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Abstract 

In this paper optimal bi-impulse orbital transfer between coplanar elliptical orbits has been considered. 
First, an effective algorithm has been developed to find the global solution. In this algorithm, we have 
three independent parameters. These parameters are i) the angular position of the point on the initial 
orbit that the first impulse is applied, ii) the angular position of the point on the final orbit that the second 
impulse is applied and, iii) the semi-latus rectum of the transfer orbit. The other needed parameters can 
be obtained from these three parameters. By mean of our algorithm, we obtain a rapid and meticulous 
global solution for any arbitrary elliptical orbits. Actually, we employed the algorithm to solve a wide 
set of numerical examples, including co-axial and non-co-axial, similar and different shape and/or 
energy for the initial and final orbit. This wide set of examples allowed us to disentangle the roles of 
each orbital parameter, such as eccentricity, energy, and argument of periapsis, in the evaluation of the 
optimal transfer.  

 
Nomenclature 

 
a = semi-major axis, km 
e = eccentricity 
p = semi-latus rectum, km 
V = impulsive velocity change, km/s 
 = argument of periapsis, 
 = specific energy of orbit, km2/s2 

 = Standard gravitational parameter, km3/s2 
 = Angular position on the orbital plane,  

r = Radial distance to the center of attraction, km 
Va = Velocity at apoapsis, km/s 
Vp = Velocity at periapsis, km/s 
  Scale factor 
  Flight path angle,  
Δ = Initial step size 
 = Expansion factor 

 = step size reduce coefficient
 
 

1. Introduction 
The orbital transfer is one of the most important and costly parts of any space mission. The cost of payload transfer to 
the final orbit is relatively high, because for V on the order of 1 km/s or greater so that the required propellant exceeds 
25 percent of the spacecraft mass prior to the burn [1]. Hence, the problem of fuel consumption optimization in orbital 
transfers has a long history, and many scientists have been working on this problem for many years and have worked 
out solutions to many special and/or simple cases [2,3]. In the preliminary satellite transfer mission design, the number 
of the impulses should be determined. In [4] the optimal number of impulses to transfer among circular orbits has been 
studied. 
The optimization methods have been used to find the solutions to the orbital transfer problem are generally classified 
to “direct” and “indirect”. Indirect solutions are those using the analytical necessary conditions from the calculus of 
variations [5], i.e. all the first-order partial derivative of the V function with respect to independent variables should 
be zero. In [6], Lawden derived the equations for the optimal impulsive transfer of coplanar elliptical orbits. In [7], 

DOI: 10.13009/EUCASS2017-151



Mohammad Sanatifar, Roberto Capuzzo-Dolcetta 
     

 2

Plimmer showed solutions to the special cases of transfer between circular orbits, between an elliptical orbit and a 
circular orbit, between co-axial elliptical orbits, and identical (the same size and shape) non-coaxial elliptical orbits. 
In [8], Lawden studied the bi-impulse optimal transfer of coplanar elliptical orbits and gave the solution to a numerical 
example. In [9], Lawden applied the calculus of variations to the impulsive transfer problem and the necessary 
conditions for optimality as elements of the “primer vector” are given. Later on, in [10,11] a geometric approach to the 
problem is introduced which simplifies the structure of the primer vector’s problem. In [12,13], the solution of the 
coplanar two-impulse tangential transfer is presented in closed-form. To solve the problem with a complex geometry, 
such as the case of optimal impulsive orbital transfer among coplanar non co-axial orbits, a system of nonlinear 
equations extracted from the indirect optimization method should be solved. The numerical solution of this system is 
very sensitive to the initial guess values, and the convergence process is usually slow. Also, solving these equations 
satisfies the necessary condition and lead only to one of the numerous local minima. For instance, in [14], six local 
minima are found for a numerical example and in [15], local minima of the three-impulse orbital transfers are presented.  
These adverse circumstances have motivated the development of effective “direct” methods during the course of past 
decades. Direct solutions transcribe the continuous optimal control problem into a parameter optimization problem. 
Satisfaction of the system equations is accomplished by integrating them stepwise using either implicit or explicit 
rules; in either case, the effect is to generate nonlinear constraint equations that must be satisfied by the parameters, 
which are the discrete representations of the state and control time histories. The problem is thus converted into a 
nonlinear programming problem [5]. Different direct methods such as Genetic Algorithms (GAs), Differential 
Evolutional Algorithms (DEAs), and Particle Swarm Optimization (PSO) have been used to solve the problem. In Ref. 
[16], the PSO is applied to impulsive orbital transfers and the problem has been solved for coplanar, non-coaxial, 
elliptic orbits. Some references [17-21], are made claiming the superiority of PSO over GAs and DEAs. 
Overall, the literature in this field contains only solutions to a limited number of example cases. In this paper, using 
the presented algorithm in [22], we simulated different enormous cases and their numerical results are presented. It is 
an important step to analysis the behavior of the V function with respect to orbital parameters of the terminal orbits. 
 

2. Problem statement 
Consider a satellite to transfer from an initial orbit to a final orbit as defined by given orbital elements. Assume that 
both orbits are coplanar and they are defined by the semi-major axis, eccentricity, and argument of periapsis. Assume 
that the satellite is subject only to the Newtonian gravitational force field of a fixed point mass body. To change the 
orbit of the spacecraft by impulsive maneuvers, its velocity vector should be changed once or several times using the 
onboard rocket engine. The total changes in the velocity vector V are related to Δm, the mass of propellant consumed 
directly [1]. Therefore, minimizing V correspond to minimization of the required propellant. Therefore, the problem 
is optimizing the bi-impulse transfer from the initial orbit to the final orbit and the simulation of Vopt vs initial and 
final orbital parameters ia , ie , fa , fe  and  .  
 
 

 
Figure 1: Schematic of optimal transfer 

 
  

DOI: 10.13009/EUCASS2017-151



OPTIMAL BI-IMPULSE ORBITAL TRANSFER BETWEEN COPLANAR ORBITS 
     

 3

Therefore, the cost function is simply 

 1 2J V V      (1) 
Regardless of the V  directions.  
The set of relations needed to obtain our objective function V  are: 
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After obtaining the argument of periapsis and eccentricity of transfer orbit, the velocities can be obtained from vis-
viva equation easily. Then, the flight path angles in the conjunction points are calculated by: 
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Therefore, the Vs can be calculated using the law of cosines as: 
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In the above equations, the initial, final and transfer orbital parameters are subscripted with “i”, “f” and “t”. Subscript 
“1” and “2” refers to first and second impulse respectively. 
 

3. The Algorithm 
The algorithm that we use to solve the problem is presented in [22] comprehensively. A short review of the algorithm 
is given in this section. It is mesh-dependent derivative-free and does not require any initial guess. Actually, the 
algorithm chose the best set of variables in each step and made a mesh with smaller step size in its expanded 
neighborhood. Let assume x1,x2,…,xn are the n unknown variables of the objective function F(x1,x2,…,xn) to be 
minimized. If these variables are constrained with upper and lower bounds as: 

 j j ja x b          (j 1,2,..., )n  (6) 
 
The algorithm works as follows: 
1- Define the initial step size for every independent variable: Δj = (bj – aj)/N , j=1,2,…,n 
2- Define the vector for every variable: xj=(aj, aj+ Δj, … , aj+ NjΔj) , j=1,2,…,n 
3- Evaluate the objective function: F(x)N1N2…Nn 
4- Find the current solution that leads to the minimum of the objective function: xcurrent,j,Fmin 
5- Define the expansion factor  and step size reducer . They expand and refine the mesh neighborhood xcurrent,j. 
6- Define a new vector of variables in the neighborhood of the xcurrent,j:xj=xcur,j-jΔj:jΔj: xcur,j+jΔj 
7- Repeat the steps (3) to (6) till the tolerances for variables meet the desired tolerance. 
 
We chose three independent variables (x1, x2, x3), namely, the angular position of the first impulse 1, the angular 
position of the second impulse 2 and the semi-latus rectum of the transfer orbit p, as explained above. The algorithm 
needs upper and lower bounds for the independent variables. The angular positions 1 and 2 are bounded by 0 and  2. 
We need to impose upper and lower bounds to p. According to our experiments, the limitation p by 0 p 2 max(ai,aj) 
is satisfactory. Initial steps Δ1, Δ2 and Δpare set to 10, 10, and100km respectively. The expansion factor and step 
size reducer in our algorithm are set to 10 and 0.25 respectively. It means that in each loop, the algorithm expands the 
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mesh 10 times wider and 4 times more accurate in the neighborhood of the current variables. In each loop, finding the 
solution inside the current mesh guarantees the convergence of the algorithm. Otherwise, the expansion factor should 
be increased. The desired tolerances of the variables are set 0.01 for Δ1 and Δ2  and 0.01km for p. 
 

4 Preliminary Results 
In this section, the V is calculated for different cases and finally, the V plots with respect to initial and final orbital 
parameters are demonstrated. In the simulation, the semi-major axis of the initial orbit is equal to 10,000 km. In the 
figures 2 to 5, the V  is plotted vs af/ai≥1. Indeed, af/ai =1 refers to equal energy initial and final orbits and this case 
has been studied in [22] in detail and an accurate fitting function has been presented in that study. To find the 
optimalV transferring from other initial orbits with the different semi-major axis or the cases af/ai<1, the obtained 
result in this paper should be proportioned with an appropriate coefficient. Finding the coefficient is simple and it can 
be obtained as α=ai/10,000 and theVopt should be proportioned with coefficient 1/α0.5. In figures 2 to 5, the lower 
curve refers to Δ=0 and the upper curve refers to Δ=180. Therefore the Vopt is always between Vopt when the 
terminal orbits are coaxial and their periapsides are in same direction and Vopt when the terminal orbits are coaxial 
and their periapsides are in opposite direction regardless of the amount of their eccentricity and energy.  
In all of the curves, there is a local minimum for Vopt with respect to af /ai. This minimum refers to the case that the 
final orbit tangent the Initial orbit, i.e. the radial distant (r) and its partial derivative of angular position (∂r/∂) on final 
orbit be equal to the amount on initial orbit, respectively. This is a nonlinear system of equation and there are two 
answers for  and a. One refers to inner tangent orbit and the other one refers to outer tangent orbit (Figure 6). The 
local minimum in the curves refers the outer tangent orbit where af/ai≥1.  
 

 

 
Figure 2: Vopt vs. af/ai when ei=0.2 for various ef and 


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Figure 3: Vopt vs. af/ai when ei=0.4 for various ef and  

 
Figure 4: Vopt vs. af/ai when ei=0.6 for various ef and 
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Figure 5: Vopt vs. af/ai when ei=0.8 for various ef and 



 
Figure 6: Schematic of inner tangent and outer tangent orbits. The eccentricity and argument of periapsis of these 

orbits are the desired eccentricity and argument of periapsis and they are tangent to initial orbits 
 

5 Conclusion 
In this paper, we dealt with the problem of determination the minimum required velocity impulse to make an orbital 
transfer between coplanar terminal orbits. First, we introduced an algorithm that attains the global solution for any 
arbitrary coplanar elliptical orbits, in a quick and precise way. Second, a large set of numerical examples were 
simulated. The numerical results described the behavior of the V function with respect to orbital parameters of the 
terminal orbits ei, af /ai, ef, and Δ meticulously. The analysis of V function may lead to an accurate fitting function 
to the result as a function of the various input parameters, to provide simple formulas for a quick evaluation of the 
minimum velocity impulse for the transfer. 
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