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  Introduction   

   Discontinuous boundary conditions in the theory of the boundary layer  are found in the 

problems, describing the flow near surface distortions, near the edges of wings. There are 

some methods of boundary layer flow control leading to the abrupt change in boundary 

conditions , for example, tangential blowing, suction, nonzero surface velocity, etc. The 

impact of the surface motion layer has been demonstrated by Prandtl in the experiment 

with a rotating cylinder in 1904. The monograph [Schlichting G., 1968] describes 

experiments of Favre, which found that the profile with a partially movable upper surface 

is maintained  unseparated to the angle of attack of 55 °.     In [Zhuk VI, OS Ryzhov, 

1979; Zhuk VI, 1980; LA Sokolov, 1980] studied the interaction of moving at a constant 

velocity of the shock wave from the laminar boundary layer and was shown that  in some 

cases disturbed can be described by a  system of equations for steady state "free 

interaction" with a non-zero surface speed. With the sudden beginning or ending of the 

movement surface gap in the boundary conditions perturbs the flow in the boundary layer. 

The classical theory of the boundary layer may not be valid for the description of such 

flows.  

      The basis of the analysis of problems with suddenly changing boundary conditions 

may provide method of matched asymptotic expansions, essentially for the first time 

applied in formulating the Prandtl boundary-layer theory and the method of coordinate 

expansions used in [Goldstein S., 1931] for the flow study in the wake of the plate of 

finite length.  

      The flow analysis near the flat plate of finite length based on the asymptotic analysis 

of the Navier-Stokes equations showed [Messiter A.F., 1970; Stewartson K. 1970]  

showed that the vertical velocity at the outer edge of the viscous flow due to changes in 

the displacement thickness is limited in its growth and does not exceed  values at which 

the induced shear flow in the external pressure disturbance begins to affect a change in the 

displacement thickness. Similar effects of local strong viscous-inviscid interaction were 

found in the vicinity of the point of separation of the laminar from a smooth surface in a 

supersonic flow [Neyland VJ, 1969a; Stewartson K., Williams P.G., 1969]. Further 

analysis [Veldman A.E.P., 1976] showed that near the trailing edge of the plate there is a 

complex flow structure, which includes a number of sub-areas within which the flow is 
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described by the full Navier-Stokes equations,  by system of boundary layer equations 

with  induced pressure gradient, and others. 

Problem formulation 

As an example, we will consider the problem of the flow near the velocity discontinuity 
region on a flat plate having a region moving at a velocity uw at a distance from the 
leading edge (Fig. 1). The same designations as in the preceding sections are taken for 

 

(a) y  

 

 

 

 

 

                                            Fig.1 

 

the Cartesian coordinates measured along the surface and normal to it: time, the velocity 

components, the density, the viscosity, and the total enthalpy. 

 

Let us consider the structure of the disturbed steady flow for which u(x < 1) = 0 and u(x 
> 0) = uw > 0. The difference in the velocities of streamlines flowing near the surface at a 
velocity uw for x > 1 and those with near-zero velocities for x < 1 can lead to the formation 
of a new boundary layer downstream of the point of discontinuity in the boundary 
condition. 



   /Re  ,Re  2/1 lu                                   (1) 

1/2 1/2~ wy u x                                                   (2) 

 

The estimate for the thickness of the newborn boundary layer follows from the 

condition of the equality of the orders of the terms that describe the effects of the inertia 

and viscosity forces in the longitudinal momentum equation 

At a fixed surface velocity and a variable thickness of the newborn boundary layer the 
friction in the latter decreases monotonically with increasing longitudinal coordinate. 
Using estimate (2) we can determine the distance x1 at which the friction in the new 
boundary layer becomes comparable with that in the main boundary layer 

uw / ~ / 1  ,   x u w1
3

~        (3) 
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This formula can be conveniently presented in the form of the dependence ln xi/ln ε = f ( ln 

uw/ln ε); then eq. (2) is presented as line OB in Fig. 2 

. 

 

               Fig.2 

 

From estimate (2) we also can determine the distance x2 from the point of the discontinuity in 

the boundary condition, at which the nonlinear disturbance region thickness and length become of 
the same order and where, in essence, the assumptions of boundary layer theory are violated 

x u w2
2~ /                                                  (4) 

 

Equation (4) is presented by line AB in Fig. 2 

 

Then the coincidence of the longitudinal and transverse scales leads to the equality of 
the orders of the disturbed longitudinal and transverse velocities. Since Eq. (2) was 
obtained under assumption of the equality of the orders of the inertia and viscosity forces, 
it can be shown that the flow in a region with the scales x y u w2 2

2~ ~ /  is described by 
the complete system of incompressible Navier–Stokes equations. An analogous region 
appears also in considering the flow in the vicinity of the leading edge of a zero-thickness 
flat plate. 
 

Let us estimate the effect of the boundary layer formed as a result of the discontinuity in 

the boundary conditions on the flow in the main boundary layer formed near the fixed 

plate (since at the bottom of the main boundary layer a new boundary layer is formed and 

these layers need to be distinguished, in what follows we will call them the main and 

newborn boundary layers). Physically, this effect manifests itself as gas absorption from 
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the main boundary layer. The estimate for the vertical velocity in the newborn boundary 

layer follows from Eq. (3.91) and the continuity equation and takes the form: 

v u x vx u xw w~ , ~ ~
/ / / /  1 2 1 2 1 2 1 2                            (5) 

Absorption of this flow rate from the original boundary layer over the length x leads to a 
variation of its thickness. For determining this variation we will use the representation u ∼ 
y/ε  of the velocity profile in the main boundary layer at small distances as compared with 
the boundary layer thickness. Accordingly, at the distance y from the surface the gas 

flow rate through the main boundary layer can be estimated as follows: ψ ∼ y
2
/ε. 

Therefore, the estimate of the variation of the boundary layer displacement thickness takes 
the form: 

                                                                                                                (6) 

This variation of the displacement thickness induces the corresponding pressure 
variation in the outer inviscid flow 

                                                                                                                  (7) 

The latter estimate follows from the linear theory of inviscid (both subsonic and super-
sonic) flows. Using this theory is justified if the distance x3, over which the above-
mentioned effects are important, is greater in the order than the main boundary layer 
thickness δ ∼ ε. The fulfillment of the condition x3 > O(ε) can be verified if the estimate 
of the distance over which the interaction effects manifest themselves is obtained. 
 

The estimate for the pressure disturbance makes it possible to determine the distance x3 
over which the induced pressure gradient has a nonlinear effect on the wall region of the 
main boundary layer. For further analysis it is important to note that a gas flow rate is 
absorbed from precisely this region and the variation of the thickness of precisely this 
region determines the total variation of the boundary layer displacement thickness 

 

p u~ 3
2

 ,     x u w3
4 5 1 5

~ / / 
                                                     ( 8) 

The second relation (8) is presented by line EF in Fig. 2. Using estimate (8) we can write the 

condition at which the interaction region length is greater than the boundary layer thickness 

u w  1 /   

This inequality is assumed to be necessarily fulfilled. 

 

The characteristic points B and E are at intersections of line OB with lines AB and FE. 

Typical for flow regimes corresponding to points B and E is the coincidence of the orders 

of the friction in the disturbed zone and the main boundary layer. Then point B is 

associated with the flow described by the system of Navier–Stokes equations and point E 

with the flow described by the system of equations of free interaction theory. 
 

   ~ ~/ / / /1 2 1 2 1 4 1 4u xw

 p x u xw~ / ~
/ /  1 4 3 4
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Estimate (8) is invalid for the region of variation of the parameter uw located to the right 
of point B and in the cases in which the linear disturbance regime is realized due to a 
greater relative viscosity effect. The equality of the orders of the terms describing the 
effects of the viscosity and inertia forces leads to the estimate 

x4 ∼ ε
3/2                                                 (9)

 

 

Relation (9) is presented by line BC in Fig. 2. Similar considerations can be used for 
determining the distance x5 over which linear processes of viscous–inviscid interaction 
occur. Relation (9) is invalid in the region of variation of the parameter x5 located to the 
right of point E. For this distance the following estimate holds 

x5 ∼ ε
3/4                                                                                            (10)

 

 

which is associated with line ED. 

The diagram of the disturbed flow regions plotted in Fig. 2 makes it possible to deter-

mine the dimensions of these regions and the nature of the corresponding flows for a 

given amplitude of the parameter uw. Thus, the effect of the disturbance with an ampli-

tude O(ε
1/4

) ≤ uw ≤ O(1) consists in the appearance near the discontinuity of a region with 

dimensions determined by line AR, where the flow is described by the system of 

incompress-ible Navier–Stokes equations. Next in extent is the region whose longitudinal 

dimension is determined by line EF, where the flow in the first approximation is described 

by the Burgers equation. At intermediate distances, with variation of the parameters in the 

region between lines AB and EF the viscosity effect is inessential in the flow in the 

nonlinear disturbance region and the compensation interaction is realized. The absence of 

viscous terms from the equations governing the disturbed flow requires introducing a 

subdomain in which the viscosity and inertia forces are of the same order. At the same 

time, there exists a region with a length determined by line OB in which the viscosity 

effect is essential and the surface friction is of the same order as that in the original 

boundary layer. As noted above, point E corresponds to the general case in which 

nonlinear processes of equalization of the friction of interaction with the outer flow occur 

in the same region, namely, the free interaction region (Neiland, 1969a; Stewartson and 

Williams, 1969). 

 

When the parameter uw varies on the range O(ε
1/4

) ≤ uw ≤ O(1), apart from the above-
mentioned region, in which the flow is described by the system of Navier–Stokes 
equations, there appears one more region whose length is determined by line BE. Here, the 
flow is described by the system of boundary layer equations with a compensation 
condition of interaction. In this region, the surface friction is equalized. Finally, for uw ∼ 
ε

1/2
 friction is equalized directly in the region in which the flow is described by the system 

of Navier–Stokes equations. 
 

Thus, near the discontinuity point (line) there occurs a system of embedded regions with 

different longitudinal scales. For given uw the dimension of each of these regions can be 
determined using the diagram in Fig. 2. It should also be borne in mind that each region, whose 
longitudinal dimension is greater in the order than the boundary layer thickness, consists of 
subdomains with different transverse dimensions. 
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Using the diagram in Fig. 2 and the above estimates we can determine the conditions at 

which time-dependent effects can manifest themselves in the disturbed flow regions 

considered. For this purpose we will determine the characteristic temporal scales equal to 

the ratios of the region lengths to the corresponding characteristic velocities. Thus, for the 

region under consideration, consisting of a system of embedded subdomains, the greatest 

characteristic time is associated with the subdomain with the least characteristic 

longitudinal velocity, while time-dependent processes in the subdomain with the greatest 

scale time are associated with quasi-stationary processes in the other subdomains. As 

follows from the estimates presented above, the least longitudinal velocity is characteristic 

of the region in which nonlinear variations take place. 

 

It should also be taken into account that the regions with different longitudinal 

dimensions are associated with different characteristic times. Thus, for the regions 

corresponding to the lines presented in Fig. 2 we have the following estimates: t2 ∼ ε
2
uw

−2
 

at AB, t3 ∼ ε
3/5

uw
−2/5

 at EF, and t1 ∼ uw
2
 at OB. 

For further analysis we note that for uw = O(ε
1/2

) the least time is characteristic of the 
flow region corresponding to line AB, then for uw > O(ε

1/2
) the next in duration is time for 

region EF, and the greatest characteristic time is that for the region corresponding to line 
OE. 

 

 Analysis of the regimes described by free interaction theory 

 

For uw ∼ ε
1/4

 the flow in the region with nonlinear variations of the flow functions is 
described by the system of equations for the free interaction regime. This system of 
equations is as follows: 

   P  

2/YY),(-   ,0)0,(   ,),( 2 XPX      (11) 

wUXX  )0,0(   ,0)0,0(  

 

where next similarity variables are introduced 

;)( 4/13235 xaX ww
     yaY ww

4/15123 )(       (12) 

;)( 2/1312   wwa  ;)( 2/1111 paP w   

;)( 4/11121
wwww uaU    

2/12 )1(  M  
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)0,( 



 X

y

u
a   

 

For Uw <<1 the solution of the boundary value problem (12) can be represented in the form: 

PUPUYXfY ww     :),(2/2
         (13) 

fPffY    

   ;0)0,0(    ;),(  XfPXf 1)0,0(  Xf  

0),(   ;0)0,(  YfXf  

 
 

Using the Fourier transformation the solution of the boundary value problem (13) can be 

obtained in the form: 

 

4/3)]0(3[   ;4/)exp(3)0( iAXUXP w        (14) 

;
1

)exp(

2

3
)0(

0

3/83/4

3/42/1









ss

dssXsUw
XP






 

 

 

The disturbed flow near the point, at which the motion of the surface stops, can be similarly 

described. It is governed by the system of equations (13) in which the boundary conditions for the 

function (X, 0) take the form: 

wUX  )0,0(      

0)0,0(  X  

 

 

The solution of the corresponding linear boundary value problem for  1wU   

 

 

  ;4/)exp(3)0( XUXP w                  (15) 
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;
1

)exp(

2

3
)0(

0

3/83/4

3/42/1









ss

dssXsU
XP w 




   (16) 

 

It should be noted that for Uw <<1 the solutions governing the flows near the points of 
the beginning and cessation of the motion of the surface directed counter to the 
undisturbed oncoming flow differ from solutions (15) and (16) only in sign. 
 

In the vicinity of point X = +0 for Y = O(1) the flow functions can be represented in the 

form of the following coordinate expansions 

1/2
0 1( 0, ) ( ) ...;X Y X Y        

 

1/2
0 10( ) ( 0)P X P X X P     

 

The functional form of the expansions is determined from the conditions of the 

matching with the solution in the newborn boundary layer, that is, for Y = O(1), where the 

flow functions can be represented in the form: 

2/12/12/12/12/12/1 2   ...;)(2  XYUfUX ww   

 

Substituting Eq. (3.102) in the system of equations (3.97) leads to the following 
equation for the function 1(Y ): 

 

010110   P  

 

An analysis of expressions (3.102) and (3.103) and the interaction conditions shows that 
for nonzero values of the function 1(Y → ∞) nonzero disturbances imposed on the outer 
boundary of the region with nonlinear flow function variation lead to infinitely large 
negative values of the induced pressure; therefore, condition )(1  Y  must be 

fulfilled. Thus, a rapid decrease or increase in the displacement thickness at the cost of the 
newborn boundary layer must be accompanied by the appearance of a large pressure 
gradient ensuring zero, in the leading term, total variation of the displacement thickness. 
The solution for the function )(1 Y  takes the form: 

 





Y

dY
P

2
0

1001

 

 

1 0 10 2
0Y

dY
P


  


  
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Matching with the solution for the newborn boundary layer makes it possible to 
determine the parameter P10; in the case of the beginning of the motion of the surface it is 
as follows: 

 

1/2 1/2
10 0 02 ;   1.229wP C aU C   

Or 







0

2
0

1
12/1

1
2/1

10     ;217.1   ;2
dY

JCJaUCP w









0

2
0

1
12/1

1
2/1

10     ;217.1   ;2
dY

JCJaUCP w  
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