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Abstract 
The optimization method is developed for aerodynamic shapes design at subsonic and supersonic flow 

conditions. The method is based on the local linearization of gas-dynamic functions dependence on the 

geometrical parameters, which results in a quadratic approximation of the objective function. The 

method provides a high convergence rate regardless of the number of the control variables and allows 

obtaining the optimization problem solution in an analytical form. The efficiency of the method is 

demonstrated on examples of critical Mach number increasing and aerodynamic drag minimization for 

two-dimensional and axisymmetric bodies. 

1. Introduction 

Method of local linearization is proposed to improve reliability of the optimization procedure and to accelerate the 

convergence through the elimination of numerical determination of the objective function derivatives. As opposed to 

standard linearization of motion equations, which is performed for perturbations of the uniform flow, in the case of 

local linearization data about the flow field over the body are used. The optimized surface is breaking up into 

elements, and in the vicinity of each element the flow parameters are averaged. The plane specified by the velocity 

vector and the normal to the surface element is allocated. Linearization relative to the averaged flow parameters is 

performed in this plane. As a result the objective function is approximated by a quadratic form, for which the 

gradient and the matrix of second derivatives are calculated, and the extremum location is determined. On the final 

stage of the optimization iteration the found shape variations are checked in the numerical computation. Processing 

aerodynamic constraints (for example, lift maintenance) and geometric constraints (for example, volume 

maintenance) is allowed. 

For the first time the efficiency of the local linearization procedure was demonstrated on example of supersonic 

aircraft wing optimization [1, 2]. At supersonic flow conditions the simplest assessment of pressure variation on an 

element can be obtained from the wavy-wall theory for small disturbance. The spatial movement of the element 

requires a turn of the velocity vector on an angle so that it remains parallel to the element plane and the 

impermeability condition is satisfied. The turn of the flow results in the pressure change. Summation of the 

aerodynamic loads on all surface elements leads to the quadratic approximation of the objective function. Newton 

type method is used to determine shape variations that enable the aerodynamic performance to be improved. A fast 

convergence to the optimum in case of the large number (more then 100) of the variables is provided. 

Unlike supersonic flows in the range of subsonic velocities there are no local models (such as the Ackeret’s formula) 

connecting pressure on the body surface with local geometrical parameters and conditions in the free stream. 

However the local linearization based on a relation between the pressure and the geometry parameters is practicable 

in case of small variations of the aerodynamic shape [3, 4]. Application of local linearization in an unsteady 

computation is presented in [5]. A changing the spatial position of the element is considered as a motion of a flat 

piston into or out of gas and the pressure change on the element is related to the geometrical parameters through the 

Riemann invariants. 
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2. Local linearization at supersonic flow conditions 

The important advantages of the local linearization method consist in obtaining analytical solutions and establishing 

typical features of optimal aerodynamic shapes. The solution is found as a variation of the shape of the initial body, 

for which theoretical values of the flow parameters are known. For example consider constructing the airfoils with 

the minimum wave drag under constrain on the thickness cmax. The position of maximum thickness is not known in 

advance, therefore the additional geometric parameter is introduced, the distance from the leading edge to the 

appropriate section xc. 

The airfoil with the upper half contour composed of three line elements is taken as an initial one. The first two 

elements connected at the point of maximum thickness set the nose and tail parts. The third element having a height 

yb, is the bottom face. 

The nose and tail parts separately divided into N segments. The nodal points of the nose part segments have 

coordinates Nnyx
N

n
x ncn ,0,, 11  . The boundary conditions are y01=0 and yN1=yс=0.5cmax. The nodal points 

of the tail part have coordinates   Nnyx
N

n
xx nccn ,0,,1 22   with boundary condition y02=yс. 

For the nose part of the initial airfoil, the surface pressure ps and Mach number Ms correspond to the conditions of 

the oblique shock wave. On the tail part the pressure pv and the Mach number Mv are determined according to the 

theory of rarefaction flow. The wave drag coefficient is equal to: 
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Here γ is the ratio of specific heats, p∞ and M∞ are the pressure and Mach number in the free stream, pb is the 

pressure on the bottom end. 

The wave drag coefficient of an arbitrary airfoil is represented by the sum: 
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The pressure and geometry parameters variations are connected by linear relations: 
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The local linearization leads to the quadratic approximation of the objective function, the wave drag change: 
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According to the boundary conditions, position of some points of the contour does not change: y01=0, yN1=0, 

y02=0. 

Extremum conditions for the nose and tail parts are divided. The optimal variations of the nose points are found from 

the equations system: 
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It is easy to see that a trivial solution is realized – yn1=0, n=1,N-1. Within the framework of the local linearization 

the optimal airfoil has a wedge-shaped nose. 

Extremum equations for the tail part are: 
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The first N-1 equations of the system allow to express variations of the second and subsequent points through the 

variation of the first point yn2=ny1,2, n=2,N. The last equation closes the solution. The optimal change of the nodal 

points ordinates are calculated according to the equation 
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Increasing the number of segments to infinity it is established the correspondence between n/N and (x-xc)/(1-xc), and 

the continuous dependence y2(х): 
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Function y2(x) is a linear one. So the optimal variation of the airfoil shape is reduced to changing the angle of the 

tail section. The variation does not change the windward part. 

It is necessary to make clear that the purpose of the analytical solution is not to find a specific optimal shape. The 

accepted assumptions in the problem statement are sufficiently rough and the values of the pressure coefficient 

obtained analytically differ from the exact values. The theoretical analysis is directed at establishing the typical 

features of the optimal shapes and determining the search directions with a limited decrease of the number of 

geometrical parameters. Solving the problem is closed by direct optimization in the nonlinear statement. The 

geometric parameters are the coordinates xc and yb. 

Consider the example at the following values of the governing parameters: M∞=3, cmax=0.066 and =1.4. The 

aerodynamic characteristics are compared relatively the diamond shaped airfoil (xc=0.5 and yb=0), which is optimal 

one in the framework of the linear theory. The drag coefficient of the rhombus is: 

 

    00812.0/2 2  Mptgppc vsDR   
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Assuming pb=0, the decrease in wave drag compared to the rhombus is about 6%. The optimum airfoil has the sharp 

edges (Figure 1). In contrast to the rhombus the cross section with the maximum thickness shifts towards the rear – 

xc=0.638. An increase in the bottom pressure is accompanied by a decrease of the wave drag. When pb=0.4p∞ the 

advantage is characterized by ratio cD/cDR=0.911, and when pb=p∞ the wave drag is reduced almost five times. The 

bottom pressure increase first leads to an increase in maximum thickness coordinate xc, and then to the appearance of 

the bottom face, the height of which gradually increases. The ultimate solution is the wedge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Optimal airfoils 

1 – pb=0, 2 – pb=0.4p∞, 3 –  pb=p∞ 

 

3. Local linearization at subsonic flow conditions 

In the subsonic range the analytical dependency of the pressure coefficient on the longitudinal coordinate can be 

determined within the framework of the linear theory for thin symmetrical flat bodies streamlined under zero angle 

of attack: 
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Here y' is the first derivative of the ordinate; c and b are the thickness and chord of the airfoil, respectively; and M∞ 

is the free stream Mach number. 

The local linearization at subsonic flow is based on the analysis of the surface curvature [6]. For small deformation 

of the shape the local pressure coefficient change could be estimated by the relation with the element length and the 

variation of the second derivative of the ordinate y'': 
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The contour of the airfoil is represented by a set of line segments joined at nodal points. The ordinates of the nodal 

points are used as the geometrical parameters that are varied in the optimization process. The pressure on the element 

(segment) changes when the spatial position of this element and two adjacent elements changes. So the successive 

local analysis is performed for two pairs of the elements. The Mach number is averaged on these elements based on 

the data of the numerical flow field modeling, and the second order derivative is determined by finite-difference 

approximation through the ordinate values of the three nodal points. The pressure coefficient corresponds to the 

pressure increment relative to the averaged pressure value divided by the averaged dynamic pressure. The proposed 

linear dependence of the surface pressure on the geometrical parameters leads to the quadratic approximation of the 

objective function and determines the shape variations, which are directed to its reduction. 

0

0.02

0 0.5 1х 

y 

1 

2 

3 

DOI: 10.13009/EUCASS2017-95



Aerodynamic shapes optimization on the base of method of local linearization 

     

 5 

3.1 Airfoil with increased critical Mach number 

The problem of constructing bodies with increased values of the critical Mach number is associated with the study of 

the flow scheme corresponding to the cavitation model proposed by Ryabushinsky. The characteristic feature is a 

plan distribution of the surface pressure in the longitudinal direction. The effectiveness of the local linearization is 

demonstrated on the example of constructing the body contour with specified nose and tail parts. The optimization 

aim is the target pressure loading on the surface. A desired pressure coefficient distribution is specified and the least 

squares difference between the actual and target distributions is used as the objective function. This is the basic idea 

behind inverse design methods. 

The body with contour composed by nose and tail vertical segments with connecting convex curved line is 

constructed at incompressible flow conditions. Figure 2 shows the pressure coefficient level lines with increments of 

∆cp=0.1 near the optimum body. On the surface the pressure coefficient equals cp=-0.45. 

The optimization method demonstrated a sufficiently high rate of convergence. The objective function is the mean-

squared deviation of the pressure coefficient from the specified value. The pressure distribution on the initial body 

with flat top line qualitatively differs from the required distribution and the objective function F is equal to 0.316. 

The first variation brought the pressure in the vicinity of the mid-length section nearer to the sought value (F=0.115). 

In subsequent cycles, gradual pressure smoothing in the directions toward the front and rear faces occurred. For the 

constructed optimal body, the mean-square deviation of the pressure coefficient is F=0.006. The numerical 

optimization results are in agreement with the exact solution [7]. For the values of the relative thickness the 

difference is 0.2%. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Pressure coefficient level lines, ∆cp=0.1 

 

Optimization of the airfoil with wedge shaped nose and tail parts is performed. In this case, the pressure coefficient 

on the horizontal part of the initial airfoil depends on the longitudinal coordinate: 
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Here xW is the longitudinal coordinate of the plane joining the front wedge and the horizontal part; δ is the semi-

angle of the wedge; and the airfoil chord is b=1. 

To find an analytical solution of the problem it is made the additional simplifying assumption concerning the 

smallness of the Mach number that concludes that the second derivative of the ordinate of the airfoil contour is 

directly proportional to the difference of the sought and current pressure coefficients: 
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After integration the equation for pressure coefficient we obtain the dependency of the first derivative of the 

ordinate: 
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Here, the condition   05.0' y  related to the vertical symmetry of the airfoil is used. 

Integration with the boundary conditions     tgxxyxy WWW  1  leads to the final result: 
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Here A and B are the shape parameters which equal 
21
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accepted assumptions. In order to obtain a more exact solution of the problem it is necessary to perform a direct 

numerical optimization by varying parameters A and B. 

The results of the optimization are presented in Figure 3 for the following conditions: M=0.672; ср=-0.9; γ=1.4, 

xW=0.2 and δ=22.15° [4]. Numerical simulation of the flow over airfoil is performed based on solving the full 

potential equation. For the initial body with the flat cut, the data obtained by numerical simulation and within the 

framework of the linear theory are compared. The theoretical curve correctly describes the qualitative feature of the 

aerodynamic load distribution. 

Despite the low accuracy of the theoretical model and the significant differences between the initial and optimal 

bodies, the analytical representation of the airfoil contour with two shape parameters provides a near to optimum 

solution. The longitudinal distribution of the pressure coefficient on the body surface is characterized by insignificant 

perturbations relative to the required value ср=-0.9. A more exact result with the flat pressure distribution is obtained 

on the base of multi-parametric optimization. The local linearization provides a fast convergence of the optimization 

process. A mean-square residual on the Mach number on the optimized surface is taken as the objective function. 

The aerodynamic shapes obtained by two-parametric and multi-parametric optimization almost coincide. Differences 

are observed in the vicinity of the points joining the nose and tail wedges. Figure 4 shows the contours of the initial 

and optimal airfoils. The relative thickness of the optimum airfoil achieves 22.64%. The results are in good 

agreement with results of [4]. The difference on areas bounded by the airfoil contours is less than 0.5%. Figure 5 

shows the lines of equal values of the Mach number with increments of 0.05 near the airfoil that has wedge-shaped 

nose and tail parts. The central part of the airfoil is characterized by achieving the local sound conditions at free 

stream Mach number M=0.672. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Pressure coefficient distribution on airfoils 
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Figure 4: Initial and optimum airfoils 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Mach number level lines 

 

 

3.2 Airfoil with low aerodynamic drag 

Symmetrical airfoils are designed to produce low drag. The direct design method involves the specification of the 

geometry and the calculation of pressures, skin friction and aerodynamic drag. The given shape is evaluated and then 

modified to improve the performance. 

The transonic design problem is to create the airfoil section for desired thickness without causing strong shock waves 

and boundary layer separation at a given speed. The maximum local Mach number on a supercritical airfoil should 

not exceed 1.3. This leads to limit of the minimum pressure coefficient that can be tolerated and bounds contour 

curvature. On the other hand the pressure recovering behind the maximum thickness section with the steepest 

possible gradient causes separation. To prevent separation additional constraint is imposed on the trailing edge angle. 

The optimization of airfoils with low aerodynamic drag is performed under dimensional constraint on the maximum 

thickness. The aerodynamic drag coefficient cD is minimized at zero angle of attack. Airfoils with sharp trailing 

edges are considered. 

Symmetrical supercritical airfoil SC(2)-0012 is taken as the base configuration [8]. The airfoil has the bottom face 

(5% of the thickness) and its tail part geometry is modified to provide a sharp edge. The trailing edge semi angle is 

7.5° that corresponds to the first derivative of the ordinate y'=-0.131. The minimum of aerodynamic drag and the 

optimal airfoil shape are found at Mach number M=0.8 and Reynolds number Reb=9•10
6
 based on the chord length. 

Optimization is carried out for y'=-0.131, -0.19 and -0.25. 

Comparison of the airfoil contours is shown in Figure 6. The constructed airfoil with y'=-0.131 has greater area in 

comparison with modified SC(2)-0012 airfoil. It leads to redistribution of the pressure coefficient in the midsection 

of the airfoil (Figure 7). Increasing the trailing edge angle is accompanied by the area increase and redistribution. 

Thickness of the nose part decreases and thickness of the tail part increases. The maximum on absolute value 

pressure coefficient diminishes. The observed effect is due to reduction of the contour curvature near maximum 

thickness point. On the other hand the pressure recovering gradient enhances and gives rise to flow separation. The 

maximum local Mach number is 1.1 at y'=0.131 and 1.03 at y'=0.25. 
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The relative contribution of the surface friction drag to the airfoil drag is about 50% at Mach number M=0.8. 

Advantage on pressure drag varies from 2% up to 20% in dependence on trailing edge angle. With Mach number 

increase the wave drag enhances and portion of friction drag is reduced. At M=0.9 aerodynamic drag coefficient 

decrease achieves 11% in comparison with supercritical airfoil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Airfoil contours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Pressure coefficient distribution on airfoils 
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3.3 Axisymmetric Riabouchinsky problem 

The aerodynamic characteristics of the fuselage depend on the distribution of cross-sectional area in the longitudinal 

direction. Under the assumptions of the theory of thin bodies the von Karman ogive nose cone has the minimal wave 

drag among the noses of the same lengthening. Wind tunnel tests revealed the superiority of noses with power law 

generatrixes in the supersonic speed range. Additional reduction of the wave drag is achieved by blunting the nose 

face. Computational and experimental studies of noses with Ryabushinsky generatrix confirmed a flat distribution of 

the gas-dynamic functions on the surface that meets the requirement of increasing the critical Mach number [9, 10]. 

The method of local linearization is applied to construct the fuselage nose in the form of Ryabushinsky cavity. The 

problem is solved under the incompressible flow conditions. The mean-squared deviation of the pressure coefficient 

from the specified value is taken as the objective function. The optimum nose has the lengthening λ=0.87. The front 

end radius is 54% compared to the base radius. 

The flow parameters and aerodynamic characteristics of the nose are investigated in the framework of the system of 

Navier-Stokes equations. Numerical simulation is performed for the following defining parameters: the free stream 

Mach number is M∞=0.3÷0.9, the Reynolds number calculated on the nose length is Re=6•10
6
. The equations are 

closed by the algebraic turbulence model of Baldwin-Lomax. Nose part is smoothly connected with the cylindrical 

part of the fuselage, the lengthening of which is ten times more than the nose lengthening. 

The main integral characteristic is the aerodynamic drag of the nose consisting of the skin friction drag and wave 

drag due to volume. The drag coefficient cD dependence on the Mach number shows a sharp increase of 

Ryabushinsky nose drag at M∞=0.85. 

The pressure distribution (relative to free stream pressure p∞) on the nose surface is shown in Figure 8 for the three 

Mach numbers. With increasing Mach number the rarefaction on the surface is intensified. On considerable part of 

the nose the flow parameters variation in the longitudinal direction has a monotonic character until the local Mach 

number is less than 1. The pressure dependence on the longitudinal coordinate is close to a linear one. 

Figure 9 shows the longitudinal section of flow field at M∞=0.9 around axisymmetric fuselage with forebody in the 

form of half of the Riabouchinsky cavity. The lines of equal pressure coefficient values are plotted with increments 

of ∆cp=0.1. The maximum value of the local Mach number is about 1.15. The supersonic flow region is closed by the 

shock wave located in the vicinity of the junction of the nose and cylindrical parts of the fuselage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Pressure distribution on the nose surface 
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Figure 9: Pressure coefficient level lines, ∆cp=0.1 

4. Conclusion 

It is developed the method of aerodynamic shapes optimization on the base of local linearization of the relation 

between gas-dynamic functions and geometrical parameters. Efficiency of the method is demonstrated at subsonic 

and supersonic flow conditions. Examples of construction of symmetrical airfoils and axisymmetric forebodies are 

considered. Distributed and integral aerodynamic characteristics are used as the objective functions. Flow fields 

modeling and analysis are performed within the framework of local models, linear theory, and high-level models of 

flow physics. 
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