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Abstract
Morphing aircraft is an aircraft that can change its configuration during the flight. Aircraft morphing
technology is one of the methods that may improve the performance of the aircraft for various flight
conditions. In this study, nonlinear control augmentation system for the morphing aircraft is proposed
using nonlinear dynamic inversion based on neural network. Two-layer feed-forward neural networks
are used to obtain longitudinal and lateral inverse maps which convert desired aerodynamic moments
into actual control commands. Numerical simulation is performed for two maneuvers to demonstrate the
effectiveness of the proposed scheme.

Nomenclature

q̄ Dynamic pressure

δa, δe, δr Aileron, elevator and rudder deflections

η Morphing parameter

φ, θ, ψ Roll, pitch and yaw angles defined by 3-2-1 Euler rotation sequence

an, ay Normal and lateral accelrations in g’s

Cl,Cm,Cn Rolling, pitching and yawing moment coefficients

g Gravitational accelration

g0 Scaling factor used for conversion of acceleration into g’s

J Body-axis moment of inertia matrix

K1,K2,K3,K4 Proportional and integral gains for normal and lateral acceleration control

Kpφ ,Kdφ ,Kpθ ,Kdθ ,Kpψ ,Kdψ Roll, pitch and yaw-axis proportional and derivative gains

l,m, n Rolling, pitching and yawing moments

P,Q,R Roll, pitch and yaw rates

S , b, c̄ Wing planform area, wingspan and mean aerodynamic chord

U,V,W Body x, y and z-axis components of aircraft velocity

uφ, uθ, uψ Pseudo-control variables for roll, pitch and yaw angle control

un, uy Pseudo-control variables for normal and lateral acceleration control

VT , α, β Airspeed, angle of attack and sideslip angle
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1. Introduction

Development of aircraft morphing technology has a long history, which starts from the beginning of aircraft.1 Since
the introduction of the morphing concept, research efforts regarding aircraft morphing technology have been focused
on the fields of materials, structural and aerodynamic sciences. Aircraft capable of changing their external shape
during the flight have many advantages compared to conventional fixed-shape aircraft which can be controlled only by
hinged aerodynamic control surfaces. In the design process of conventional aircraft, there exist inherent compromises
between the performance which may be significantly relieved by exploiting morphing technology and adapting wing
configuration in accordance with flight conditions and missions. However, configuration change during the flight may
cause undesirable effects including unsteady aerodynamic effects, time-varying moment of inertia and variations in
the location of the center of gravity, which make the design of morphing aircraft flight control systems complicated.
Consequently, to take full advantage of morphing and maximize the performance while ensuring stability, control
designers should incorporate all these effects to control systems.
To deal with configuration change of the morphing aircraft, various control schemes have been applied, e.g. switched
H∞ control,2 linear parameter-varying (LPV) control3, 4 and adaptive control.5, 6 There exist also various research
on morphing aircraft control design.7–12 Variations in morphing aircraft’s static and dynamic characteristics during
transition process have been analyzed.13, 14 Morphing may change the vehicle’s performance, and generate control
forces and moments. Roll control can be achieved by twist morphing,15 and variable cant angle winglet can be used to
control both longitudinal and lateral directions.16

Morphing aircraft have been modeled as a multi-body dynamic model,17 LPV system18 and linear time-varying (LTV)
system.19 Determination of optimal morphing configuration in terms of aerodynamics has been also studied by aero-
dynamic designers. Although morphing actuator dynamics is often neglected in the design process of flight control
system, morphing control itself is also an essential part of morphing aircraft flight control system. Furthermore, analy-
sis on dynamic loading20, 21 can be critical for out-of-plane morphing, and it is closely related to the control allocation
problem.
Neural network-based adaptive control,22–24 neural network-based dynamic inversion control25–27 and neural network-
based adaptive dynamic inversion control28, 29 have been successfully applied to conventional aircraft. In this study,
command augmentation system (CAS), whose structure was proposed by Menon,30 is generalized for the implemen-
tation on morphing aircraft control system. CAS for morphing aircraft should incorporate variations in moment of
inertia matrix and aerodynamic coefficients which are utilized in nonlinear dynamic inversion based on neural net-
work. Two-layer (hidden layer and output layer) neural networks are designed and trained to map desired aerodynamic
coefficients, which are intermediate outputs in the model inversion process, into control surface deflection commands.
Strength of the feed-forward neural network lies in its low computational burden which must be ensured for real-time
control. Mean squared errors for each combination of backpropagation algorithms and hidden layer structures are
evaluated, and the best combination in terms of performance and overfitting is used for the CAS. Numerical simulation
is performed for two challenging maneuvers to demonstrate the effectiveness of the proposed scheme in controlling
variable-span morphing aircraft. A high performance aircraft model is adopted as a nominal non-morphing aircraft
model and the effects of morphing are modeled as functions of the morphing parameter. Simulation results show that
morphing aircraft can be controlled effectively and efficiently by the proposed scheme.

2. Morphing Aircraft Model

An F-18 high-alpha research vehicle (HARV) model is adopted as a baseline model and modified to emulate the effects
of span morphing. As shown in Fig. 1, it is assumed that there are moving parts at both ends of the main wing whose
mean aerodynamic chord (mac) is c̄m, and maximum span-wise extra length is bη. The morphing parameter η is defined
as a ratio of the extended length to the maximum extra length. An F-18 HARV has five aerodynamic control surfaces:
a pair of ailerons, a pair of differential stabilators and a rudder. In this study, left and right stabilators are assumed to be
synchronized and treated as an elevator throughout the modeling and simulation. Moment coefficients of the morphing
aircraft model can be represented as follows

Cl (VT , α, β, P,R, δa, δr, η) =

[
Clβ (α)β +

b
2VT

ClP (α)P +
b

2VT
ClR (α)R

]
Λlat(η) + Clδa (α)δa + Clδr (α)δr

Cm (VT , α,Q, δe, η) =

[
Cm0 (α) +

c̄
2VT

CmQ (α)Q
]
Λlon(η) + Cmδe (α)δe (1)

Cn (VT , α, β, P,R, δa, δr, η) =

[
Cnβ (α)β +

b
2VT

CnP (α)P +
b

2VT
CnR (α)R

]
Λlat(η) + Cnδa (α)δa + Cnδr (α)δr
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Figure 1: Definition of morphing parameter

where the effects of span variation on the coefficients are modeled by following two functions Λlon and Λlat, which
depend on morphing parameter η.

Λlon(η) = ΛS (η)Λc̄(η)
Λlat(η) = ΛS (η)Λb(η)

(2)

where

ΛS (η) = 1 +
c̄mbη

S
η

Λb(η) = 1 +
bη
b
η

Λc̄(η) =
1 + c̄m

c̄
bη
b η

1 +
bη
b η

(3)

Similarly, lift, drag and side force (wind-axis) coefficients can be represented as follows.

CL (VT , α,Q, δe, η) =

[
CL0 (α) +

c̄
2VT

CLQ (α)Q
]
ΛS (η) + CLδe (α)δe

CD (VT , α,Q, δe, η) =

[
CD0 (α) +

c̄
2VT

CDQ (α)Q
]
ΛS (η) + CDδe (α)δe

CYw (VT , α, β, P,R, δa, δr, η) =

[
CYwβ

(α)β +
b

2VT
CYwP (α)P +

b
2VT

CYwR (α)R
]
ΛS (η) + CYwδa (α)δa + CYwδr (α)δr

(4)

The above Λ functions are introduced by mimicking variations in the reference area and lengths considering that general
behaviors of aerodynamic coefficients and their dependency on α would be approximately the same, only scaling up
and down in response to extra span. Note that emphasis is on generalization and application of the existing framework
to an aircraft that can change its shape during the flight rather than high-fidelity modeling of morphing itself.
Moving parts are assumed to move along body y-axis only. Consequently, Jyy and Jxz remain unchanged regardless
of span variations. By applying the parallel axis theorem, x and z-axis components of the moment of inertia matrix is
represented as follows

Jxx = Jxx0 − mm(b − 1
2

bη)2 + mm(b − 1
2

bη + ηbη)2

Jzz = Jzz0 − mm(b − 1
2

bη)2 + mm(b − 1
2

bη + ηbη)2
(5)

where mm is the mass of the moving parts.

3. Command Augmentation System

In this section, nonlinear CAS is briefly explained, whose structure is adopted from Menon.30 CAS receives pilot
commands of roll rate and normal acceleration, and generates actual control surface deflection commands required to
accomplish the commands. Proportional-integral and proportional-derivative control laws are used in the nonlinear
dynamic inversion. The later part of the CAS is composed of dynamic and aerodynamic model inversion based on
neural network.
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3.1 Command Augmentation Logic

In the command augmentation logic, the normal acceleration command is assumed to be given from a pilot and the
lateral acceleration command is always set to zero for turn coordination. Derivation of the logic starts from the flat-earth
(NED) body-axis translational equations of motion.

V̇ = −RU + PW − g sin φ cos θ + ayg0

Ẇ = QU − PV − g cos φ cos θ + azg0
(6)

Following proportional-integral control laws for acceleration control are used.

un = K1(anc − an) + K2

∫
(anc − an)dt

uy = K3(ayc − ay) + K4

∫
(ayc − ay)dt

(7)

The pitch and yaw rate commands to follow the acceleration commands can be expressed as follows.

Qc = K1
1
U

g0(anc − an) + K2
1
U

∫
g0(anc − an)dt +

1
U

(PV + g cos φ cos θ)

Rc = K3
1
U

g0(ayc − ay) + K4
1
U

∫
g0(ayc − ay)dt +

1
U

(PW + g sin φ cos θ)
(8)

It is assumed that V̇ and Ẇ are negligible. This assumption can be justified due to the fact that translational dynamics
of fixed-wing aircraft is significantly slower than its rotational dynamics. Pitch and yaw rate commands generated in
the command augmentation logic are used in the attitude control system.

3.2 Attitude Control System

Through the Euler angle kinematic differential equations, Euler angle rate commands can be expressed as follows

[
φ̇c θ̇c ψ̇c

]T
= H(Ω)

[
Pc Qc Rc

]T
(9)

where Ω =
[
φ θ ψ

]T
, and H(Ω) is defined as follows.

H(Ω) =


1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ sec θ cos φ sec θ

 (10)

By taking derivative of the kinematic differential equations, the following second-order differential equations can be
obtained.


φ̈
θ̈
ψ̈

 = φ̇


0 cos φ tan θ − sin φ tan θ
0 − sin φ − cos φ
0 cos φ sec θ − sin φ sec θ




Pc

Qc

Rc

 + θ̇


0 sin φ sec2 θ cos φ sec2 θ
0 0 0
0 sin φ sec θ tan θ cos φ sec θ tan θ




Pc

Qc

Rc

 + H(Ω)


Ṗ
Q̇
Ṙ

 (11)

Proportional-derivative control laws of the following form are used for Euler angle control.

uφ = Kpφ (φc − φ) + Kdφ (φ̇c − φ̇)
uθ = Kpθ (θc − θ) + Kdθ (θ̇c − θ̇)
uψ = Kpψ (ψc − ψ) + Kdψ (ψ̇c − ψ̇)

(12)

The above attitude controller makes Euler angles have globally asymptotically stable linear second-order dynamics if
Ṗ, Q̇ and Ṙ that exactly corresponds to the commanded pseudo-control variables uφ, uθ and uψ can be generated. The
remaining work is to recover actual control surface deflections generating the desired body rate derivatives, which will
be covered in the following section.
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Figure 2: Command augmentation system for morphing aircraft

4. Model Inversion

Control surface deflection commands can be recovered from the desired angular velocity rates through a procedure
called model inversion. Inversion process is divided into two steps. The first step of model inversion exploits the
knowledge of kinematic relations and rotational dynamics. This is done through exact calculations where even quasi-
statically-varying moment of inertia can be treated. The second step requires computation using detailed knowledge
of aerodynamic and control derivatives which can be replaced by function-fitting neural network. Exact inversion
usually requires a lot of interpolation operations which may cause excessive computational burdens depending on the
constructed model. In contrast, feed-forward neural network-based inversion requires only simple operations such
as addition, multiplication and activation function evaluation. In addition, neural network has potential of relieving
predefined structure of aerodynamic coefficients’ component such as linear dependency of control surface deflections,
which may enable precise inversion for a highly nonlinear model.

4.1 Dynamic Model Inversion

Pre-multiplying Eq. (9) by H−1(Ω) and taking derivatives yield the following expression for the desired angular velocity
rates.


Ṗ
Q̇
Ṙ

 = φ̇


0 0 0
0 − sin φ cos φ cos θ
0 − cos φ − sin φ cos θ




φ̇
θ̇
ψ̇

 + θ̇


0 0 − cos θ
0 0 − sin φ sin θ
0 0 − sin φ sin θ




φ̇
θ̇
ψ̇

 +


1 0 − sin θ
0 cos φ sin φ cos θ
0 − sin φ cos φ cos θ




uφ
uθ
uψ

 (13)

The moments required to achieve the desired body rates can be recovered from the body-axis rotational equations of
motion of the following form.


l
m
n

 = J


Ṗ
Q̇
Ṙ

 +


0 −R Q
R 0 −P
−Q P 0

 J


P
Q
R

 (14)

Note that this process enables the CAS to exactly compensate for the effects of possible variations in moment of inertia.
In practice, this is an integral part of the CAS in order to be implementable on the control system of the morphing
aircraft where the moment of inertia may vary in large scale. From the definitions of the aerodynamic coefficients, the
values of the aerodynamic coefficients corresponding to the moments are expressed as follows.

Cl =
l

q̄S b
, Cm =

m
q̄S c̄

, Cn =
n

q̄S b
,

The above aerodynamic coefficients will be put into the neural networks together with flight state variables.
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4.2 Exact Aerodynamic Model Inversion

Equation (1) can be rewritten in a more concise form as follows

Cl

Cm

Cn

 =


f1
f2
f3

 +


g1 g2 g3
g4 g5 g6
g7 g8 g9




δa
δe
δr

 (15)

where fi and g j are functions of state variables and the morphing parameter. The inverse relation from aerodynamic
coefficients to control surface deflections can be written as follows.


δa
δe
δr

 =


g1 g2 g3
g4 g5 g6
g7 g8 g9



−1 
Cl − f1
Cm − f2
Cn − f3

 (16)

Now the complete structure of the CAS can be constructed as illustrated in Fig. 2. The CAS consists of command
augmentation logic, attitude control system and nonlinear model inversion using neural network. The inversion shown
in Eq. (16) can be achieved by exploiting complete information of the aerodynamic and control derivatives. Although
exact inversion guarantees the most desirable performance, it is computationally expensive to be performed on-board
especially when a high-fidelity model is used. Therefore, the results of the exact inversion will be used only as a
reference for evaluation of the performance of neural network-based inversion.

4.3 Approximate Aerodynamic Model Inversion Using Neural Network

Input-output pairs of control surface deflections and the resulting aerodynamic coefficients can be generated through
either a high-fidelity model or actual flight tests under the assumption that all state variables are known. In this study,
4,096 data for a longitudinal neural network and 65,536 data for a lateral neural network were generated using an
F-18 HARV model. Combinations of control surface deflections and state variables were generated randomly and
uniformly throughout the flight region given in Tables 1 and 2. The generated data are normalized so that all inputs
and targets have values from 0 to 1 and then randomly divided into 70% samples for training, 15% samples for test and
15% samples for validation. The samples are used to train two two-layer feed-forward neural networks: a longitudinal
channel neural network whose output is δe, and a lateral channel neural network whose outputs are δa and δr. Each
neural network is trained using various combinations of hidden layer sizes and backpropagation algorithms.

Table 1: Training region for longitudinal neural network

δe α M h Q η Cm
∗

Lower bound -24◦ -2◦ 0.4 0m -1.5 rad/s 0 -0.49
Upper bound 10.5◦ 12◦ 1.2 10,000m 1.5 rad/s 1 0.71
∗Generated from set of other variables

Table 2: Training region for lateral neural network

δa δr α M h P R η Cl
∗ Cn

∗

Lower bound -35◦ -30◦ -2◦ 0.4 0m -1.5 rad/s -1 rad/s 0 -0.11 -0.06
Upper bound 35◦ 30◦ 12◦ 1.2 10,000m 1.5 rad/s 1 rad/s 1 0.11 0.06
∗Generated from set of other variables

4.4 Training Results

Neural networks with various hidden layer sizes from 5 to 50 were trained using four different back-propagation
algorithms. Mean squared error (MSE) is a typical measure of performance of a neural network, and the sum of
absolute values of the weights is one of the most widely used measures of how much the neural network is overfitting
the data. The two measures corresponding to each neural network are shown in Figs. 3 and 4. As the hidden layer size
increases, the MSE tends to decrease and the sum of the weights tends to increase, which clearly shows that there is a
trade-off relation between the performance (MSE) and overfitting (weight sum). By investigating the training results
shown in Figs. 3 and 4, the size of hidden layer is chosen to be 15 for the longitudinal network and 25 for the lateral
network, and the Bayesian regularization backpropagation algorithm is used for both networks.
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Figure 3: Longitudinal channel training results
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Figure 4: Lateral channel training results

5. Numerical Simulation

In this section, numerical simulation results are presented. Two maneuvers are examined: i) push-over and pull-up,
and ii) high-g turn. Prescribed morphing parameter scenarios is applied to assist the maneuver where pilot commands
are identical to those in Kim31 and Kim and Calise.32 Figures 5 and 6 show the results of the push-over and pull-up
scenario where exact inversion and neural network-based inversion are used. Figure 7 and 8 show the results of the
high-g turn scenario where exact inversion and neural network-based inversion are used. Throttle is set to 0.4 and 1.0
throughout the maneuvers in each scenario. In all the scenarios, initial altitude was set to 2,500m and initial Mach
number was set to 0.6.
The most obvious difference between the results of exact and neural network-based inversion can be found in Figs.
5 and 6. While exact inversion does not cause any perturbations along the lateral direction, neural network-based
inversion induces a little use of both an aileron and a rudder. Even though this difference is apparently attributed to the
inversion error, deviations in roll and pitch angles and roll and pitch rates from zero are less than 0.01◦ and 0.01◦/s.
These errors are not significant so that it is barely noticeable in Figs. 7 and 8. In addition, the differences of altitude
loss for the entire 30 seconds in both scenarios are smaller than 1m out of a few thousands meters total altitude loss.
In the first scenario, a morphing wingspan is constantly increased until the first 15 seconds to prevent drastic loss in
altitude and then maintains a fully-deployed state for the remaining 15 seconds to help the vehicle achieve the com-
manded 4g normal acceleration by widening the overall lifting surface area. On the other hand, in the second scenario,
a morphing wingspan is constantly retracted during the first 8 seconds to obtain enough roll-axis maneuverability to
follow the 10◦/s roll rate command. Once the vehicle achieves roll angle of 80◦, a morphing command is given to
increase the wingspan again up to the maximum length throughout the remaining time.
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Figure 5: Push-over and pull-up (fixed throttle 0.4, exact inversion, altitude loss 792m)
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Figure 6: Push-over and pull-up (fixed throttle 0.4, neural network inversion, altitude loss 792m)
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Figure 7: High-g turn (maximum throttle 1.0, exact inversion, altitude loss 212m)
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Figure 8: High-g turn (maximum throttle 1.0, neural network inversion, altitude loss 214m)
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6. Conclusions

In this study, the structure of the command augmentation system (CAS) was generalized for adopting it to morphing
aircraft. Two-layer neural networks for longitudinal and lateral channels were designed and trained to map desired
aerodynamic moments into control surface deflection commands. The feed-forward neural network requires low com-
putational load, which can be utilized in real-time operations. It can be inferred that neural network-based inversion
can be applied to aircraft with arbitrary morphing configuration by simply adjusting the number of inputs in the neural
network. Several combinations of backpropagation algorithms and hidden layer sizes were examined, and the best
combination in terms of performance and overfitting was used for the CAS. Numerical simulation was performed for
two maneuver scenarios to demonstrate the effectiveness of the proposed control scheme. A high-performance aircraft
model was slightly modified to emulate the effect of span morphing. Simulation results showed that morphing aircraft
can be effectively controlled by using the proposed control scheme.
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