the stiffness matrix K are expressed as follows:

C = n



1
2

1
βF
σ1 −2c 0

2c 1
βF
σ1 0

0 0 1
2

1
βF
σ1

 (3)

K = n2



−
(
5c2 − 2

)
− 1

2

(
1
βF

+ 3
βL

)
σ2

2 0
1
2

(
2
βF
− 3

βL

)
σ2

2 0 0
0 0

(
3c2 − 2

)


, (4)

and σ1, σ2 and β are defined as follows:

σ1 = 1 − ωe

n
cos ire f , σ2 = 1 − 2

ωe

n
cos ire f , β =

(
ρ

CDS
m

rre f

)−1

(5)

In Eqs. (1) to (5), the time-invariant parameters n, rre f , ire f denote the mean orbital rate, the radius, and the inclination,
respectively, of a reference circular orbit; c denotes a J2 dependent coefficient, ωe denotes the Earth rotation rate, CD

denotes the satellite drag coefficient, m denotes the satellite mass, S denotes a satellite cross-sectional area of reference,
and ρ denotes the atmosphere’s density along the reference orbit. The coefficients 1

βL
and 1

βF
are non-dimensional

ballistic coefficients of the Leader and Follower.
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2.2 Design Model in State-space

Let x denote the state vector defined as follows:

x = (x, y, ẋ, ẏ, z, ż) (6)

Noting that the dynamics of x can be controlled via the term
(

1
βL
− 1

βF

)
, and rewriting Eq. (1) yields the following

process equation for x in state-space form:

ẋ = A x + Bu (7)

where

A =



· · 1 · · ·
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(8)

B =
[
· · · n2

2 σ2r2
re f ρ · ·

]T
(9)

u =
CDS

m

∣∣∣∣∣
L
− CDS

m

∣∣∣∣∣
F

(10)

and · denotes zeros in all above expressions. This process model emphasizes two features: 1/ the control variable u
depends primarily on the satellites’ cross-sectional reference areas and therefore on the satellites’ attitudes, 2/ the input
matrix B is a function of the atmospheric density, which is typically difficult to know exactly. Notice that the dynamics
matrix A depends on ρ as well but to a lesser extent, by several orders of magnitude, than the matrix B. The impact of
the air density uncertainty on the A matrix will be neglected. A measurement of the relative position is assumed to be
acquired by the satellites, i.e.

zN = HN x + vN (11)

where

HN =


1 · · · · ·
· 1 · · · ·
· · · · 1 ·

 (12)

and the measurement error is assumed to be an additive zero-mean white noise with known covariance RN = σ2
N I3.

2.3 Atmospheric density models and relative navigation algorithms

The Truth model for the atmospheric density is assumed to be the 2001 United States Naval Research Laboratory Mass
Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE-00 Atmosphere Model [5]). Yet the associated
computation load, along with the unavoidable large uncertainty in ρ, might justify simplifying assumptions about the
variability of ρ while yielding still satisfactory navigation performances. In the following, various Design models are
proposed for ρ and the relative motion dynamics and, thus, various relative navigation algorithms are developed.

2.3.1 Model 0: Known air density

The air density, as evaluated from the NRLMSISE-00 Atmosphere Model, is assumed to be exactly known and is treated
as a deterministic parameter in the design model for relative navigation. In this work we assume: ρ0 = 5·10−10

[
kg m−3

]
,

a typical value at 400 km height.

2.3.2 Model 1: White noise

The air density model assumes that ρ is a random process with a constant and known expected value, ρ0, and a zero-
mean white noise process for the deviations from it at any time t.

ρ(t) = ρ0 + w(t) w ∼ WN(0, σ2
ρ1) (13)
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Using Eq. (13) in the state-space process equation (7) yields

ẋ = A x + B(ρ0)u + Gw (14)

where

G =
[
· · · n2

2 σ2r2
re f u · ·

]T
(15)

Assuming that the external input u is a known deterministic variable, Eqs. (14),(11), describes a valid state-space
system, for which a Kalman filter can be developed in order to estimate the state vector x of the relative position and
velocity of the Follower with respect to the Leader. The Kalman filter equations are well-known and need not be written
here. More details on the implementation will be provided in the section dedicated to the numerical results.

2.3.3 Model 2: Random Walk

The assumption on the air density is similar to Model 1 except that the deviation is here modeled as a Random Walk
with intensity σρ2, i.e.

ρ(t) = ρ0 + η(t) (16)

η̇ = w(t) w ∼ WN(0, σ2
ρ2) (17)

The standard technique of state-augmentation yields the augmented state:

y = ( x, η) (18)

which process model is derived from Eq. (7) by appending to the matrix A in Eq. (8) a row of zeros and the column G
as given in Eq. (15). The proposed algorithm is a Kalman filter that will estimate the augmented state.

2.3.4 Model 3: Input Disturbance and Parameter Uncertainty

The approach consists in considering the differential drag forcing term in Eq. (7) as a finite-energy disturbance and the
density as a parameter with polytopic uncertainty. The rational for this approach is that the differential drag acceleration
incorporates variables on which our knowledge is limited or noisy, like the drag coefficient or the satellites’ orientations.
A precise evaluation of the differential drag might thus prove elusive. Instead one may follow the path of estimating the
relative motion in presence of the worst-case differential drag. Further, while the variability of the air density makes
tracking difficult, knowing its bounds is easier. The upper and lower bounds are considered as vertices in the parameter
space and a robustH∞ filter is developed. Let α be defined as follows:

α =
n2

2
σ2r2

re f ρ (19)

A simple analysis suggests the following values of the vertices:

α(1) = −10−3 α(2) = 10−3 (20)

yielding two vertices B(1) and B(2) for the system matrix B(ρ) in Eq. (7). The robust H∞ filter equations are written
below for the steady-state case.

ẋc = Acxc + Bcy (21)

x̂ = Ccxc + Dcy (22)

the LMI system given as



AT X + XA + BFC2 + CT
2 BF XA + AF + BFC2 + AT R XB(i)

1 + BF D21 CT
1 −CT

2 DT
F

∗ AT R + RA RB(i)
1 CT

1 − (DFC2 + CF)T

∗ ∗ −γ2I −D21DT
F

∗ ∗ ∗ −I


< 0 (23)

[
X R
∗ R

]
> 0, γ → minimum (24)

where

AF , MAcR, BF , MBc, CF , CcR, M , I − XR−1 (25)

The result of the LMI solution described above yields the filter matrices Ac, Bc , Cc and Dc for the filter.
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3. Attitude Determination

The two satellites are assumed to be equipped with identical attitude sensing suites and attitude determination algo-
rithms. The subscripts L and F will thus be omitted for the sake of simplicity.

3.1 Sensors mathematical model

3.1.1 Rate gyroscope

The attitude sensing system comprises a three-axis strapdown rate gyroscope that provides angular velocity measure-
ments of the body frame B with respect to the inertial frame I, resolved along B. A widely used model [ 6] assumes
that the gyro output is corrupted by a drift and a white noise and that the drift is modeled as a random walk. Other
errors, such as misalignment angles and scale factors are discarded but can easily be incorporated to the model via state
augmentation. Equations (26),(27) summarize the proposed gyro model:

ω̃ = ω + µ + ηv (26)
µ̇ = ηu (27)

where ω̃ denotes the gyro measurement, µ denotes the drift and ηv, ηu denote zero-mean white noise vectors with
covariance matrices σ2

v I3 and σ2
uI3, respectively.

3.1.2 Vector measurements

The attitude sensing system also features devices that provide vector measurements. The current study assumes that
two vector measurements are simultaneously acquired at each sampling time. The inertial projections of these vectors
are assumed to be time-invariant during the time laps of interest, i.e. several periods of revolution around Earth. This
is typical of line-of-sights to stars or to the Sun. Let s denote the projection of a measured vector along I and let b
denote the associated noisy vector measurement, then the measurement model is described as follows:

b = D(q)s + δb (28)

where q denotes the quaternion from I to B, D(q) denotes the attitude matrix associated with q, and δb denotes the
measurement noise vector, modeled as a zero-mean white Gaussian noise with covariance matrix σ2

b
I3.

3.2 Attitude estimation algorithm

This work implements the widely used quaternion Multiplicative Extended Kalman Filter (MEKF) [7], where the gyro
measurements are used for kinematics propagation and the vector measurements are processed in order to update the
gyro drift and to estimate the quaternion. The estimated states are thus the attitude quaternion from I to B and the
gyro drift, i.e. seven states. The linearized perturbations model however features the Euler vector of the estimation
error rotation, denoted by θ, rather than the algebraic quaternion estimation error, and is thus of dimension six, rather
than seven. Since the MEKF development differs from the standard Kalman filter, and for the sake of completeness,
the MEKF equations are summarized as follows:
Initialization: q̂(0), µ̂(0), PA(0), where PA(0) denotes the 6 × 6 initial estimation error covariance matrix.
Time propagation: Given q̂k/k , µ̂k/k

, PA(k/k)

ω̂k/k = ω̃ − µ̂
k/k

(29)

d
dt

q̂(t/tk) =
1
2

[−
[
ω̂k/k×

]
ω̂k/k

− ω̂k/k 0

]
q̂(t/tk) (30)

d
dt
µ̂(t/tk) = 0 (31)

FA =

[−
[
ω̂k/k×

]
I3

· ·
]

(32)

QA =

[
σ2

v I3 ·
· σ2

uI3

]
(33)

d
dt

PA = FAPA + PAFT
A + QA (34)
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Measurement update: Given q̂k+1/k , µ̂k+1/k
, PA(k + 1/k)

b̂k+1/k = A(̂qk+1/k )sk+1 (35)

HA =
[
−[ b̂k+1/k×] ·

]
(36)

RA = σ2
b
I3 (37)

S k+1 = HAPAHT
A + RA (38)

Kk+1 = PA(k + 1/k)HT
A S −1

k+1
(39)

PA(k + 1/k + 1) = (I6 − Kk+1 HA)PA(k + 1/k)(I6 − Kk+1 HA)T + Kk+1 RAKT
k+1

(40)
(
θ̂
µ̂

)

k+1/k+1

=

( ·
µ̂

k+1/k

)
+ Kk+1 ( bk+1 − b̂k+1/k ) (41)

δ̂q =

(
1
2 θ̂
1

)
1√

1 + ‖ θ̂‖2
(42)

q̂k+1/k+1 = q̂k+1/k ⊗ δ̂q (43)

The measurement update is described for any vector measurement and is sequentially repeated if several vector ob-
servations are acquired. Equation (42) performs a brute-force normalization of the estimation error quaternion. Equa-
tion (43) describes the quaternion multiplication between the a priori estimate q̂k+1/k and the estimation error δ̂q. It is a
sequence of two rotation bringing first the I frame to the a priori estimated B frame and then to the a posteriori esti-
mated B frame. The algorithms are identical on-board the Leader and the Follower, yielding the following estimates:
( ω̂L, q̂IL, ω̂F , q̂IF ). These outputs have two purposes: 1/ to calculate the ballistic coefficients and, thus, the differential
drag acting on the relative motion, and 2/to calculate the tracking errors that drive the Attitude control algorithm.

4. Attitude Control

This section provides an overview of the Attitude Control system and algorithm. It is adapted from Ref. [8].

4.1 Quaternion Feedback Regulator

The quaternion feedback control law implemented here was introduced in [9], and is used to calculate a control torque
which will rotate the satellite to the desired attitude. The following control law is given to calculate the required control
torque

Tr = −dJωe − kJqe (44)

where J is the satellite tensor of inertia expressed in B, d and k are scalar gain parameters, ωe is the error between the
estimated inertial rotational rate vector and the desired one, expressed in the body frame, and qe is the vector part of
the quaternion that describes the rotation from the desired body frame to the estimated body frame. Let qd denote the
quaternion from the inertial frame to the desired frame, then

qe = ΞT
d q̂ (45)

where

ΞT
d =


qd4 qd3 −qd2 −qd1

−qd3 qd4 qd1 −qd2

qd2 −qd1 qd4 −qd3

 (46)

and qdi = qd(i) for i = 1, 2, 3, 4. Let ωd denote the angular rate of the desired frame with respect to the inertial frame,
then

ωd = 2 ΞT
d q̇d (47)

where q̇d and thus q̇d are a direct result of the desired mode of operation provided by the Guidance system. Notice
that ωd, as computed in Eq. (47), is expressed along the axes of the desired frame. The error vector,ωe, is computed
as follows:

ωe = DDB ωd − ω̂ (48)
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where DDB is the transformation matrix from the desired frame to the body frame, such that ωe is expressed in the
body frame. The above proportional-derivative control law was successfully implemented on numerous satellites (see
e.g. [10]). In the full actuation and perturbation free case, it is shown in [11] that the closed-loop controlled system is
globally asymptotically stable.

4.2 Torque allocation and actuation

Each satellite is equipped with three reaction wheels and three magnetic torquers. One possibility is to let the reaction
wheels deliver the entire required torque, Tr, and let them be unloaded by the magnetorquers, when needed. However,
this approach is likely to rapidly lead the reaction wheels to saturation. In order to ease on the reaction wheels the
magnetorquers also are used and deliver part of the torque Tr, unless unloading is needed, which receives higher
priority than the control effort. Control torque allocation to the magnetorquers and the wheels is achieved following
a geometric approach [12]. In compliance with the physical limitation of magnetic torquing, the torque allocated to
the magnetorquers, denoted by Tmtqc , consists of the projection of the required torque on the plane orthogonal to the
magnetic field vector B. Given B and Tr, the required magnetic dipole, mc, is computed as follows:

mc =
B × Tr

‖B‖2 (49)

It can then be easily shown that the magnetic torque Tmtqc is expressed as follows:

Tmtqc = mc × B =

(
I3 − BBT

‖B‖2
)

Tr (50)

which is the sought orthogonal projection. The reaction wheels are actuated such as to deliver the remainder of the
required torque. Thus, given B and Tr, the commanded angular momentum rate in the wheels is computed as follows:

ḣc = −BBT

‖B‖2 Tr (51)

Hence, the torque applied by the wheels on the spacecraft is

Trwc = −ḣc =
BBT

‖B‖2 Tr (52)

which shows that the total control torque applied by the magnetorquers and the reaction wheels, Tc = Tmtqc + Trwc is
indeed equal to the required torque Tr. To summarize, given Tr from Eq. (44), and B from magnetometers, the mag-
netorquers’ magnetic dipole vector is commanded via Eq. (49) and the reaction wheels are commanded via Eq. (51).
This allocation scheme is used in all modes when reaction wheels are far from saturation. The load dividing scheme
delays the saturation of the reaction wheels since part of the required torque is delivered by the magnetorquers, but its
design does not address this issue specifically. The desaturation issue is addressed in the implemented attitude control
scheme following the Novel Unloading method presented in Ref. [8].

5. Guidance

The implemented guidance scheme yields a differential drag switching strategy, following the approach introduced in
Ref. [3], which is described here for the sake of completeness.

Formation flight equations

It is well known, using for instance Clohessy-Wiltshire equations [13], that the satellites relative motion is a 2x1 ellipse
whose center is constant in the radial direction but drifts in the along-track direction. It can be further shown that the
average relative position of the follower, or alternatively the center of the 2x1 ellipse, can be expressed as

x̄ =
2c2

2 − c2 x +
2c(

2 − c2) n
ẏ

ȳ = y − 2c(
2 − c2) n

ẋ
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An algorithm was introduced in Ref. [3] that controls the position and size of the relative motion ellipse via a switching
strategy of the differential drag. Two motion variables, α and β, are defined as the difference between the actual and
mean position variables along the radial and in-track directions, α = x − x̄ and β = y − ȳ. This transformation leads to
two uncoupled, second order linear differential equations:

¨̄y =
2 − 5c2

2 − c2 ay (53)

β̈ +
(
2 − c2

)
n2β =

4c2

2 − c2 ay (54)

where ay denotes the differential drag acceleration. Controlling ȳ, whose dynamics are a double integrator, will simul-
taneously control x̄, and controlling β, whose dynamics are a harmonic oscillator, will simultaneously control α.

Maneuvering strategy

The parabolic control trajectories for the double integrator of Eq. (53) in the x1 = ȳ, x2 = ˙̄y plane are plotted in Fig.
2. The optimal time control solution to the origin involves a maximum of two switches between positive and negative
control inputs. The first control input drives the system to one of the two bold switch curves where the control input
is switched and the states are led to the origin. The parabolic trajectory of the switch curves is given by the following
equation:

x1 = ζ1 −
x2

2

6ay
+
ζ2

2

6ay
(55)

where ζ1 and ζ2 represent the initial condition. The control trajectory in the α, β plane are 2x1 ellipses that become
circles if plotted in the x3 = (n/4) β, x4 = (1/4) β̇ plane as shown in Fig. 3.

-6 -4 -2 0 2 4 6
x

1

-4

-2

0

2

4

x 2

positive drag
negative drag

0
x

3
n

0x 4n

negative drag
positive drag

-a a

Figure 2: Control trajectories in the ȳ, ˙̄y plane Figure 3: Control trajectories in the β, β̇ plane

The switching strategy requires the evaluation of the switching curves based on the knowledge of the current position
and velocity states and of the differential drag acceleration. In this work, the above guidance strategy is implemented
using estimated values of the states and of the differential drag acceleration, as provided by the Relative Navigation
module. The output of the Guidance is a decision to switch to one of the three possible modes of operation: positive,
negative or zero differential drag. The decision is passed on to the Attitude Control module yielding the calculation of
a desired attitude quaternion for each of the two satellites in formation.

6. Numerical Simulation

This section is concerned with the description of the satellites’ dynamics simulator.
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6.1 Physical model description

Five reference frames are used in this simulator. The Earth Centered Inertial (ECI), denoted by I, two Local Vertical
Local Horizontal (LVLH) frames centered at the Leader and Follower locations, denoted byHL andHF , respectively,
and two body frames centered at the satellites’ centers of gravity, denoted by L and F , respectively, or simply by B
when the descriptions are identical for both satellites. The definitions of these frames and the computations of the
Direction Cosine Matrices (DCM) follow standard textbooks descriptions (see for instance [14, 15]). In this work
we adopt the following symbology: DBA and qAB denote the DCM and the quaternion from frame A to frame B.
The dynamics of the orbital motion are simulated in the ECI frame. The satellite position and inertial velocity are
denoted by rI and vI , respectively. The acceleration due to the gravity field, denoted by aG, is computed using the
Matlab function “gravitysphericalharmonic” that implements the mathematical representation of high orders spherical
harmonic planetary gravity based on planetary gravitational potential. The solar radiation pressure and third-body
accelerations due to the Sun and Moon are neglected. The drag acceleration, denoted by aD, is calculated based on a
classical aerodynamics representation of the drag force, i.e., the pressure differential effects are lumped into a single
force acting on the center of pressure of each satellite’s panel. It is proportional to the dynamic pressure, the panel’s
cross-sectional area of reference normal to the flow, denoted by S i, i = 1, 2..., and to the drag coefficient of the panel,
CDi. The satellites shapes are represented through their panels locations defined in the body frames. The centers of
pressure are assumed to be coinciding with the geometric centers of the panels. The resulting drag force, denoted by
fD, is calculated as the sum of the drag forces acting on the satellites’ panels. The calculation of the panels’ areas
normal to the flow, S i, i = 1, 2, ..., involves the calculation of the velocity vector relative to the atmosphere, denoted
by va. Calculation of va assumes an atmosphere co-rotating with the Earth at the nominal Earth rotation rate ΩE . The
calculation of the dynamic pressure requires the velocity and the atmospheric density, denoted by ρ, at the satellites’
locations. The values of the atmospheric density are retrieved from a state-of-art semi-empirical model, namely the
United States Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE-00
Atmosphere Model [5]). The calculation of the panels’ areas normal to the flow are functions of the satellite’s attitudes
and the associated ballistic coefficients represent the indirect control variables in the proposed orbital motion guidance
scheme. The satellites rotational motions around their centers of gravity are described by coupled kinematics and
dynamics equations. The kinematics are expressed in terms of the attitude quaternion, denoted by q, from the inertial
frame I to the satellite’s body frame. The angular velocities of the body frames are with respect to the inertial frame
I, resolved along the body frames, L and F , and denoted by ωL and ωF , respectively. The Euler’s equations describe
the time evolution of ω for a given tensor of inertia, denoted by J, and external torques. These torques result from
the sum of the command torques, Tc, calculated in the Attitude Control module, and of the disturbance torques. The
disturbance torques include a Drag torque, denoted by TD, and a Gravity-Gradient torque, denoted by TGG. The Drag
torque is computed as the sum of the panels’ drag torques evaluated using the panels drag forces and the panels arm
vectors. Each panel’s moment arm is a body fixed vector, denoted by `i, from the satellite center of gravity to the panel
center of pressure. The gravity gradient torque, TGG, is calculated using a well known approximation model assuming
a central and uniform gravity field.

6.2 Numerical simulator summary

The following equations summarize the simulation of each of the two satellites. The subscripts L and F are omitted for
the sake of simplicity.

ṙI = vI (56)
v̇I = aG + aD (57)

q̇ =
1
2

[ − [ω×] ω
−ω 0

]
q (58)

ω̇ = J−1 (Jω × ω + Tc + TD + TGG) (59)
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The Drag acceleration calculations are performed according to the following equations:

aD =
1
m

fD (60)

fD =
∑

i

fDi (61)

fDi =
1
2
ρCDiS i(vT

a DBIni) (−va) i = 1, 2... (62)

va = vI − ΩE × rI (63)

where the DCM matrix DBI is readily computed using the inverse quaternion q−1. This factor clearly shows the coupling
of the attitude and the orbital motions due to the drag force. Notice that the drag acceleration calculations mostly involve
variables expressed in the inertial frame. Only the panels outward unit vectors, denoted by ni, are given in the body
frames. The model accounts for potentially different areas and drag coefficients for each panel. The summation is done
over the number of panels that actually “see” the air flow. For a cubic shape satellite that number is three at any time.
The Drag torque calculations are performed as follows:

TDi = `i ×
(
DIB fDi

)
i = 1, 2... (64)

TD =
∑

i

TDi (65)

showing anew the coupling of the orbital and attitude motion. Notice that the torques are evaluated in the body frames,
requiring the axes transformation from I to B of the individual drag forces. The Gravity-Gradient torque is expressed
as follows [7, 15]:

TGG = 3
µ

| rI |3 a3 × Ja3 (66)

where µ denotes the Earth gravitational constant and a3 denotes the Nadir unit vector from the satellite to the Earth
center. That vector coincides with the negative unit vector in the X-direction of the H frame. The system of equa-
tions (56)-(66) summarizes the calculations performed in order to compute the true values of the inertial position,
inertial velocity, quaternion, and angular velocity of each satellite. The relative navigation module however provides
estimates of the relative position, denoted by r, and of the relative velocity, ṙ, of the Follower with respect to the
Leader, resolved in the HL frame. It also estimates the differential drag acceleration, denoted by d in Eq. (1) or ay

in Eq. (53), which is required in the estimate propagation stage of the Kalman filters and in the Guidance algorithm,
respectively. The following equations describe how the true values of the relative position, relative velocity and of the
differential drag, resolved along the frameHL, are obtained:

ro = DIHL

(
rI,F − rI,F

)
(67)

ṙo = DIHL

[
vI,F − vI,L + ωHL ×

(
rI,F − rI,F

)]
(68)

ao
DD = DIHL

(
aD,F − aD,L

)
(69)

where rI,L, rI,F , vI,L, vI,F denote the inertial positions and velocities of the Leader and the Follower, respectively, and
ωHL denotes the angular velocity vector of the frameHL with respect to the inertial frame resolved inHL.

7. Numerical Results

This section presents the performances of the proposed Guidance, Control and Navigation scheme obtained through
numerical simulations. General parameters related to the orbits and to the satellites are shown in Table 1 and parameters
used in the Relative Navigation Design Models are shown in Table 2. The simulations start with the two satellites on
the same orbit and the Follower in front of the Leader by 70 km along the y-axis of theHL frame.

7.1 Constant and known air density: Ideal guidance

The air density is assumed to be constant and known, equal to a typical nominal value at 400 km height, ρ0 = 5 · 10−10

kg m−3. Assuming that the satellites are instantaneously and perfectly achieving the desired relative attitude results in a
constant and known differential drag acceleration, ay = 4.5 · 10−4 m s−2, which is either positive or negative according
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Table 1: General parameters

Parameter symbol Value

Orbit altitude h [km] 400
Nominal density ρ0 [kg m−3] 5 ·10−10

Orbit eccentricity e [-] 5 ·10−4

Orbit inclination i [deg] 51.64
Principle moments of inertia Jii [kg m2] (0.0889,0.1162,1261)
Mass [kg] 6.543
Nominal differential drag acceleration ay [m s−2] 4.5 ·10−4

Max. magnetorquer dipole mmax [Am2] 0.1
Max. reaction wheel acceleration ḣmax [Nm] 1 ·10−5

Max. reaction wheel angular momentum hmax [Nms] 1 ·10−3

Table 2: Filter parameters

Parameter Value

gyroscopes sampling time [sec] 2
vector measurements sampling time [sec] 60
σb [arcsec] 100
σu [-] 2·10−4

σv [deg s−1] 1·10−5

q̂0 [-] (0,0,0,1)
µ̂0 [deg s−1] (0,0,0)
PA(0) (Model 0, Model 1) diag( 0.1 I3, 0.001 I3 )
relative position sampling time [sec] 60
σN [m] 1
x̂0 [m] (0,0,0,0,0,0)
PN(0) (Model 0, Model 1) 100 I6

to the relative satellites orientations. This enables checking the performances of the ideal guidance algorithm from
Ref. [3]. Figures 4 to 7 describe the maneuvers of the ideal guidance algorithm. Along each trajectory curves are
drawn ’quarter of orbits’-ticks that time the maneuvers. Figure 4 shows the trajectory in the mean motion plane. At the
first switch point the Follower flips to a minimum drag attitude and the Follower to a maximum drag attitude - as shown
by the symbols ‘-|’ near the switch point. The Leader slides below the Follower and takes speed. At approximately 1.3
orbit, while the Follower travels about 5 km above and 35km in front of the Leader, the trajectory in the mean motion
plane hits the switching curve triggering a flip in the satellites’ attitudes to the opposite differential drag mode. Then
the trajectory slides along the switching curve until the end of guidance level 1 when the mean position hits the origin
in Fig. 4 around 2.7 orbit. At that point the Follower again adopts a drag lean attitude and the guidance levels 2 and 3
start. These are concerned with the control of the deviations around the mean position and are described in Figures 6,7.
They involve a series of switches among the three possible modes, positive, negative, and zero differential drag, until
the origin is reached within 7.5 orbits. Notice that these maneuvers imply that the mean position itself is set to motion,
leaving and returning eventually to the origin, via sequence of so-called “hat-shape” maneuvers, referring to the shape
of the trajectories in the mean motion plane. The relative motion in the HL frame can be captured in Fig. 5: it shows
that most of the maneuver is performed during level 1 guidance with a distance closing from 70 km, while the level 2
and 3 guidance induces deviations of about10 km along track and 2 km in the radial direction before converging to the
origin. This hints at the fact that level 1 guidance will be likely most relevant in ‘real-life’ scenarios while level 2 and 3
guidances will be ‘nice to have’, if possible. This ‘blue sky’ validation check provides a 10 m accuracy in the guidance
performances within 8 orbits.
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7.2 Time-varying air density - high solar activity

7.2.1 Guidance performances with full information

The air density is assumed to vary according to the plot in Fig. 8-top, showing very high deviations from the nominal
density value previously assumed. Full information and perfect attitude control actuation are assumed, hence the
differential drag is known, as depicted in Fig. 8-bottom. The time-varying differential drag induces a time-varying
switching curve which creates the sluggish trajectory of the mean relative position (dotted line in Fig. 9). Further
the high variability of the density is responsible for the bulbs in the actual relative trajectory in the HL (plain line in
Fig. 9). Application of the level 1 guidance scheme with a high-variability realistic density yields a serious degradation
in performances: 2 km in the radial direction and 10 km in the in-track direction at 2.7 orbit in the maneuver. This
emphasizes the criticality of the time invariance of the differential drag in the guidance algorithm.

7.2.2 Attitude Control and Determination performances

Attitude control is implemented in order to relax the unrealistic assumption of perfect and instantaneous attitude ‘flips’.
Attitude estimates have two impacts: 1/ they contribute to the differential drag estimation, which is used in the relative
navigation calculations; the differential drag is also used in the switching curves construction and thus impacts the guid-
ance performances, 2/ they contribute to the attitude tracking errors and thus impact the attitude control performances.
The attitude control gains were chosen by trial and errors such as to yield a settling time of approximately 5 mn and
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Figure 9: High solar activity: Relative motion in EL

with full information level 1 guidance

a steady state error in tracking of less than 3 degrees. Figures 10, 11 summarize the attitude control performances.
Figure 11 depicts the time history of the attitude pointing error, which settles about 2.3 degrees after each switch point.
Figure 11 shows the drag and control torques on both the Leader and Follower. It pictures the relatively high torques
along the z-body axes required for the 90 degrees maneuvers within 5mn. It shows the relatively high value of the drag
torque along the other axes which is the dominant perturbations that the control torques must counteract continuously.
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Figure 10: High solar activity: Angular pointing errorFigure 11: High solar Activity: drag and control
torques in Leader and Follower

7.2.3 Navigation performances

Figures 12,13 summarize the performances of the navigation filters for the various design models. The ‘Model 0’ plots
refer to the Kalman filter where the actual time-varying air density is exactly known. The ‘Model 1’ plots refer to the
Kalman filter that treats the density as a constant ρ0 corrupted by white noise. The ‘Model 2’ plots corresponds to the
Kalman filter that estimates the variable part of the density, along with the relative motion. The ‘Model 3’ plots refer
to the robust H∞ filter estimates the relative motion under a bi-topic uncertainty on the density. Several facts can be
noticed from the figures: 1/ the robust H∞ filter is the quickest to converge, 2/ the robust H∞ filter is the least sensitive
to the high variability in the real air density, 3/ all filters converge in steady state to relatively good accuracies, 5 m in
radial direction, 10 m along track, and 5 cm/s in velocities. It can be further noticed that the Model 0 Kalman filter
shows the best accuracy in steady-state, as expected, that the Model 2 filter is the most sensitive to the high variability in
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the density, and that the robust H∞ filter is noisier than the Kalman filters in steady state. The navigation performances
are better (by orders of magnitudes) than the guidance performances, as they should. The best filter candidate for the
high solar activity case appears to be the robust H∞ filter since it allies quicker convergence, lower sensitivity to high
variations in the density, and a similar steady-state accuracy to the Model 1 filter.

Figure 12: High solar activity: position estimation
errors

Figure 13: High solar activity: velocity estimation
errors

7.2.4 Guidance performances with Attitude Control and Navigation

Figures 14,15 summarize the performances of the proposed guidance, navigation and control scheme in the case of
high variability density. Figure 14 depicts the estimated and true trajectories in the mean motion plane. The estimated
trajectory stems from the H∞ filter. The navigation errors appear small compared to the actual distances to travel. The
first switch point takes place at 2.2 orbit, much later than the nominal 1.7 orbit of the ideal guidance law. The remainder
of the curve is far from following the switching curve. An additional switch is taking place around 6.6 orbits. Figre 15
shows the relative trajectory in the HL.The mean position and the true position reach a neighbourhood of the origin
within 8 orbits, yielding guidance accuracies of about 2 km in both the radial and the in-track directions.
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8. Conclusion

This work is concerned with the development of algorithms for guidance, navigation and control, including attitude
determination and control, for formation flying of small satellites via differential drag only along low Earth orbits. A
baseline guidance scheme presented in the literature was chosen, where the differential was assumed fully controllable,
piece-wise constant, and known. Several ‘real-life’ features were added: a high variability air density, an attitude con-
trol algorithm that enables maneuvers to modify the ballistic coefficient, an attitude determination algorithm processing
typical vector measurements available for small satellites, and several relative navigation filters based on various air
density information modeling. The dynamics environment included high-order gravity modeling for the orbit, drag
and gravity-gradient torques as perturbations for the rotation. The ideal guidance scheme was tested on a two satellites
formation flying on the orbit of the International Space Station starting with a range of 70 km. It enables closure of
the distance down to 10 m within eight orbits. The ‘real life’ GNC/ADCS algorithms tested under the same conditions
produced a final distance of about 2 km within eight orbits. The degradation in the performances is due to the high
variability of an unknown air density, the relative navigation errors, and the attitude control errors, in order of domi-
nance. The best relative navigation filter appears to be a robust H∞ filter. A comparison of that filter with the various
Kalman filters shows a quicker convergence, a lesser sensitivity to the jumps in the air density, a similar steady-state
accuracy, albeit with a noisier behavior.
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