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Abstract

In this paper, we propose diffuse interface mod@ghe simulation of separated two-phase flow in
cryogenic injector. Instead of using a 4 equatioodet [40], we intend to improve velocity and
temperature description of the phases with 7 aaduation models. Then, we focus on the numerical
resolution. For the 7 equation, we apply the sintpld. C scheme [23] combined with a MUSCL
technique [35]. For the 5 equation, we derive HLiype schemes based on different system’s
formulations. Finally, we present the numericalulss obtained on validation test cases and on a
coaxial injector configuration.

1. Introduction

To help the development and enhancement of laumrogulsion systems and to ensure their reliability have to
study in a more comprehensive way all physical @secinvolved in the combustion chamber. For liguidket
engines, this is a major issue which concerns gelarmriety of multi-scale phenomena such as condmnyst
cavitation, evaporation, turbulence and atomizatiMoreover, the complex interaction between praved
injection, flame dynamics and acoustic modes cameigge high frequency instabilities which can cabgghly
destructive damages. In this study, we suggesidosfon injection which plays a key role to conémlcombustion
under transient operating conditions. Indeed, thegsigal processes in the chamber are highly depgroie the
characteristics of the spray produced.

The Figure 1 represents the different phenomena dwaxial cryogenic injector in subcritical conaiits. Initial
breakup of the bulk liquid namely the primary ateation occurs near the injector. The formation ichdd droplets
namely the secondary atomization occurs downstr€aftowing the classification of Ishii [28], thissb-phase flow
infers a dense "separated" liquid phase near jbetor as well as a "dispersed" liquid phase. ;ndense region of
the liquid jet, the atomization results from intian between liquid LOx and gaseous phases. The dispersion
process is due to the strong difference of veldoétween the two phases. Ligaments start growimg fihe liquid
core because of Kelvin-Helmholtz and Rayleigh-Taytderfacial instabilities. These ligaments thasnfed are
unstable and undergo breakup producing dropletsnvdisruptive forces exceed the liquid surface tamsand
viscous forces. This results in a spray of smallgrgen droplets with final stable sizes, mainlyesptal, which are
dispersed by the turbulent gas flow, and finallpmézed to feed the combustion with hydrogen Fhe gas phase is
made up with hydrogen Jivaporized oxygen £ and combustion products. Eventually, the resgltiot and high-
pressure combustion products exhaust through denazsupersonic speed, thereby providing the reduhrust.

A lot of experimental and theoretical are addreseedhis problem but this breakup cascade remamsactual
debate. There are no sufficient results to proyideameters like the expansion angle, the peneatratépth, the
droplet size distribution. The main reason is theptets cloud surrounding the liquid core regiord dfocking
access to optical rays. Moreover, it is difficudt tiew phenomena because the length and time dbastics are
very small. Nevertheless, with recent improvemémtsptical ray and x-ray imaging techniques, a ifledlaanalysis
[42] of gas liquid interface has been provided. ffer MASCOTTE cryogenic injector [57], the sprayswacently
investigated with a high speed camera in a badhifigioptical configuration [38]. On the other hamaperiments
concerning diesel injection are gaining importaf&®, [14], [44]. We expect that in a near futuspatial resolution
at the sub-micro-meter level may provide data haseryogenic rocket engine but also for Direceletjon Diesel.
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Concerning numerical simulation, computational teses give us the possibility to view the atomizatprocess
more accurately than before and DNS are gainingitapce [22], [19], [25], [26]. A lot of works atesed on the
ARCHER software [41] which combines a level setmat VOF method. In [21], DNS of two-phase flow pas
very promising results. Nevertheless, the finestesc of two-phase flow are not known contrary tdrsagorov
scale and cannot be resolved even if the meshisite order of 0.38m. Other recent works of DNS can also be
mentioned [8] but it seems that DNS is not enougitune for industrial configurations. In fact, thienalation
required in liquid propulsion as depicted in Figdreeven only applied to one single coaxial cryagenjector,
remains a tremendous challenge when considerimgization of the jet combined with the combustiorthaf spray.

Separeted phases Dispersed phase

® Gas liquid interface. m - ~ F 1L e Spray of droplets.
e Multi species compressible flow. # P : ol LT e Evaporation and combustion.
| [Vi=Ve | 1gpse [o [, J*
,'IIID SE IR e Primary atomization, ligaments.
! e

i j;[};vc; e Secondary fragmentation.

Figure 1: schematic representation of a coaxiagewic injector

So, a lot of numerical works are based on RANS @88 approach when we consider the modelling of arnim
atomization in cryogenic rocket engines or in Difegection Diesel. These approaches need subrgoidels which
can be derived from theoretical, experimental ordsults [21]. Concerning cryogenic combustionwloek of
[52], [55], [56] initially started for Diesel engds are very interesting. A 4 equation diffuse fiaise model is
combined with a sophisticated surface density eéguathich is a mandatory as explained in [37]. Tih& equation
contains source terms for creation and destructfanterface area which are closed with turbule ANS approach.
The basis of the model has been used in [45], §8@] applied to a coaxial injector in [16]. Then neasure of the
source terms are suggested in [29], [30]. The tesenk of [17] deals with the liquid jet atomizatiainder direct
diesel engine conditions but combustion is not anted for. A 7 equation diffuse interface model J[1Gth
procedures relaxation of pressure, velocity [48] samperature [60] is used both for the liquid canel the spray
droplets. A new atomization model is formulatedngsiwo surface density equations. The closure tenmasased
on RANS simulation and the turbulence is necesfarliquid and gas. They highlight that a uniqueface density
equation is used in [54], [32] for the two phaddere, two surface density equations are transpaviddthe same
interface velocity; one for the dense “separatdwiges and another one for the “dispersed” phase objective is
to improve atomization but also breakup modellimg[1], a QME quasi multiphase Eulerian solverngplemented
in OpenFOAM and applied to a jet in crossflow. Camigon with experiments and DNS [25], [26] are prasd.
The innovative second order closure for the slijpaity is based on transport equations for momentuoiume
fraction, surface density and liquid flux. It meangap between fully multiphase and mixture apgreiaece it holds
for a large range of liquid volume fraction goimgprh dense “separated” to “dispersed” flow. Conaagnbiesel
Injection, a new model is proposed in [5] and cambi the 4 equation RANS approach with a Lagrangian
description for the spray into the ELSA (Euleriaagtangian Spray Atomization) code. Following thisategy,
works of [32] make the source terms depending asp&tsed” or “separated” topology of the two-phéises and
they improve the definition of the equilibrium Webmumber. The strategy is continuing in the RAN$&teat with
[31] but it seems that the strong coupling betwgaterian and Lagrangian methods induces some diifies [20].
In [25], an efficient parallel multi-scale couplipgocedure between an Eulerian level set methatditrg interface
and a standard Lagrangian description of smalleschhs been applied successfully to a turbulentdiget under
Diesel engine conditions. Then works [11], [12]3][focus on interfacial area equation in the LE&tegt and use
also accurate tracking interface methods.

In the Eulerian-Lagrangian methods sometimes aaativith a tracking interface method, severaldiffies arise.
The first one is due to the lack of robustnessefltagrangian methods in the case of strong two-agapling. The
second one is related to the statistical interfiogteof numerous numerical particles produced i #omization
area. It seems also that taking into account ferciimpressibility of the fluid with the trackingténface method is
not an easy task.

In the Eulerian-Eulerian methods, the principalvdrvack is the numerical diffusion of the interfacE&ne major
advantage against interface tracking and Lagrangiatihods is that models are general and fully cesgible. A
second one is that Eulerian-Eulerian methods aeweéll adapted to parallel and time implicit cortaions.
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In a previous works [40], we have proposed a cogpditrategy between a 4 equation diffuse interfaodel and an
Eulerian kinetic model for the spray. The fully Buan coupling between “separated” and “disperdedi-phase
flow solvers has been implemented in the ONERA'®RE code [43] and has been applied to the simulatfahe
MASCOTTE [24], [57], [53], [38] test facility on th 10-bar operating point corresponding to cryogenitket
engines under transient operating conditions agtkpin Figure 2.

Figure 2: LES of a subcritical combustion LOx/GH®{bar operating MASCOTTE 10 facility)
(Liquid oxygen in blue, hydrogen in red and flaimgrellow)

In this paper, we focus on diffuse interface modelsthe simulation of separated two-phase flowcoaxial
cryogenic injector in order to realize in the fituhe same coupling strategy than before and twedarnew model
for atomization. Actually, we propose an improvemefithe diffuse interface model to deal with teparated two-
phase flow near the injector for the liquid comstead of using the 4 equation model, we have teelébe 7 (two
pressures, two velocities and two temperatures)tiamd (two temperatures) equation models. Therhementum
transported by the 7 equation model [10] shoulcegig a better description of the liquid velocitythe diffuse
interface where a large difference between liquid gas velocities exists. The two temperaturehefx equation
model [39] provide an accurate description of flieitl temperature and should be able to avoid eparpressure
oscillations of the 4 equation model due to mixofghot gas with cold liquid in the diffuse intereacThese two
models and the derivation of the 5 equation modelpaesented in the next section 2. Then sectimnd&voted to
build accurate and robust schemes for simulatioctuding large difference of velocity and high déngatio
between the two phases. For the 7 equation, wey dpelsimple HLLC scheme [23] combined [6] with &JBICL
technique [35]. For the 5 equation, we derive Hlilyfe schemes [7] based on different system’s foatians to get
the more robust scheme as possible. Finally iricsedt we present the numerical results obtainedadidation test
cases and on a coaxial injector configuration.

2. Governing equations

In the framework of diffuse interface modelling whiwe have selected to deal with separated twoepfiaw/s,

different level of description are available. Mdadg) of two-phase flows is typically based on aygng procedures
[28], [18]. In their most general form, these aging techniques produce models characterized bydifferent

velocities and pressures for each phase supplethbgtene or several topological equations. Thisamely the 7
equation model [10], [48]. On the opposite, a va@mngple 4 equation bi-species Navier-Stokes systein §0] can
also be employed. As usual, a delicate balanogeest the complexity of the model and its perforneahas to be
found. In the dense region of the two-phase flow, propose to use a more sophisticated interfadesdifmodel
than previously. In this context, the 7 and 5 eiquamodel have been selected in this paper. Thgu@ten model
allows us to describe the interface between gasdigvith two different velocities and temperatusgkile the 5

equation provides only two different temperatuissides, we point out that works dealing with laygas interface
simulations and diffuse interface modelling arengeg importance [49], [34].

2.1 The seven equation model

If we extend this 7 equation model to the case oftirspecies fluid, mass conservation equation rayeadily
replaced by mass fractions equations and the ctimeepart of the (5+1#n,) equations system with relaxation
pressures, velocities and temperatures source teambe written under the form:
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d(a;p V¢ . .

%11) +div(aypYiu,) = wi

d(a;pruy) ,

. +div(a;pyu, ®uy) + V(aypy) = pVay + A(u, —uy) + wym

d(aip;e,) , _ uj
T + div(a;(prey + pwy) = puy-Vay + Auy - (u; —wy) +pu(p, —p1) +Q + | e + 2 m
d(ayp, Y4 . .

—( 202Y4) + div(ayp,Yiu,) = wi

d(azpau,) ;

ot + div(azp,u,®uy) + V(azp,) = —pVay, — Au, —uy) —um

d(azp,e;) . _ uj
ot + div(az(poe; + p2uz) = —pyuy - Vay, — Aug- (U —uy) —pip(p, —p) —Q — (e + > m
day Q m

7+ul'vak= _Il(Pkr_Pk)"‘E"‘E 1)

The notations are classical. Firstty, are the volume fractions of each phagg+£ a, = 1), p, the phase densities,
u, the vector velocitieg, the pressures amg = ¢, + u2/2 the specific total energies, with the specific internal
energies. On the other hang, p, stand for the interfacial velocity and pressure:

2 2 2
u = Z akpkuk/z APk » b= z agpr  (2)
k=1 k=1 k=1

The model contains mechanical effects for the piresand velocity relaxations. Moreover the two tef@ym stand
respectively for the heat and mass transfer andeamritten under the form:

Q=0(T,—Ty), m=v(g, —g1) (3)

The convective part of the system can be writtesheutthe following form:
0
% +div(G(Qy)) = Hy " Vay + Ry (4)

For each phask, the vectorQ, stands for the conservative variablé$Q,) for the flux vector while Hy - Va,
denotes the non-conservative part of the systenthénother handR, are respectively the relaxation terms for
pressures, velocities, temperatures and free exerghe terms of the convective part of the systeite:

[ Y X Pr Vit 8
_ _ Qu; + aypr _ | biVag

Qu = Ay PrUk , G(Qy) = AR Pr U QU kPk|  H, -Vay, = . (5)

Ay PrCx ax(prex + prduy P - Vay

| ag 0 U V(Zk
On the other hand, the source term writes:

[ Wi ]
R, = Ay — w) + V(g — i) I (6)

u; - (ug, — wy) + P — i) + 0Ty — Ti) + (e + uf /2)v(gir — i)

— (P — i) + (T, — Ti) [ + v(Grr — gr)/ @

2.2 Thefive equation model

The 7 equation model contains relaxation parameteaad u which determine the rates at which velocities and
pressures of the phases reach equilibrium. Hereneeinterested in situations where relaxation tiraes small
compared with the other physical characteristiceSmFrom an asymptotic analysis, one can deriveeguation
reduced model [39] including one equation for tlwume fraction and one for the total mixture energ@his
(3+n+n,) equation system extended here to the multi-spexzEiee will be referred to as the ‘eformulation”.

a(a,p, Yi )
7( kaik k) + div(akkak‘u) =0
d(pu
(5t ) + div(pu®u) +Vp =0
d(pe
(apt ) +div((pe + p)u) =0
da, p1a5 — p,a3
—24u-Va, = di 7
gt TR T Mm% a;p a3 + apiat W) ()
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Now, we establish a formulation of reduced modatgiswo equations of transport for the internal rgies instead
of an equation for the volume fraction and anotleerthe total mixture energy. If the different fonfations are
equivalent for smooth solutions, we expect the séame to be adapted for non-conservative termeeasill see in
the next section 3. This second formulation ofSregjuation system will be referred to as they,¢,) formulation”.
Thus we sefl = 1,/¢ andu = u,/e wheree tends to zero and we look for limit equationshed ¥ equation model.
In this way, we use an asymptotic expansion in $eoffe and we try to establish the governing equationsnwh
¢ —» 0. This analysis can be performed directly on theseovative form of the system. However it is more
convenient to work with the set of variables, py, uy, €k, pr, @) and to use the quasi-linear form of the equatams
in the following. Using the notatioh, /Dt = d; + u, - V for the material derivative, from the momentum ahnel
mass conservation equations, it is easily seertlibatelocitiesu, obey:

agpr Dy /Dt(uy) + V(agpy) = piVay + A(uy, —uy) (8)

From these last equations, we deduce the onekddinetic energw?/2 of each phase:
D /DE((Wr)?/2) + wy - V(agpy) = pruge - Vay + Awy - (wyr —uy) (9)

Then from the total energy equations, we get thetgns for the specific internal energies:
agprDi/Dt(e) + axprdiv(wy) = p(uy — wy) - Vay + pp;(pr — pi) + Auy — wy) - (wyr —uy) (10)

Now, we suppose a binary law state= ¢, (p,, pr) and introduce the coefficientg, k; for the partial derivatives:
6£k 6£k

=—| Kk — 11
el an

X =
* 0P Pk

After some calculations, the transport equatiomgHe pressures write:
a Dy /Dt(py) + i Cdiv(uy) = Ciy(wy — wy) - Vay + pCiy (pr — pic) + A/ (gepr) (uy — wy) - (g — wy) (12)

In these last equations, we have introduced thsiplsaund speed and the acoustic impedance forptede. Then,
a,;C,; stand for the same quantities evaluated at tieefates:

Pk 1 (pk ) 1 (Pl )
2=t =—(Z_y ), ak=—(2-x), C=pa, Cuq=pea (13
k= B, ki \ P2 Xk K= e p? Xk k = Prk e = P (13)

Sk

Now, we perform the asymptotic analysis introducthg following expansion in term of for velocities and
pressures but also for the other variables:
w, = u® + cuj, pe =p° + epi (14)

The total mass conservation equations at ordead re
@Y oo
T + dw(akpku ) =0 (15)

The equations for velocities at order O read:
ou’
alp? (W +ul- Vu°> + V(adp®) = p°Va + 2°(ul, —ul) (16)

Then we can deduce at the order 0 the equationstéaynal energies and pressures:
oel
agpi (6_tk +u’- Vsz?) + agp®div(u®) = up°(pi, — pi) (17)

op° .
ag (7 +ul- Vpo) + apCRdiv(u®) = u°Cl(pi, —pi) (18)

Then, combining the above equations, we can gatrisures fluctuations at the order 1:
0 0

1 CZ

—— 2 _div(u® 19
2000 4 qoco 4w (19)

wp; —pi) = aja;

Now, if we use the equations at order O for mass iaternal energies, and we introduce the exprassfothe
pressure fluctuations, we get for example for pHase

c-cg
5 div(u®) (20)

ae?
0,0 1 0 0 0,0 ; 0y — ,0,,0..0 2
a +u”-Vei | + aipdiviu®) = aja
1P1< 1> 1P (u”) 12D a{’C20+a;’CI

Jt
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After the same manipulations for phase 2, and adsng the mass conservation, internal energy espusmtiead:

daiprer —aiCy
di 0,0,0,,0) — 1,0 di 0 21
ot + lv(alplglu ) p (X{JCZO + agcf lv(u ) ( )
dagpses —a3Cy
di 0,0,0,,0) — 1,0 di 0 22
ot + lv(a2p2€2u ) p (X{JCZO + agcf lv(u ) ( )

We point out that the mixture energy equation cambtained by summing the two last equations artdhma with
the classical energy equation of ‘¢ formulation”.
0:(p°%) + div(p°c°u®) = —p°div(u®) (23)

Finally, the 5 equation model referred to as tlfe,%,) formulation” can be written under the form belowhis new
formulation will be used for the design of numeritaxes in the next section 3.

3(app Vi .
(%kk) + div(agpYiu) =0
d(pu
((;)t ) + div(pu®u) + Vp =0

Jdaip&; —ayp,a;
obd g = di

ot lv(alplslu) 14 alpza% + azzpla% lv(u)
aazpzsz _azplal

5t iv(aypeu) = p Gy @R + ayprd? w(u) (24)

3. Numerics

In this section, we propose for the 7 and 5 eqoatiodels several numerical upwind schemes in dolegsolve the
systems in a Finite Volume framework. A lot of weitkave been recently dedicated to liquid-gas iaterproblems.
These types of two-phase flows exhibit strong gmati of variables and large variation of sound dpssar the
interface between the phases. In this contexs ihandatory to derive accurate but also very robcisémes. The
class of upwind schemes based on the resolutiticedRiemann problem seems to be a good candidatexample
in [15], a five equation reduced model is used witHLLC scheme. Then in [34], a “new” 6 equatiorp(2ssures)
hyperbolic model is proposed with a HLLC scheme andw Mach preconditioning technique. In [49], J4e
same 6 equation is used with an acoustic and a Hidler. In [60], the 6 and 7 equation models withchanical
and thermal relaxations are solved by HLLC schemes.

For the 7 equation model, among the class of upwiaiemes, we compare a VFRoe-ncv scheme [9],98],4nd
the HLLC scheme [23]. The VFRoe schemes are baseitheo exact resolution of a linearized Riemann @b
formulated in conservative variables or in any otihnedependent system of variables. But as it wéllgresented in
the following, these schemes suffer from a lackaifustness. As a consequence, we propose to stffdyedt
HLLC type schemes based on the approximated salofithe non-linear Riemann problem. They seenréwige a
maximum of robustness and accuracy. In the reaasttplot of works have been dedicated to applgldes of HLL
[27], HLLC [50] upwind schemes on two-phase flowdats. First of all, the HLL scheme has been appliethe 7
equation model in [48]. This scheme is very effititor implementation but it suffers from a lackaafcuracy. Then
the work of [47] has proposed to restore contastdatitinuities but the scheme is based on the agmmtpat the
pressure and the velocity are instantaneously edlaawards equilibrium. In [51], another HLLC typeheme has
been derived but it is only valid for the interfalgpressurep; = p, and velocityu; = u, values of the original Baer-
Nunziato 7 equation model [10]. Moreover, the schenecessitates an iterative procedure to compue th
intermediate states of the Riemann problem. Ind2jew scheme is proposed. It takes into accounhé&interfacial
contact between fluidst,; but not for the two phasic contact discontinuitiesu,. Finally, in [23], a HLLC
involving all the waves of the Riemann problem isgosed. Among all these schemes, we have selddtedne
because it seems to be quite general and alsoeatiaptestore a differential velocity between the phases.

For the 5 equation model, we have presented twmdlations of the system. The first one is the dje,
formulation” and the one second is thegs ;) formulation”. We propose to build HLLC type sahes based on
these two formulations. The last one is very irgng and gives us the possibility to examine thesthmadapted
closure of non-conservative terms satisfying tetargy conservation. These shock computationadtdiffes due to
non-conservative character of the model has toxaenmed carefully. This could help us to maintagsiivity for
crucial variables such as density, pressure omwelfraction.
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Then an extension of the multi-slope technique [85]this two-phase flow models and their specificiables has
been implemented. When we are interested in tweelimws, we have to deal with high density ratistspng

gradients and also discontinuous solutions. Nowsdidne MUSCL technique remains a good compromiseresn

accuracy and robustness. For this reason, we Hesen the multi-slope approach for general unsiradtmeshes.
As in the original MUSCL method, both a backwardl anforward scalar slopes, are computed for each d& a

given element.

3.1 VFRoe-ncv and HL L C schemesfor the 7 equation model

The first scheme which has implemented for the Wadgn model is a VFRoe-ncv [9] formulated into reptc
variables for sake of robustness. The principateédgent of this scheme is to solve exactly a lirmar Riemann
problem. Details for this scheme can be found B].[3s illustrated in the left of Figure 3, the Riann problem is
complex and involves 7 wave$;; ., Sy x, Sr ., S;- The analysis of the Riemann problem shows tretttaracteristic
fields associated 8, ., Sz, are genuinely nonlinear while fields associates,t@, S; are linearly degenerate. Based
on this mathematical structure, a VFRoe schemeimitive variables has been proposed in [4]. Irsthaper, we
choose a VFRoe-ncv scheme formulated in entropi@bis to reach the maximum of robustness. Agtualsing
entropy equations allows us to satisfy a maximuimcjple on these variables when computing the gmubf
Riemann problem. The computation details of thgaalization of the Jacobian matrix into entropaciables can
be found in [58].

'

. t
Shr 2 ¢

Snma Sumk | d
_ ‘ S, S
Sea -
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(Jl. ()H (Jl_Jr Q;;_;_-

_— y .

Figure 3: representation of the Riemann problenmter7 equation model

Now, we describe the HLLC scheme for the 7 equatiael. The non-conservative terms are decompagedai
conservative part and another one. Following thigefivolume method and integrating the system dirgoges us:

V%:Z(—F,{,i 'Si)‘fﬂ a, - VH,dV (25)

The expressions of the conservative and non-coateewarts of the semi-discretized system arergbye

[ akpkykiun,k ] 0
Fyp;= A PrUiUni + A (P — PN , - VH, = “'kVPI (26)
' ar(prer + Pidtnk — APitm akdlv.(p,u,)
ApUn —a,div(uy)

Then the integration is approximated with form®a)(whereqa;, is kept constant and evaluated at the centereof th
cell regarding the non-conservative term. Then,eb@uation of flux termd, ;, H, ; are performed by the HLLC
solver which is briefly described in the sequel.

0
V% = Z(_Fk,i - S1) — a 'Z(_Hk,i -S1) (@27)

In [23], the conservative part of the fll ; is computed with a quasi-classical monophasic HifbiCthe phasé.
Actually, the two principal assumptions of the solkeare a local constancy of interfacial velocity anessurer;, p;
and a local freezing of the volume fracti@nnferring thata is supposed to vary only across the wén&hus, two
consequences result from that. Firstly, we getcalleonservative form of the Riemann problem besaysp, are
constant and there is no difficulty to expressdifferent terms in a conservative form. Seconddyillastrated in the
right of Figure 3, we get two independent Riemarobfems with four waves. Then to design the HLLBesue, we
need an important ingredient which is the evalumtibvelocity of the waves:

Spie = min(uy =0k Ug k—agy) (28)

Skk = max(uL,k+aL‘k, uR,k+aR,k) (29)

- ap(pu? + ppi — app(pu® + p)py + Spx(apw) i — Spr(@pu) gy + (aL,k - “R,k)Pz 30)
Mk (apwpry — (@pw) ik + Spr(@p) ik — Srr(@p)r i
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Moreover, we need to find the valuesugfandp; in the star region. Inspired by the DEM [3], theerfacial velocity
and pressure read respectively (31) and (32¢fQr< a; p and a; ;, > a4 :

_ (pu? + p)p1 — (pu? +p)1o + S,2(pwW)L 2 — Spa(PWr s
t (pwgry — (PWL2 + Sp2PL2 — SraPRA

w = (pu? + Plrz — (pu? + Plri+S1(pw) 1 — Sg2(pwr2
(pwWgz — (PW1 + Sp1PL1 — Sr2PR2

, P = pRll(uRll - SR,l)(uR,l - ul) + pR,l (31)

» Pr = PRr2 (uR,Z - SR,Z)(UR,Z - UI) + pr2 (32)

Then, the final expression for the HLLC flux canvaetten:
Fig =Fpp+ SL,k(QZ,K - QL,k)

Fox = Fix + Sa(Qox — Qi) Sa = min(Sy, S;)

Fix = Fox + Se(Qrx — Qox), Sz = max(SuSr)

Fric = Fii + Sri(Qri—Qr ) (33)

3.2HLLC type schemesfor the 5 equation model

The different formulations of the 5 equation modetived in the previous section are used to builld €l type
schemes. The first step consists into writing titegration of the system on a cell using a Finibduvhe approach.

V%—sz(—Fi-Si)—ff Kdiv(w)dV (34)

The conservative part of the flux read respectifehthe “(ew)” and the “(1,¢,) formulations:

[ akpkykiun 1 akpkykiun
Fi‘sizlpuun+pn|’ F,.S = puu, + pn (35)
(pe + p)un alplglun

auUp A2P2E2Un

On the other hand, the non-conservative termsiges dpy the following expressions:

0 0
0 0
k= 0 ’ k= p(a;Cy)/(ayCi+a,Cy) (36)
—(a,C3)/(ayCi+a;Cy) p(ayCy)/(ayCi+a;Cy)

If we consider the vectd€ constant in the cell, we can proceed to integration
0
va—f = Z —(F, + Kun;) - Si (37)

Then the conservative part of the flux at the fiaiee is evaluated following the HLLC scheme desaibelow. The
wave velocitiess; , Sg, Sy, are computed in a classical way and the internbedtates);, Q5 in the star region read:

ak,ka,LYki,L ak,Rpk,RYki,R
Uni =Sy PL [uL + (SM - un,L)n] Unr — Sk Pr [uR + (SM - un,R)n] (38)
Sy —S, DL Uns — Sy " Sy — Sk Pr Unr = Sm
+——+(Sy— S +——"t (Sy — S
PL [eL pL Uny — S, ( M un,L) M Pr |€r P Unr — S ( M un,R) M

Then the HLLC flux can be written under the form:
Fo+F, o,+ogF,—Fx ogp—o,[S, . Sr . S, ., .
F=t SRR T2 (07— 00) + S (0 — Q) + 0w (01— R

o, = sign(Sy),  og = sign(Sg), oy = sign(Sy) (39)

For non-conservative terms, the same method a®infdr a 6 equation (two pressures) model is ukembnsists to
use the solution of the Riemann problem. Firstcaesider the “(ey) formulation” of the model and the only one
non conservative equation for the volume fractioies:

Jday - R
VI = (@) + Ky Js, (40)

Then, according to the sign of the wawgsSg, Sy , we are able to compute:
() = (al,Lun,L'aI,LSM' a1 rSm al,RuR)' Up; = (un,L'SM'SM'uR) (41)
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Then combining, the two components of the massifnag (38) in the star region, the volume fractioead:
R a 4 R a >
. L R = (ayp1)1 P2L . R R — ( 1P1)sz_,R (42)

a;L =

’ - x 7 a ,R — ’ - *
1+R, LT (app), P11 YR+ Ry "7 (azp)r P1r

Then, let us suppose isentropic rarefaction adtessvavess; , Sy and we can deduce the real phasic density:

pL—pP. Pr — Pr
—=— Prr—Prr=—— (43)
AL Ak R
Now, we consider the secondgifg,) formulation” of the 5 equation model. We havedigal with the non-
conservative equations for the internal energyaghephase:

daypre —
I = [~ (bt + K ]S; (44)

* —
PrL — PkL =

Then, according to the sign of the wa¥gsSg, Sy, , we are able to compute:

(axprexn); = ((akpk)Lgk,LuL' (akpk)zgl:LSM,(akpk)l*qgl:RSM'(a’kpk)Rfk,RuR)' Uy = (un,L'SMvSM'uR) (45)

Now we have to determine the values of internat@iee in the star regiogy, ,, €, . Which are the only unknowns.
We have implemented and tested different solutions. o

&L = &, option (a) (46)

&L = S(PZ,L'P*) option (b) (47)

iy = Tiw iy = €(Tip*) option (c) (48)

Then the option (d) is based on a close examinatidhe jump relation for energy:
(axp)i(W’ = S) = agpe(u =S, p* =p+plu—S)w—-u’),p'e"(u" —S,) = pe(u—S,) —p'u" +pu (49)

Then let us introduce the specific volume= 1/p and write the jump relations for internal energy:
uw—u=m@" —v), p-—p=m?@w —v)
m(e* —e) =mu?/2 —m@u)?/2 —pu +pu, e—e=@P+p)w—-v7)/2 (50)

As non-conservative terms are not adapted for ¢terchination of the jump, we propose to use mixamergy:
e — & = Dk +P) Wk —v)/2, € = e+ (P +p)(av—av’ + v —ajv’)/2 (51)

The last equality is obtained thanks to the refatiy = Y. But, there is a problem to fing, becausex, varies
acrossS;,, Sg. So the following approximation is made:

gg—& = @+p)w—-v")/2 option(d) (52)

Finally, the option (e) is based on a correctiantti@ mixture energy for conservation:
& — & =Pk — PP Pir — P = (PL — PL)/ 8y
(@)t = apprex + KA(pe), Ky + K, = 1option (e) (53)

4. Reaults

In this section, we present the numerical resuttsioed with the diffuse interface model using HLEEhemes
combined with the specific MUSCL technique [35].eTtirst part of the test deals with classical shadée. The
second part of the test handles with two-phase fiwablems including interface liquid gas instai®t and a
coaxial injector configuration based on MASCOTTEt teench [53].

4.1 Results obtained with the 7 equation model

4.1.1 Two-phase flow shock tube

For this first test case, VFRoe-ncv [58] and HLLA3], [6] schemes have been able to perform. THéeB&d Gas
equation of state [33] has been used and takesdawtount for attractive and repulsive effects.

P = Ve — Dp(er — qi) — vt = (e — Doy Ty — e (54)

& = Cok Tk + /P (55)
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The Stiffened Gas law is used for both gas anddidgarameters are summarized below for the aitlamdvater:
Ve = 1.4, Cyr = 1000, m, =0
Y = 4.4, Coe = 4000, T, = 6.108 (56)

This is a classical shock tube where the two phasesimultaneously present at the same locatibe. viblume
fraction is constant and equalda 0.5 everywhere in the domain. The water withsitgmp, = 1000 kg/m is located
on the left side and the air wifh = 50 kg/nf is on the right side. On the left side (x < 0J% pressure is equal to
10° Pa while it is equal to £0Pa on the right side. The velocity is zero at tin&@he discretization is done on a 1000
cells grid and the CFL number equal to 0.0005n witie iterations humber and then fixed to 0.5. @wilts are
shown at time 200us. We compare the results olutainiin VFRoe-ncv and HLLC schemes. The Figure 4sptbe
evolution of the relaxed pressure and velocity. nmTiégure 4 plots also the volume fraction, the dgnghe
temperature and the monophasic varialypg for each phase. Finally, we observe that evelmeifinitial composition
of the mixture is constant, it evolves in space time because of mechanical effects due to presslaration. The
second order in space is obtained with the MUSGihrn&ue [35]. The time integration is based on assikal
second order, two stages TVD Runge—Kutta scheme.r@sults for VFRoe-ncv and HLLC schemes are etgriva
in term of accuracy and allow us to validate thplementation of the HLLC scheme for the 7 equatiardel.

1E«08!
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VFROE
BEWDB-
&
£ 6E08[-
g

$ a8l
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2508 VFROE

52 LE 05 TE L 5 oF S
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Figure 4: two-phase flow shock tube with the 7 d¢igmamodel (comparison between VFRoe and HLLC s@&®m

4.1.2 Shear layer instabilitiestest case

Here we present a shear layer test case whiclpregentative of liquid gas interface instabilitecurring in the
coaxial injector configuration. As depicted in Figlb, the box is 2m large and 1m high and thersigsh is equal to
4mm. We point out that an important parameter efftbw is the difference velocity between the twages.

1 =300 mis
T=500K

i =% Boir
P, 0.5 kg/m3

Figure 5: shear layer test case geometry

The Stiffened Gas law is used for both gas anddiqlhe parameters have been chosen in order ¢h edensity of
1200 kg/ni for a temperature of 85K and a pressure of 10 foarhe liquid oxygen. In the same way, the dgnisit
equal to 0.86 kg/m3 for a temperature of 280K apdessure of 10 bars for the gaseous hydrogen eTdwmslitions
match with the injection of MASCOTTE facility at¢tL0 bar point. The Stiffened-Gas EOS parameters@x and
GH, parameters are summarized below:

Ve =141, ¢, =10112, m, = 7.173.107

v = 1.77, Co = 951, m, =0 (57)

10
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For the VFRoe-ncv scheme, the largest differemtialelocities which has been possible to computgisal to 300-
100 m/s. The top and bottom parts of the box camaarly pure fluids. The volume fraction of thes gia the liquid
part is equal t&=0.01 and inversely in the liquid part. We point that this residual value fixed #0.01 is too
high but it hasn’t been possible to decrease thiisevbecause of robustness. The infinite relaxat&ocity has to be
used. The time step has been evaluated with a CELE0r the VFRoe-ncv, there is a real problematfustness
when we consider the simulation of interface liggas instabilities. So, the necessity of a more sbbtheme seems
to be clear if we want to deal with largest diffece velocity between the two phases. Only the HiscBeme has
been able to compute this configuration of shegerlavith a large differential velocity of 300-2 mSomputations
have been perform with and without infinite relaaatvelocity. The interface is much more destabiizwith
relaxation as illustrated in Figure 6 plotting thelume fraction fields. The residual value ©fn the nearly pure
fluids is equal tee=10° and the initial velocity of the liquid is equal om/s. The MUSCL technique has been also
used to reach second order space accuracy. Timcalla‘ﬁan Leer limitation has been used for MUSEthnique.

0 = dss | oz Lt oo

605 01 016 02 @2 03 03 04 045 05 005
X[m] 0

1=0.028

o G0 01 06 02 0 03 03 04 048
X[m]

t=0.
i 10,088 i 096 05s
o9
0.8
o8 02

0 ok, n n n n n n s n v
v 665 01 o5 02 & 03 0% 64 o4 o5 [ os S BT 0B 02 & 63 0% 04 06 05
X [m] o X [m]

Figure 6: results for the volume fraction field aibed with the 7 equation model on the shear lsrcase with
infinite relaxation velocities (left) and withougbocity relaxation (right)

4.1.3 Coaxial injector (2D configuration)

In this las test case, we propose a two dimensioaafiguration of a coaxial cryogenic injector béisen the
MASCOTTE [53] facility as depicted in Figure 7. Thame fluids and parameters of the Stiffened gastate than
previously for the shear layer have been used.r&hbielual value of is equal toe=10°. To restore the interfacial
transfer of momentum velocities, we don't use iidirprocedure relaxation of velocities in the regaf the diffuse
interface defined by 0.002<0.999 for the gas and 0.0000#0.99999 for the liquid. Results are presented in
Figure 8 for a simulation during a physical timeuaiqto 0.01s and seem to be very promising. Figupdots the
velocities of the two phases and show that the Igition is able to provide both the liquid and gatoeities. In a
near future, we expect that restoring the difféegéntelocity between the two phases and modellheyinterfacial
transfer could help us for the modelling of atorticza

p=117T8kg/m"
! im-s~!

1 8K

o =
L P = 10bar

0.86 kg/m*
1

YEl

Y

300m -s
1 280K
0 1 —e¢

X{)

Figure 7: two dimensional configuration of a coaiigector based on MASCOTTE test facility
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Figure 8: results for the volume fraction field ained on the two dimensional configuration of axtalanjector
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Figure 9: results for the LOx and GMelocities obtained on the two dimensional comnfigion of a coaxial injector
4.2 Results obtained with the 5 equation model
4.2.1 Water-air shock tube

The length of the domain is 1 m and initially timerface is located at x = 0.7 m. The tube isafitifilled with a
high pressure liquid water and on the right sidénair. This test problem consists of a classibak& tube with two
fluids and admits an exact solution. The initiahdition consists in a pressure discontinuity betwpe= 13 Pa in
the liquid side and p = 2@Pa in the gas side. As in the previous test daseright and left chambers contain nearly
pure fluids: the volume fraction of the gas in eter chamber is 10and inversely the water volume fraction is®10
in the gas chamber. This computation uses a mesh ¥00 cells, with a CFL number equal to CFL =
max(0.001n,0.8) where n is the iteration numbegufg 10 displays for the different numerical methtite volume
fraction, the mixture density, the pressure andvidlecity. The exact solutions are representechesd curves. The
results are shown at time 229us and seem to bengparable accuracy with respect to the exact soluttigure 10
plots the results at the order 1 and 2 in spacetieomonophasic variables such as the temperatweeemphasize
that different schemes could give very differensules and could lead to very different level of ustness.
Nevertheless, the formulation with two internal igjies seems very promising compared to the one tivhvolume
fraction and total energy transport equations.

)

[es——
B 5 R OB &

ot sl

. ¥r
(O | S L

Figure 10: results of the 5 equation model on théewair shock tube at the order 1 and 2
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4.2.2 Coaxial injector (3D configuration)

Finally, we present a cryogenic injector test daased on the MASCOTTE [53] test facility configumat In order
to reduce mesh size and solution time, the sinaras performed with a 60° sector geometry. Thengstoy, the
mesh and an instantaneous iso-surface of the voftangon are presented in Figure 11. Then, Fiduteplots the
instantaneous field for the volume fraction and ékelution of the pressure and temperature. Thateeseem very
promising and we point out that there are no spusrioscillations for the pressure or the temperateither for the
gas nor for the liquid. The law state for the L@kihg into account for liquid compressibility reads
1 11+ B,(P—Py)
(58)

T' ==

The different parameters are summarized below:
Py = 10bar, T, = 85K, v, = 8,54.103m3 /kg,ay = 412 1073,8, = 1.71107%,¢, = 951 /kg/K (59)

On the other hand a classical “perfect” Stiffenad aw state is used for the gH
y=14, @w=0, c¢,=10112J/kg/K (60)

1=0.007s

00037 s 0.0085 s - B ecianid e
000448 0.0072:8 T S— MJrJ.wm... o O——
s ‘W“‘""’T\.,' m,ﬂw
T 0 00K T T
Time [s]
0.0051s 0.0079 s
- o Maximum liquid femperature
= e ———
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Figure 12: results obtained with the 5 equation ehéat the coaxial cryogenic injector (3D configtioa)
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5. Conclusion

In this paper, we have proposed interface diffuselets to deal with the “separated” two-phase flomcoaxial
cryogenic injector. Firstly, we have proposed ajdation model with two pressures, velocities amdpteratures. For
this complex model, we have implemented an efficlebLC scheme and applied to a coaxial cryogenjedior
considering the inert case. Results obtained with 7 equation model are very promising and we exfeat
restoring the differential of velocity between péasould help us when modelling the atomizatiorco8dly, we
have proposed a 5 equation model which has a simathematical structure close to the 4 equationahextepted
for non-conservative terms. To deal with these terme have derived a two internal energies forrmardaand
proposed different HLLC type schemes. This modabie to restore the correct temperature of liguid gas in the
simulation. This will be very important in the réi@e case configuration. This 5 equation model daglpresent a
good alternative between the 4 and the 7 equatiodels. It could be completed by information for tivuid
velocity. In a near future, we intend to couplesthéwo models with a kinetic solver for the spralfofving the
strategy of [40] in order to deal with atomizatiemd combustion.
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