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Abstract 
The object of the research is computer modeling of a spacecraft movement and its movement control on the 

stand base of the flights control center of Kazakh National Research Technical University named after K.I. 

Satpayev. Nano-satellite ‘Polytech-1’ developed in the flights control center is a scientific educational 

spacecraft intended for operational measurement of the Earth’s magnetic field at the height of approximately  

400 km and transmission of measuring information to the reception means of the university flights control 

center. Here is a mathematical model of nano-satellite ‘Polytech-1’ movement in the Earth’s gravitational 

(Spherical Harmonical Gravity Model) and magnetic (The US/UK World Magnetic Model for 2015-2020) 

fields developed in Matlab-Simulink system and realized in the software. 

 

1. Introduction 
 

For the analysis of technological processes of operation of orbital systems, for the development of technologies 

of the semi-natural research of the on-board equipment systems as well as for educational purposes, it is necessary to 

develop mathematical models of movement, control and stabilization of a nano-satellite in the neighborhood of the 

programmed movement taking into account its constructional features.  

To ensure the programmed movement of a spacecraft in the orbit connected with its purpose, it is  necessary to 

take into account and estimate all acting forces. Besides the Earth’s gravitation, there are various forces which act on 

a spacecraft such as gravitation forces of celestial bodies (Moon, Sun, planets and others), light pressure force, 

electromagnetic forces, aero-dynamical forces and others which influence its movement to a different extent. The effect 

of this influence depends on a type of a spacecraft and conditions of its movement such as the type of the orbit, its 

inclination, the position in the orbit, etc.    

Magnetic effects can be used to control and stabilize the satellite position in the orbit. Passive magnetic 

stabilization uses a set of constant magnets to orientate the satellite in relation to the Earth’s magnetic field. Besides, 

spacecraft magnetization occurs due to the on-board electronics operation, its radio complex. The spacecraft shield is 

also magnetized by the Earth’s magnetic field and consequently there is a hysteresis pattern which creates an effect of 

attenuation of the satellite rotation angular velocity. 

In the present work there is modeling of dynamics of the nano-satellite in the Earth’s gravimagnetic field with 

the use of Matlab-Simulink software system on the basis of a rigid body, which is divided into two basic stages: 

modeling of mechanics of the translational movement of the nano-satellite center of mass and its own rotational 

movement around its center of mass [1-3].           

1.1 Development of Orbital Environment Simulator  

The orbital environment simulator, which is shown in figure 1, is realized to develop the control system of the 

nano-satellite. It consists of six interconnected blocks as follows: 

1. Input and calculation of initial data: coordinates, speed of the center of mass, angular coordinates and the spacecraft 

speed (Spherical Harmonical Gravity Model, 6DOF equations of motion); 

2. Calculation of the spacecraft orbit, speed and position of its center of mass (Integration of the motion of the center 

of mass); 

3. Calculation of angular velocity of the spacecraft rotation and Euler angles (6DOF equations of motion); 

4. Calculation of the acting gravitational torque (Gravity Gradient Model) 

5. Calculation of the acting magnetic torque (Magnetic Torque acting on satellite) 

6. Calculation of the magnetic (hysteresis) torque (Model of Magnetic Torque due to the Hysteresis material) 
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Figure 1: Block-scheme of the Orbital Environment Simulator (Matlab R2015b) 

 

1. Calculating scheme of block 1. Input data. For description of the nano-satellite movement, conditionally 

the ‘static’ system is chosen as a basic system, i.e. inertial coordinates system (ICS - XYZ), intended for modeling of 

the nano-satellite movement along its orbit, and ‘moving’ coordinates system rigidly bound to the satellite body and 

participating in all its movements, so-called board coordinates system (BCS – X1Y1Z1). For the convenience of 

calculations the origin of BCS is combined with the spacecraft center of mass, and axes are put along its main inertia 

axes (axes of Koenig), which are defined by geometry of mass distribution in the spacecraft body. At the initial moment  

of time t0 the coordinates of the spacecraft center of mass and its speed are set in the ICS (R0, V0). 

For the description of the nano-satellite rotation around the center of mass, Euler angles ψ, θ, φ are used: 

precession angle ψ is the angle between axis X and the node line (line of intersection of planes XY and X1Y1), nutation 

angle θ is the angle between axes Z and Z1 ,the angle of its self rotation φ is the angle between the node line and axis  

X1. Projections of the angular velocity of the spacecraft rotation in BCS (p, q, r) are defined through Euler angles and 

their velocities 𝜃̇,  𝜓 ,̇  𝜑̇  by Poisson formulae. At the initial moment of time Euler angles ψ(t0), θ(t0), φ(t0) and the 

coordinates of the angular velocity in BCS p(t0), q(t0), r(t0) are set and initials 𝜃̇(𝑡0
), 𝜓̇(𝑡0

),  𝜑̇(𝑡0
)  are calculated. 

2. Calculating scheme of block 2. Movement of the spacecraft center of mass. The Earth’s gravitational field 

is defined by its gravitational potential U(X,Y,Z), which can be different depending on the choice of the Earth’s standard 

model. There are several models. Here it is modeled by its gravitational potential (1) through the spherical functions .  

All planets of the Solar system have a form close to a spherical one. Therefore, the gravitational field of a sphere 

can be considered as the first approximation to the gravitational field of a planet. In the second approximation, we can 

consider the fact that some planets including the Earth could be better presented as a rotation ellipsoid than a sphere. 

In the third approximation, we can take into account some features of mass distribution inside a planet, etc. The 

gravitational field of a planet is usually introduced according to its spherical function series. Due to the solving task, 

there are different requirements to the details of the initial data, to the number of the decomposition memb ers and to 

the number of the initial parameters.   

In the process of modeling the exact theory of the near-earth satellites movement, it should not be limited to an 

approximate expression for the Earth’s potential. The Earth’s gravitational potential for t he external point which is 

located at r distance from the Earth’s center can be expressed in the general view through the spherical functions in the 

following way:  
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In this formula fM is the Earth’s mass multiplied by the gravitational constant; (r, φ, λ) are the spacecraft 

spherical coordinates in which the potential U is determined; a0 is the equatorial radius of the planet (a0 = 6378.1 km);  

Cnm, Snm are the gravitational torques (they depend on the body shape and the mass distribution inside it). The axis 
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coordinates are chosen as follows: the origin of the coordinates О is located in the Earth’s center of mass, the angle ψ 

≤ π/2 is counted from the Earth’s equatorial plane, the angle 0 ≤ λ≤ 2π is counted from the basic meridian.  

Function Pnm is Legendre associated function of power n and order m. Legendre polynomials are determined by 

so-called Rodrigo formula: 
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Legendre associated functions are determined by the following formula: 
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To determine the force acting on a particle (or a spacecraft) located in the potential field (1), it is necessary to 

take a gradient from potential U as shown below:  
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where m is mass of a particle (a spacecraft). 

The force vector mentioned in formula (4) is written in the spherical coordinates system. To transfer to Cartesian 

coordinates system it is necessary to do the following: 
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Knowing the force vector, it is not difficult to determine equations of the movement of the spacecraft center of 

mass by using Newton dynamic equations. Coefficients Cnm and Snm in equation (1) are determined experimentally and 

were first obtained and published by Smithson astrophysical observatory of the USA in 1970.  

The subsequent elements, the coefficients of which are lower by a factor of a thousand or more than С20, reflect 

the details of the Earth’s shape and structure. Due to the absence of the exact data concerning the proper mass 

distribution inside the Earth and its shape, it is impossible to determine coefficients Cnm и Snm directly. That is why 

they are determined indirectly on the basis of measuring the gravity on the surface of the Earth and observation of 

pertubance in the movement of the near-earth artificial satellites.  

Considering all above-mentioned, the model of the Earth’s gravitational field has been realized in Matlab–

Simulink with the help of spherical harmonics. The given model allows modeling the Earth’s gravitational field in any 

orbit up to a geostationary one with a high degree of accuracy using numerical data values of Cnm and Snm (which are 

dimensionless ratio depending on the Earth’s shape and inside mass distribution in it). However, the accuracy of the 

used model can be changed by adding or removing coefficients Cnm and Snm in equation (1) for the gravitational 

potential. 

The coordinates of the position of the spacecraft center of mass in the orbit are given to the Spherical Harmonical 

Gravity Model block input, and at the output we receive the information concerning the resultant of gravitational forces 

acting on the spacecraft. Then the information about the acting force goes to the block of integrators where the orbit 

speed and the spacecraft position in the orbit are counted. 
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(h = 400 km, T ≈ 1.5 hr, i = 900, ɛ ≈ 0.0304, a = 6990.6 km) 

 

Figure 2: Animation of the movement path of the spacecraft center of mass in the Earth’s gravitational field 

for the polar orbit made in Matlab-Simulink software   

 

The spacecraft movement has been modeled in the polar orbit. In figure 2 there is animation of the movement 

path of the spacecraft center of mass in the polar orbit with eccentricity ɛ ≈ 0.0304, inclination i - 900 and semi-major 

axis a – 6990.6 km.  

3. Calculating scheme of block 3. The spacecraft rotation. The equations of the spacecraft movement around 

the center of mass are described by Euler dynamic equations in the coordinates system which is connected with the 

major axes of the inertia [1,2]: 
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where A, B, C are the main moments of the spacecraft inertia, M1, M2, M3 are the projections of the summarized  

moment of forces acting on the spacecraft p, q, r are the projections of the vector of the instantaneous angular velocity 

of rotation on the axis of Koenig. 

In block 3 (6DOF equations of motions) there is integration of the Euler equations system with consideration 

of the moments of the acting forces on the center of mass.  They can be divided into external ones, connected with the 

Earth’s gravimagnetic field impact or aerodynamic forces, and internal ones, which depend on the magnetization of 

the spacecraft itself and the acting driving moment which provides the spacecraft programmed rotation in the orbit 

connected with its purpose.  

4. Calculating scheme of block 4. Gravitational torque model. Gravitational torque Мg is a significant source 

of the angular moment for high-orbital spacecrafts.  

 
Figure 3: Block-scheme of calculation of the gravitational torque acting on the spacecraft (Gravity  gradient model) 
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To calculate the gravitational torque acting on the satellite at the current moment of time it is necessary to know 

the spacecraft position in the orbit, the height and the mass characteristics of the satellite. For the accepted model of 

the Earth’s gravitational field here it is counted by V.V. Beletsky formula [1,2]: 
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where eR is a single vector guiding the spacecraft center of mass: eR = r/R0, R0 is the distance from the Earth’s center 

of mass to the satellite center of mass, J is the spacecraft inertia tensor (in Figure 1 it is shown as Inertia block).  

In figure 3 there is the block-scheme of gravitational torque calculation realized in MatlabR2015b system.  

 

 
(h = 400 km, T ≈ 0.83 hours, i = 900, ɛ ≈ 0.0304, a = 6990.6 km) 

Figure 4: Components of the vector of the gravitational torque gM


 for the polar orbit 

 

In figure 4 there are graphs of changing the gravitational torque components in BCS on the above -shown 

calculating trajectory for the half-period of movement. As it is seen from the graph, at the height of approximately 400 

km from the Earth’s surface the components of the gravitational torque vector fluctuate at the range from -4×10-6 to 

4×10-6 N·m. For different heights, the gravitational torque acting on a satellite has different value reducing with 

increasing height.     

Modeling of the Earth’s magnetic field. The interaction of the Earth’s magnetic field with the spacecraft self 

magnetic field also influences the spacecraft rotation in the near-earth orbit and it depends on its electric current 

systems, constant magnets as well as magnetization of its shield material. 

The Earth is like a giant magnet. At every location on or above the Earth, its magnetic field has a more or less 

well-known direction. At some places on the globe the horizontal direction of the magnetic field coincides with the 

direction of geographic north (“true” north), but in general this is not the case. The main utility of the World Magnetic 

Model (WMM) is to provide magnetic declination for any desired location on the globe. In addition to the magnetic 

declination, the WMM also provides the complete geometry of the field from 1 km below the Earth’s surface to 850 

km above the surface.  

The Earth’s magnetism has several sources. All sources affect a scientific or navigational instrument but only 

some of them are represented in the WMM. The strongest contribution, by far, is the magnetic field produced by the 

Earth’s liquid-iron outer core, called the “core field”. Magnetic minerals in the crust and upper mantle make a further 

contribution that can be locally significant. Electric currents induced by the flow of conducting sea water through the 

ambient magnetic field make a further, albeit weak, contribution to the observed magnetic field. All of these are of 

“internal” origin and included in the WMM. The mathematical method of the WMM is an expansion of the magnetic 

potential into spherical harmonic functions to degree and order 12.  

The geomagnetic field vector, Bm, is described by seven elements. These are the northerly intensity X, the 

easterly intensity Y, the vertical intensity Z (positive downwards) and the following quantities derived from X, Y and 

Z: the horizontal intensity H, the summarised intensity F, the inclination angle I, (also called the dip angle and measured 

from the horizontal plane to the field vector, positive downwards) and the declination angle D (see Figure 5). 
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Figure 5: The seven elements of the geomagnetic field vector Bm associated with an arbitrary point in space 

 

The quantities X, Y and Z are the sizes of perpendicular vectors that add vectorially to Bm. Conversely, X, Y and 

Z can be determined from the quantities F, I and D (i.e., the quantities that specify the size and direction of Bm) 

The main magnetic field Bm is a potential field and therefore can be written in geocentric spherical coordinates 

(longitude λ, latitude ϕ', radius r) as the negative spatial gradient of a scalar potential 
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This potential can be expanded in terms of spherical harmonics [4]: 
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where N=12 is the degree of the expansion of the WMM, a is the geomagnetic reference radius, (λ, ϕ', r) are the 

longitude, latitude and radius in a spherical geocentric reference frame, and gn
m(t) and hn

m(t) are the time-dependent 

Gauss coefficients of degree n and order m describing the Earth’s main magnetic field. For any real number µ, Pn
m(µ) 

are the Schmidt semi-normalized associated Legendre functions defined as: 
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5. Calculating scheme of block 5. (Magnetic torque acting on satellite). Here the magnetic torque acting on 

the spacecraft conditioned by the geomagnetic field is modeled by interaction of dipolar magnetic torques according 

to the following formula [2,5-7]:   

 

 , (11)mgn mcM m B X 
 

 

 

where m is the magnetic dipolar torque of the spacecraft А·m2, B(Xmc) is the vector of the geomagnetic field intensity 

in the spacecraft center of mass. 

Below in figure 6 there is realization of the block-scheme of calculating the geomagnetic torque acting on the 

spacecraft.  
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Figure 6: Block-scheme of calculating the geomagnetic torque acting on the spacecraft  (Matlab-Simulink) 

 

In figure 7 there are graphs of changing the gravitational torque vector components acting on the satellite in 

BCS in the calculating orbit for the half-period of the spacecraft movement along the orbit   

 
(h = 400 km, T ≈ 1.5 hr, i = 900, ɛ ≈ 0.0304, a = 6990.6 km) 

Figure 7: Gravitational torque vector components mgnM


 
acting on the spacecraft for the polar orbit  

 

As it can be seen, the gravitational torque vector components in the calculating orbit fluctuate at the range from 

10-5 N·m (maximal value) to 0. As well as in the case of the gravitational torque, numerical modeling has been made 

for the half-period of movement along the orbit.   

6. Calculating scheme of block 6. Magnetic hysteresis torque. The phenomenon of the magnetic hysteresis is 

connected with magnetization and demagnetization of the ferromagnetic material when changing the intensity of the 

external magnetic field. During the process of the spacecraft movement and rotation in the geomagnetic field its shield 

material is magnetized and demagnetized along the hysteresis curve which depends on its features.  

 

Figure 8: Modeling of hysteresis loop in Matlab–Simulink 

DOI: 10.13009/EUCASS2017-205



Suimenbayev B.T., Alekseyeva L.A., Suimenbayeva Zh.B., Gusseinov S.R., Yermoldina G.T. 

     

 8 

Meanwhile the additional magnetic torque acting on the spacecraft rotation in the orbit appears. In figure 8 there 

is the curve of ferromagnetic material magnetization, where Нс is the coercitive force, Вг is the residual magnetization, 

Bs is saturation of the magnetic flow density[8-13]. 

At first, to calculate the hysteresis magnetic torque it is necessary to determine the magnetic induction vector B of the 

geomagnetic field in the spacecraft location using model WMM – 2015 which is described above. Then, with the help 

of the matrix of conversion from ICS to BCS, its components are determined in BCS.  

 

(12)
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Earth EarthI BB C B 
                                                                                   

 

 

where
I BC 

 is  the matrix of conversion from ICS to BCS. 

The density of the magnetic field is calculated by the approximate model of the hysteresis loop mentioned above: 
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where EarthH  is the vector of intensity of the geomagnetic field, Fhyst is the function which describes the curve of the 

hysteresis loop 
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where μ0 =1.256×10-6 H/m[6]. Magnetic torque of the hysteresis material is determined by the following formula: 
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where Vhyst is the volume of the hysteresis material[6,11]. The hysteresis magnetic torque acting on the spacecraft is 

determined by the following formula: 
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In figure 9 there is realization of the model of the hysteresis torque acting on a satellite as a result of magnetization of 

the ferromagnetic materials which are on the spacecraft board when moving through the Earth’s magnetic field.  

 
Figure 9:  Block-scheme of calculation of the magnetic torque caused by the spacecraft ferromagnetic 

material 

In figure 10 there are components of the vector of the hysteresis magnetic torque acting on a satellite in BCS 

for a single period of the spacecraft movement along the orbit. It is seen in the graph that at the height of 400 km from 

the Earth’s surface the hysteresis torque vector components fluctuate at the range from - 3.5×10-6 to 3.5×10-6 N·m. 

 

1.2 Modeling of the spacecraft movement in the polar elliptic orbit. Numerical experiment 
 
Here there are the results that have been obtained on the basis of analysis and modeling of the spacecraft 

movement in the Matlab-Simulink software. When modeling we have taken into account the gravitational, magnetic 

and hysteresis torques acting on the spacecraft movement. Here the aerodynamic forces and the aerodynamic moment 
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have not been considered as they are insignificant at the heights of over 300 km and are almost zero at the taken height 

(the high-orbital spacecraft). 

 

 
Figure 10: Components of the vector of the hysteresis torque in BCS acting on the spacecraft   

 

In tables 1 and 2 there are data which have been used in modeling of spacecraft ‘Polytech -1’ dynamics in the 

Earth’s gravimagnetic field. The values of the main inertia moments about the spacecraft center of mass have been 

obtained in Solidworks software by mathematical calculation using the mass and dimensions data and the spacecraft 

units.  

 

Table 1: Calculating characteristics of nano-satellite ‘Polytech-1’ 

 

Spacecraft parameters Values  

Mass 3 kg 

Dimensions 10×10×30 sm3 

Inertia moments (0.0815; 0.09;0.11) kg·m2 

Magnets Values  

Full volume 0.59 sm3 

Magnetic dipole 0.34 A·m2 

Ferromagnetic material Values  

Volume  0.60 sm3 

Saturation 0.73 Tesla 

Coercitive force 1.59 A/m 

 

In figures 9 and 10 there are the results of modeling the spacecraft movement in the elliptic orbit. In the first 

graph there are components of the vector of the satellite orbital position, in the second graph there are velocities the 

absolute value of which is approximately 7.7 km/s at the time moment of t = 0. As it should be, the components of 

satellite speed are changed periodically with the cycle of 1.5 hours. The movement occurs in XY plane as component 

Vz is equal to zero for the whole period of time.  

In figure 11 there are graphs of the orbital position and the speed of the spacecraft center of mass in ICS. In the 

first graph there are curves of the components of the spacecraft center of mass vector radius for the polar orbit (with 

parameters in table 2) changing with the time. In the second graph there are curves of the components of the spacecraft 

center of the mass orbital velocity. As it has been expected, the curves have the periodic character with the cycle of  ~ 

1.5 hours. 

 

 

 

DOI: 10.13009/EUCASS2017-205



Suimenbayev B.T., Alekseyeva L.A., Suimenbayeva Zh.B., Gusseinov S.R., Yermoldina G.T. 

     

 10 

Table 2: Keplerian orbital parameters used in modeling 

 

Satellite orbit parameters in ICS Values 

Altitude  ~ 400 km 

Orbital velocity  7,8 km/s 

Period  ~1.5 hr 

Orbital inclination 900  

Eccentricity   0.0304 

Semi-major axis  6990.6 km 

Semi-minor axis 6987.4 km 

 

In figure 12 there are graphs of Euler angles (ψ, θ, ϕ), determining the spacecraft orientation in ICS. The initial 

angle velocities and positions (ψ, θ, ϕ) of the spacecraft have been chosen randomly in all cases. 

For analysis and comparison of impact of different moments on the satellite behavior (orientation) the 

calculations have been done in two stages, at first without external moments impact, then with their summarized  

impact. 

 

 
(V0 = [0 0 7.8] km/s, R0 = [6778,137 0 0] km, T  ≈ 1,5 hr; i = 900, ɛ ≈ 0.0304, a = 6990.6km) 

X – continuous curve, Y – dashed curve, Z – dot-and-dash curve 

 

Figure 11: Spacecraft orbital position (upper graph) and orbital velocity (lower graph) for the polar orbit 
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(p q r) = [0.01 -0.01 0.05] rad/s, (ψ θ ϕ) = [ /3 /4 /6] rad, T  ≈ 1.5 hr, i = 900, ɛ ≈ 0.0304, a = 6990.6 km 

 

Figure 12: Changing of angles ψ, θ, ϕ  in the polar orbit without the external moment  

 

In figure 12 there is a case when the summarized external moment acting on the spacecraft is equal to 0. As it 

can be seen from the graph, the spacecraft rotates at approximately constant angle velocity (ω3 = 0.05 rad/s) around 

axis X3 (the third curve), which is tightly bound to the spacecraft, and at the same time it precesses (the first curve) 

around axis Z of the static coordinates system at first in one direction, then in the opposite direction with the period of 

approximately 1.5 minutes. Simultaneously with the spacecraft rotation and precession there is nutation observed (the 

second curve) which has the fluctuating character (with the period of 1.3 minutes) about the initial angle.  

 

 
(p, q, r) = [0.01 -0.01 0.05] rad/s, (ψ, θ, ϕ) = [π/3 π/4 π/6] rad, T≈ 1.5 hr, i = 900, ɛ ≈ 0.0304, a = 6990.6 km 

 

Figure 13: Changing of Euler angles ψ, θ, ϕ in the spacecraft movement in the polar orbit with consideration of the 

acting force moments 

 

Considering all the acting force moments of the nano-satellite (figure 13) there is significant changing of angles 

ψ и θ. The spacecraft rotates at the constant angular velocity ω3 ≈ 0.05 rad/s around axis Z1 and precesses around axis 
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Z of the static coordinates system with minimal range ψmin≈ 0,5 rad at 25th minute and with maximal ψmax ≈ 1,5 rad at 

the cycle completion. Also the nutation angle θ changes with fluctuation around θ ≈ 1.4 rad. 

 
(Mmgn– dashed curve, Mhyst– dot-and-dash curve, Mg– continuous curve) 

 

Figure 14: Changing of modules of the vectors of the magnetic, hysteresis and gravitational torques acting on the 

spacecraft in time  

 

In figure 14 there are graphs of the external moments acting on the spacecraft in time. It is seen from the graph 

that the most dominant source of pertubance acting on the spacecraft at the height of 400 km from the Earth’s surface 

is the magnetic torque the maxima l value of which is equal to ~ 1.2×10-5 N·m. The second important source of 

pertubance is the hysteresis torque (caused by the spacecraft ferromagnetic material). 

 

Table 3: Average values of the torques acting on the spacecraft at the altitude of 400 km 

 

External types of pertubances  Average value of torques for the half-period in N·m 

Gravitational torque 3×10-6 

Magnetic torque  8×10-6 

Hysteresis torque  4×10-6 

 

For a nano-satellite having a mass of about 3 kg the gravitational torque impacts its rotation in the weakest way. 

The geomagnetic torque acting on the spacecraft is twice more than the hysteresis torque and it exceeds the 

gravitational torque by more than 2 times in this orbit. In table 3 there are average values of the moments of forces 

acting on the spacecraft at the height of 400 km for the half-period of its movement in the orbit.     

Conclusion. The developed software complex allows modeling the orbital movement of satellites around the 

center of mass in different near-earth orbits. The inclination angle of an orbit to the equator as well as the orbit 

parameters is determined by the initial speed and the initial position of its center of mass. The rotation character 

depends on the initial angular velocities of a satellite and its position in the orbit. The variation of these parameters 

allows modeling a wide range of orbital movements of spacecrafts with consideration of their physical-mechanical 

features (mass, inertia tensor, its magnetization features and presence of magnetic systems). 
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