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Abstract 
A hybrid optimization frame LFABO that embeds principle component analysis (PCA) technique 

into a common aerodynamic optimizer based on differential evolution and multi-layer perceptron meta-

model is proposed in this paper. PCA approach is utilized as flow field analyser which dynamically 

extracts characteristics from flow field meta-data generated by CFD evaluations during the optimization 

process. Using those obtained characteristic descriptors of local flow fields, an integrated surrogate 

model concatenating design variables and concerned objectives can be established. Efficient 

optimization can then be conducted upon established surrogate models. The proposed approach is 

applied to an airfoil drag reduction process, preliminary results has revealed this approach’s dominance 

over traditional surrogate-based optimization techniques in terms of solution quality and authenticity. 

1. Introduction 

Aerodynamic optimization, with distinctive patterns of expensive optimization, have experienced substantial 

development regarding optimization techniques during last decades. Approaches such as evolutionary algorithms 

(EA)[1–8], surrogate models[9–15], adjoint method combining gradient-based optimizers [16–24]and hybrid methods 

[25–28] are continuously proposed, examined and utilized in this field witnessing increasingly profound improvement 

in optimizers’ performances. 

However, aerodynamic optimization is still faced with the dilemma between local search efficiency and global search 

ability: common evolutionary algorithm-based optimization requires large amount of CFD evaluations towards 

convergence and gradient-based method can converge rapids but suffers from trapping in local optimum. Robustness 

and uncertainty involved in the real-world application of aerodynamic optimization are also important issues which 

robust optimization[27,29–32] is aimed to solve, but the accompanying booming computation burden has aroused 

another concern. The key issue that causes aerodynamic optimization such straits is the expensive CFD evaluation 

process. Incorporation of surrogate model can well alleviate those computation burden by substituting time-consuming 

numerical analysis with a faster but less accurate alternative which can also filter the numerical error generated by 

numerical solver. Although there has been impressive development in surrogate models in recent years, enhancement 

strategies such as gradient-enhanced Kriging and co-Kriging are proposed and can well increase the prediction 

accuracy. However, while constructing the surrogate, information utilized is still constrained to peripheral level, i.e. 

only the design variables, concerned objectives and information directly related to them are used. The meta-data (flow 

field information and similar) generated by CFD solver depicting the fluid physics is usually discarded. Previous 

experience has shown that experienced and knowledgeable aerodynamic designers and experts can efficiently analyze 

those meta-data. By recognizing and predicting the fluid structures, experts are able to obtain feasible aerodynamic 

design within few rounds of experiments or numerical simulation. 

With the development of data mining related technology, such process can be partly replaced by machine-learning 

aided in-depth analysis of the flow field. Massive information lies in the physics of aerodynamics and the obtained 

numerical data. There has been attempts to use data mining technologies in the field of aerodynamic optimization, but 

most of them are still analyzing data within variable-objective level, K.Chiba[33] utilized self-organizing map (SOM), 

rough set theory (RST) and ANOVA to analyse the correlation and trade-off relationship between objectives and 

variables from database generated in an EA-dominated aerodynamic optimization process. Zhendong Guo[34] used 

self-adaptive differential evolution to optimize a high pressure ratio centrifugal impeller and utilized SOM to carry out 

trade-off analysis between objectives and discovered design variables which have significant impact on concern 

objectives. 
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Moving deeper to analyse flow field meta-data can have great potential, possible benefits may lie in below areas where 

such analysis can be used to: 

(1). Accelerate CFD convergence or alleviate computation cost. 

(2). Accelerate optimization process by adding potential individuals with reasonable flow structure. 

(3). Enhance surrogate model to predict more accurately and physically. 

(4). Help establish the understanding of more complex fluid phenomena and promote theoretical development. 

In this paper, an attempt has been made to adopt principal component analysis (PCA) or proper orthogonal 

decomposition (POD) technique as characteristic analyser of deliberately truncated flow field section of evaluated 

solutions to construct an enhanced surrogate model with higher accuracy and application potential. surrogate-based 

optimization (SBO) using differential evolution is then conducted, the whole process can be named as local flow-field 

analysis based optimization (LFABO). Comparisons are made to between LFABO and traditional SBO. Note that 

multi-layer perceptron (MLP) is selected as baseline surrogate model in this paper. 

2. Local flow field analysis based optimization 

2.1 Central idea introduction 

The central idea of LFABO is to obtain and utilize the condensed low dimensional characteristics of the flow field 

generated during the optimization process, there are various ways capable to extract features from flow field, they are: 

(1). Unsupervised learning techniques such as PCA, SOM, or deep neural networks such as deep belief network (DBN) 

and auto encoder (AE). 

(2). Supervised learning techniques which includes feature extraction session such as convolution neural network. 

(3). Prior knowledge based feature extraction, which in the case of aerodynamic optimization refers to aerodynamics 

guided fluid structure recognition such as shock waves and flow separation. 

Supervised learning is not suitable, for the features extracted are directly related to the selection of concerned objectives 

and thus can be rather subjective. Knowledge-based method is applicable, however the utilization of this approach is 

highly depending on the type of problems. In the case of 2 dimensional nozzle thrust optimization, it’s clear that shock 

waves and expansion waves are significant, their intensity, location and appearance strongly affects the total thrust 

performance. But in other cases such as 3 dimensional aircraft drag reduction, concerned flow characteristics can be 

various kinds of vortex, flow separation, transition location and many other unknown or vague mechanisms. It’s hard 

to form universal and intelligent solution to handle all possible occasions. 

Here we propose PCA for two main reasons: 

(1). The dimension reduction process is explainable and understandable, for the low dimensional characteristics 

explicitly refers to the components of high dimensional base vectors while reconstructing the original flow field. 

(2). Its computation and storage cost is affordable. 

 

 
Figure 1: Surrogate construction in LFABO 

 

2.2 LFABO framework  

Assuming a database containing 𝑁𝑆 samples with corresponding design variables 𝒙𝑖,objectives 𝒚𝑖 (𝑖 = 1,2, … , 𝑁𝑆) and 

related local flow field data has been previously obtained. PCA is firstly adopted to map the local flow field data into 

characteristics 𝒄𝑖. Then two multi-layer perceptron surrogate models 𝑆1 and 𝑆2 are constructed separately to map {𝒙𝑖} 
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to {𝒄𝑖}  and {𝒄𝑖}  to {𝒚𝑖} . An integrated surrogate 𝑆  is then constructed by concatenating 𝑆1  and 𝑆2 . Differential 

evolution is then adopted as optimizer to search for the optimum solution upon 𝑆. 

The introduction of differential evolution, PCA and MLP is introduced in section 3.  

The procedures for construction of surrogate 𝑆  is concluded in Figure 1:, and the total optimization framework 

compared to traditional SBO is shown in Figure 2: 

 

   
                                              (a). LFABO                                                      (b). Traditional SBO      

Figure 2: Optimization procedure comparison between LFABO and traditional SBO 

 

3. Method introduction 

3.1 Differential evolution 

Differential evolution is a simple real-coded evolutionary algorithm used in continuous space optimization. Similar to 

Genetic Algorithm(GA), differential evolution has 3 main stages in each generation: mutation, crossover and selection.  

In case of confusion, here we combine design variables 𝑥 and its corresponding objective functions 𝒚 = 𝑓(𝒙) as an 

individual (𝒙, 𝒚) . oopulation 𝑷𝒌  is formed by individuals 𝑃𝑖
𝑘 ( 𝒙𝑖

𝑘, 𝒚𝑖
𝑘) . oor every individual-related expression, 

subscripts indicate the current generation while superscripts represent its index in the population. the basic processes 

of differential evolution can be concluded as such sequential operation to each individual from parent population 

𝑃𝑖
𝑘(𝒙𝑖

𝑘, 𝒚𝑖
𝑘): 

 (1). Select 𝑛 base vectors 𝒙𝑟1
𝑘 , 𝒙𝑟2

𝑘 , … , 𝒙𝑟𝑛
𝑘  out from the current population’s individuals’ design variables and execute 

mutation operator, obtain the corresponding mutated individual of 𝑃𝑖
𝑘 as 𝑉𝑖

𝑘(𝒗𝑖
𝑘, 𝑓(𝒗𝑖

𝑘)) . and be noted that 𝑓(𝒗𝑖
𝑘) is 

left uncalculated. The mutation process can have several variants described as formulations in equation (1) ~ (4) in 

which the number after slash 𝑘 symbols the pair of individuals needed to mutate, and we have 𝑛 = 2𝑘. 

 

 Rand/1 :𝒗𝑖
𝑘 = 𝒙𝑖

𝑘 + 𝐹 × (𝒙𝑟2
𝑘 − 𝒙𝑟3

𝑘 ) (1) 

 Rand/2: 𝒗𝑖
𝑘 = 𝒙𝑖

𝑘 + 𝐹 × (𝒙𝑟2
𝑘 − 𝒙𝑟3

𝑘 + 𝒙𝑟4
𝑘 − 𝒙𝑟5

𝑘 ) (2) 

 Best/1: 𝒗𝑖
𝑘 = 𝒙𝑏𝑒𝑠𝑡

𝑘 + 𝐹 × (𝒙𝑟1
𝑘 − 𝒙𝑟2

𝑘 ) (3) 

 Best/2: 𝒗𝑖
𝑘 = 𝒙𝑏𝑒𝑠𝑡

𝑘 + 𝐹 × (𝒙𝑟1
𝑘 − 𝒙𝑟2

𝑘 + 𝒙𝑟3
𝑘 − 𝒙𝑟4

𝑘 ) (4) 

 

(2). Execute crossover operation using the mutated individual 𝑉𝑖
𝑘(𝒗𝑖

𝑘, 𝑓(𝒗𝑖
𝑘)) and its corresponding parent individual 
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𝑃𝑖
𝑘(𝒙𝑖

𝑘, 𝒚𝑖
𝑘) to generate the corresponding trial individual 𝑈𝑖

𝑘(𝒖𝑖
𝑘 , 𝑓(𝒖𝑖

𝑘)). 

(3). Calculate 𝑓(𝒖𝑖
𝑘) , execute selection operation between 𝑈𝑖

𝑘(𝒖𝑖
𝑘 , 𝑓(𝒖𝑖

𝑘)) and 𝑃𝑖
𝑘(𝒙𝑖

𝑘, 𝒚𝑖
𝑘) to filter the better one to be 

settled in the offspring population as 𝑃𝑖
𝑘+1(𝒙𝑖

𝑘+1, 𝒚𝑖
𝑘+1). 

All these three main procedures have multiple variants during different utilizations which enables DE to be variable 

and adjustable. We could uniquely mark a certain DE as DE/a/b/c while “a” and “b” symbol the mutation scheme, as 

have described above. “c” represents the crossover scheme and can be classified into binary crossover and exponential 

crossover[35]. Above procedures are concluded in oigure 3: 

 

 
Figure 3:  Optimization procedures of differential evolution 

 

3.2 Multi-layer perceptron 

Multi-layer perceptron (MLP) is perhaps the best known and well used artificial neural network surrogate model in 

aerodynamic optimization. MLP refers to feedforward neural network which contains one or more hidden layer. MLP 

structure that owns only one hidden layer can be depicted in Figure 4:. 𝑁𝑥 and 𝑁𝑦 refer to the dimension of design 

variables and objectives, or in other words the input and output dimension. 𝑁𝐻 refers to the number of nodes in hidden 

layer, which is usually a function of 𝑁𝑥. Nodes in adjacent layers of MLP are connected one by one with weight 𝑤𝑖𝑗 , 

which refers to the connection strength of 𝑖𝑡ℎ node in the preceding layer and 𝑗𝑡ℎ node in the back layer. 

 

 
Figure 4: MLP structure containing one hidden layer 

 

MLP contains three types of layers: input layer, hidden layer and output layer. Both hidden layer and output layer 

obtain the weighted sum of the input given by their preceding layer and pass the result into a non-linear activation 

function 𝜑 as the output to the next layer. Taking the structure shown in Figure 1 for example, assuming node 𝑖 from 

the hidden layer produces output 𝑝𝑖 , the mapping relationship between layers can be depicted as： 

 

 Hidden Layer： 𝑝𝑖 = 𝜑𝑖(∑ 𝑤𝑗𝑖𝑥𝑗 + 𝑤𝑗0
𝑁𝐻
𝑗=1 ) (5) 

 Output Layer： 𝑦𝑖 = 𝜑𝑖(∑ 𝑣𝑗𝑖𝑝𝑗 + 𝑣𝑗0
𝑁𝑌
𝑗=1 ) (6) 
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Most commonly used 𝜑𝑖 are tanh, ReLU and Sigmoid function, they can be defined as equation (7)~(10) where 𝑘, 𝑘1 

and 𝑘2 are positive parameters ： 

 

 TanH: 𝜑(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (7) 

 ReLU: 𝜑(𝑥) = {
0 𝑥 < 0

𝑘𝑥 𝑥 ≥ 0
  (8) 

 Leaky ReLU: 𝜑(𝑥) = {
𝑘1𝑥 𝑥 < 0
𝑘2𝑥 𝑥 ≥ 0

 (9) 

 Sigmoid: 𝜑(𝑥) =
1

1 + 𝑒−𝑥
 (10) 

 

Regarding construction of MLP, the training process is significant. The main purpose and very essence of training is 

to endow MLP the ability to simulate unknown black-box functions on both known training set and unknown test set.  

Back propagation algorithm is the most frequently used and efficient method to train MLP. It gives a form where the 

partial derivatives of total training error to each parameters that need to be tuned can be conveniently and efficiently 

calculated. Back propagation is usually incorporated with gradient based optimization approach such as Newton-

Raphson method, stochastic gradient descent and others. 

3.3 Principal component analysis 

PCA is a statistical approach to transform observations correlated variables into a set of components of linearly 

uncorrelated base vectors. This method is adopted to carry out local flow field analysis and dimension reduction. 

Assuming a series of high dimensional training data {𝒐𝑖}, 𝑖 = 1, … , 𝑁𝑆 (dim(𝒐𝑖) = 𝑁𝑜) have been collected, PCA 

manages to find the intrinsic connection between different dimensions of each training data as well as between different 

samples and represents those samples in a pithy way.   

Suggesting that 𝑁𝑆 > 𝑁𝑜, we can create the data matrix 𝑫 by putting 𝑜𝑖  in column’s order as: 

 

 𝑫 = [𝒐1 − 𝝁, 𝒐2 − 𝝁, … , 𝒐𝑁𝑆
− 𝝁] (11) 

Where 𝒐𝑖 = [𝑜𝑖1, 𝑜𝑖2, … , 𝑜𝑖𝑁𝑜
]

𝑇
, 𝝁 = (∑ 𝒐𝑖

𝑁𝑆
𝑖=1 )/𝑁𝑆  

 

PCA aims to find 𝑚 (𝑚 < 𝑁𝑜) base vectors which best represent the spacial distribution of training data, or the 

observation of unknown variables, in the design hyperspace. Those vectors are then used to map the original high 

dimensional data into lower dimensions or the inverse. The selection of such base vectors requires such characteristics: 

Firstly, high dimensional data that’s recovered from low dimensional characteristics should preserve as greater 

variance as possible and covariance between different dimension of low dimensional characteristics should be zero. 

Regarding those requirements, we can obtain the base vectors following procedure (1) ~ (3): 

(1). Calculate the covariance matrix of the original data set. 

 

 
𝑪 =

1

𝑁𝑜

𝑫 ∙ 𝑫𝑇  (12) 

 

(2). Compute the eigen-matrix 𝑷0 and eigen-values 𝜆𝑖 (stored in diagonal matrix 𝝀) of the covariance matrix depicted 

in equation (13) , note that 𝜆𝑖 are sorted in an descending order by its absolute value. 

 

 𝑪𝑷0
𝑇 = 𝑷0𝝀 (13) 

Where 𝑷0 = [𝒑1, 𝒑2, … , 𝒑𝑛]𝑇, 𝒑𝑖 = [𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛]𝑇  

And 𝝀 = [

𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑁𝑋

] 

 

(3). Eigen-value 𝜆𝑖 indicates the amount of variance information preserved through inverse transformation from the 

low dimensional data on the 𝑖𝑡ℎ base, so the eigen-vector 𝒑𝑖(𝑖 = 1,2, … , 𝑚) which relates to the greatest 𝑚 eigen-

values are selected as the base vectors, and for any given observation 𝒐∗, its low dimensional characteristic 𝒄∗ and 

recovered representation 𝒓∗ can be obtained via equation (14) ~ (15) as shown below: 
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 𝒄∗ = 𝑷(𝒐∗ − 𝝁) (14) 

 𝒓∗ = 𝑷𝑇𝒄∗ + 𝝁 (15) 

Where 𝑷 = [𝒑1, 𝒑2, … , 𝒑𝑚]𝑇 

4. Flow solver validation 

An in-house developed flow solver NSAWET based on window-embedment technology is used for flow 

analysis[36,37].Here we illustrate the comparison between experiment data[38] and NSAWET calculated results on 

airfoil RAE2822 with 12.1% thickness. The detailed description of the experiment and CFD calculation setting is 

summarized in Table 1 and Table 2. 

Figure 5: shows the comparison of calculated and experimental pressure distribution. It can be carefully concluded that 

NSAWET prediction is rather accurate. 

 

Table 1: Experiment condition 

Case No. Case Index Angle of Attack 𝜶 Reynolds Number 𝑹𝒆 Mach Number 𝑴𝒂 

1 7 2.55 6,500,000 0.725 

2 9 3.19 6,500,000 0.730 

 

Table 2: CFD setting 

Grid Size Reconstruction Scheme Discretization Scheme Turbulent Model 

97 × 257 3rd order MUSCL Roe 𝑘 − 𝜔 SST 

 

 
a). Case 7                                        b). Case 9 

Figure 5: Calculated and experimented pressure distribution on RAE2822 with 12.1% thickness 

 

5. Test case validation 

In this section the practical example of the proposed method is presented. A previously obtained airfoil database is 

used for training and testing. An airfoil single-point drag reduction optimization processes based on LFABO and pure 

MLP models are illustrated and compared. 
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5.1 Case settings 

The airfoil is generated using total amount of 14 control points on the upper and lower surface with thickness set to be 

constant 12%. The working condition, calculation setting and optimization problem description are summarized in 0 

 

Table 3: Working condition  

Mach number 𝑴𝒂 Fixed lift coefficient 𝑪𝑳 Reynolds number 𝑹𝒆 

0.74 0.65 6,500,000 

 

Table 4: CFD setting 

Discretization scheme Reconstruction scheme Turbulence model 

Roe 3rd order MUSCL 𝑘 − 𝜔 SST 

 

Table 5: Optimization description 

Design variable 𝒙 Objective 𝒚 Constraints 

14 Control points’ position Drag coefficient 𝐶𝑑 at 𝑀𝑎 = 0.74 None 

 

The database contains 854 airfoil shapes along with corresponding surface pressure distribution, geometry control 

point coordinates and drag coefficient under the same working condition, among which 600 samples are used for 

training and the rest are used for testing. Three optimization configurations (named A, B and C) are compared, among 

which A and B both adopt LFABO with minor differences in surrogate structure, and C is traditional MLP based 

optimization, the MLP structure is shown in Figure 6:. 

 

 
                        (a). Configuration A                                   (b). Configuration B                     (c). Configuration C 

Figure 6: Surrogate model structure 
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5.2 Test procedure and result 

As shown in Figure 2: Firstly the database is obtained by executing geometry and grid generation followed by 

numerical analysis using NSAWET. For proposed LFABO method, the PCA is trained to map the high dimensional 

flow field data into low dimensional flow field characteristics ci. Two MLP surrogates 𝑆1  and 𝑆2  are trained 

simultaneously to construct the integrated surrogate 𝑆. 

Figure 7: shows the original flow field of 6 randomly picked samples and the corresponding recovered flow field. 

 

 
Figure 7: PCA recovery performance 

 

Regarding the training session, back propagation associated with stochastic gradient descent is adopted, total training 

steps are 250,000. The learning rate is initialized as 10-2 and descends to 1/10 after every 50,000 steps. Final prediction 

error of the integrated surrogate on test samples in configuration A is around 4.97% while the configuration B is around 

5.18% with moderate difference. The prediction error is defined as: 

 

𝑒 = ∑(𝑌𝑖 − 𝑃𝑖)
2

𝑁𝑇

𝑖=1

/𝑁𝑇 (16) 

Where 𝑁𝑇 symbols the test set size, 𝑃𝑖  symbols the prediction given by the surrogate while input is 𝑋𝑖. 

Differential evolution is adopted as the main optimizer, the optimizer setting is concluded in Table 6: 

 

Table 6: Differential evolution optimizer setting 

Population  

size 

Total  

generation 

Mutation 

scheme 

Crossover 

scheme 

Mutation 

rate 

Crossover  

rate 

Total objective 

evaluation 

100 100 Rand/1 Binary 0.50 0.20 Around 10,000 

 

Figure 8: shows the converging history of the surrogate-based optimization on configuration A, B and C, the vertical 

axis shows the mean Euclidean distance from the current population to the final optimal solution. After nearly 10,000 

surrogate predictions, all three configurations can give stable optimal prediction. Figure 9: shows the optimum shape 

and validated pressure distribution of the optimum shapes obtained. 
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Figure 8: Optimization convergence history 

 

Table 7: Objective validation 

 Configuration A Configuration B Configuration C 

Predicted 𝐶𝑑 7.93397E-3 1.05185E-2 7.87919E-3 

Validated 𝐶𝑑 1.13715E-2 1.14684E-2 1.26535E-2 

 

 
Figure 9: Optimum shape and pressure distribution 

 

5.3 Result discussion 

From Figure 9:, it can be observed that the optimal shape obtained by configuration B has an obvious bump near the 

leading edge on the lower surface, which directly leads to the second acceleration on the same area. Optimal shape 

obtained by configuration C has very small leading edge radius, and the curvature transition is nearly discontinuous, 

which leads to the second acceleration near the leading edge and low pressure peak on the lower surface. Optimal 

shape obtained by configuration A has second acceleration on the upper surface, however its shock wave intensity 

appears to be the smallest. 

From Table 7: it can be concluded that configuration A and B owns the best optimization result, the validated drag 

coefficient is far less than that of configuration C. This result validates the effectiveness of the proposed flow field 

analysis based optimization method in enhancing surrogate model’s accuracy.  

6. Conclusion 

A flow field analysis based optimization frame LFABO that further exploits meta data generated during the 

optimziation process using PCA, DE and MLP is proposed and presented. Compared to traditional surrogate-based 

optimization, LFABO has such features: 
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(1). The test error can be partly reduced. 

(2). The prediction is more accurate, optimization based on it is more reliable. 

However, more validation needs to be done test the proposed method’s performance in more aerodynamic optimization 

cases. The intrinsic cause of the observed accuracy improvement of surrogates should also be carefully investigated. 
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