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Abstract 
The nonlinear control scheme generally uses the cancellation or inversion process based on the exact 

system identification. However, the external disturbances as well as unknown system characteristics 

degrade the control system performance. To cope with these uncertainties, in this paper, the adaptive 

sliding mode control scheme is adopted with nonlinear back-stepping autopilot structure similar to the 

novel 3 loop controller. Firstly the basic control structure is introduced and advanced compensation 

terms are added. The system performance is evaluated with some numerical simulations. 

1. Introduction 

One of the important performance factor required for the intercepting ballistic target is the autopilot swiftness of the 

intercepting missile. By introducing the nonlinear control theory, the autopilot performance can be improved. In this 

reason the nonlinear control technique has been widely investigated for designing fast autopilot.[1-3] Many previous 

papers has been researched for suggest new the nonlinear controllers. Nevertheless analytical approaches used in 

nonlinear control theory give some abstract ideas about the stable region; Most of them just suggest range or bound 

for satisfying stability. However, choosing proper gain is very essential part in applying the nonlinear control in real 

world. In previous work, to solve this problem, MDO(Multi-Disciplinary Optimization) concept is researched.  

Meanwhile, the nonlinear control uses much information compared to linear control system; this makes the nonlinear 

controller have a weakness in robustness. To overcome these shortcomings, there are several attempts using linear 

and nonlinear technique. Among them, most prominent approach is the sliding mode control technique. Sliding mode 

control uses sliding surface as a sliding manifold; the signal outside the surface generates additional inputs and once 

the state locates on the surface, the control input keeps the states stay at the surface. This too powerful control 

scheme induces the chattering phenomenon in general sliding mode control. 

In this paper, design of nonlinear autopilot based on back-stepping theory is addressed with optimal control gain. 

Using developed MDO environment the nonlinear control gain is obtained. Adaptive sliding mode control structure 

is also proposed. Even in the adaptive sliding mode control, it has gain to be set. Analogues between back-stepping 

control and sliding mode control give a clue to formulate the sliding surface. And to reduce the excess input adaptive 

law for the control gain is used. After basic theoretic explanation, numerical simulation is performed to check the 

validity of proposed algorithm. 

 

2. Design Autopilot using Back-stepping Technique 

2.1 System dynamics 

The rigid body translational equations of motion are represented as  

 
𝑋

𝑚
+ 𝑔𝑥 = �̇� + 𝑞𝑤 − 𝑟𝑣     (1) 

𝑌

𝑚
+ 𝑔𝑦 = �̇� + 𝑟𝑢 − 𝑝𝑤     (2) 

𝑍

𝑚
+ 𝑔𝑧 = �̇� + 𝑝𝑣 − 𝑞𝑢     (3) 
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where, u, v, and w is missile velocity in body frame, respectively. The angular rate is expressed in p, q, r; it means 

roll, pitch, yaw rate sequentially. X, 𝑌 and Z mean external forces and 𝑚 is a mass of the missile. Three angular rate 

and accelerations can be obtained directly from gyros and accelerometers in IMU system. 𝑔x, 𝑔y and 𝑔z are gravity 

accelerations. For the rotational dynamics of axis-symmetric cruciform missile, following equations are used for 

simplicity 

 

𝐿 = 𝐼𝑥𝑥�̇�      (4) 

𝑀 = 𝐼𝑦𝑦�̇� + 𝑟𝑝(𝐼𝑥𝑥 − 𝐼𝑧𝑧)     (5) 

𝑁 = 𝐼𝑧𝑧�̇� + 𝑝𝑞(𝐼𝑦𝑦 − 𝐼𝑥𝑥)     (6) 

 

where, L, M and N represent external moment. 𝐼𝑥𝑥  , 𝐼𝑦𝑦 and 𝐼𝑧𝑧 are major axis moment of inertia. The external force 

and moment are defined as 

 

𝑋 = −𝑄𝑆(𝐶𝑥0 + 𝐶𝑥
𝐵𝑎𝑠𝑒 + 𝐶𝑥𝛿)    (7) 

𝑌 = 𝑄𝑆(𝐶𝑦0 + 𝐶𝑦𝛿)     (8) 

𝑍 = 𝑄𝑆(𝐶𝑧0 + 𝐶𝑧𝛿)     (9) 

𝐿 = 𝑄𝑆𝐷(𝐶𝑙0 + 𝐶𝑙𝛿) +
𝑄𝑆𝐷2

2𝑉𝑇
𝐶𝑙𝑝𝑝           (10) 

𝑀 = 𝑄𝑆𝐷(𝐶𝑚0 + 𝐶𝑚𝛿) +
𝑄𝑆𝐷2

2𝑉𝑇
𝐶𝑚𝑞𝑞   (11) 

𝑁 = 𝑄𝑆𝐷(𝐶𝑛0 + 𝐶𝑛𝛿) +
𝑄𝑆𝐷2

2𝑉𝑇
𝐶𝑛𝑟𝑟    (12) 

 

where, 𝐶𝑥0, 𝐶𝑦0, 𝐶𝑧0, 𝐶𝑙0, 𝐶𝑚0, 𝐶𝑛0 indicate the basic non-dimensional aerodynamic coefficients; These are functions 

of Mach, altitude, total angle of attack, and aerodynamic bank. 𝐶𝑥𝛿 , 𝐶𝑦𝛿 , 𝐶𝑧𝛿 , 𝐶𝑙𝛿 , 𝐶𝑚𝛿 , 𝐶𝑛𝛿  denote aerodynamic 

coefficients related to the control input. 𝐶𝑙𝑝, 𝐶𝑚𝑞 , 𝐶𝑛𝑟  represent aerodynamic damping terms for each channel. Q 

means a dynamic pressure. S and D correspond to cross-sectional area and reference length, respectively, and 𝑉𝑇 

denote a total velocity.  

  If the longitudinal dynamics is considered only, the above equations can be simplified as followings 

 

�̇�𝑧 =
𝑄𝑠

𝑚
(𝐶𝑧𝛼

�̇� + 𝐶𝑧𝛽
�̇� + 𝐶𝑧𝛿𝑝

�̇�𝑝)     (13) 

�̇� =
1

𝐼𝑦𝑦
{𝑄𝑆𝐷(𝐶𝑚0 + 𝐶𝑚𝛿) +

𝑄𝑆𝐷2

2𝑉𝑇
𝐶𝑚𝑞𝑞 − 𝑟𝑝(𝐼𝑥𝑥 − 𝐼𝑧𝑧)}  (14) 

 

where 𝛼, 𝛽 represent angle of attack, and side slip angle, respectively. 

2.2 Back-stepping control technique 

The acceleration is a major state for describing the missile status. And more, the proportional navigation guidance 

law generates the acceleration command for the inner autopilot loop. In this reason, the classical 3 loop control 

system is composed with the acceleration feed-back loop as the exterior part of the overall autopilot system. Suppose 

the acceleration loop is controlled with the first order  

 

z a zc za K a a         (15) 

 

where, 𝑎zc means acceleration command and 𝐾𝑎  is acceleration control gain. And the first derivative of angle of 

attack and side slip angle is shown 

 

�̇� = 𝑞 − (𝑝𝑐𝑜𝑠𝛼 + 𝑟𝑠𝑖𝑛𝛼)𝑡𝑎𝑛𝛽 +
1

𝑚𝑉𝑐𝑜𝑠𝛽
(𝐹𝑧𝑐𝑜𝑠𝛼 − 𝐹𝑥𝑠𝑖𝑛𝛼)      (16) 

   �̇� = 𝑝𝑠𝑖𝑛𝛼 − 𝑟𝑐𝑜𝑠𝛼 +
1

𝑚𝑉
(−𝐹𝑥𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 + 𝐹𝑦𝑐𝑜𝑠𝛽 − 𝐹𝑧𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽)   (17) 

 

Now combining equations from Eq.(13) to Eq.(17), the pitch angular rate command is computed as following 

  

 
z

c a zc
z z

z

m
q K a a

Q

C

sC
q

C



 

   

   (18) 
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Meanwhile, for the case that the slope of pitch moment according to the fin deflection is not affected, Eq. (14) can be 

rewritten as  

 

�̇� =
1

𝐼𝑦𝑦
{𝑄𝑆𝐷𝐶𝑚0 +

𝑄𝑆𝐷2

2𝑉𝑇
𝐶𝑚𝑞𝑞 − 𝑟𝑝(𝐼𝑥𝑥 − 𝐼𝑧𝑧)} +

𝑄𝑆𝐷

𝐼𝑦𝑦
𝐶𝑚𝛿

𝛿𝑝                  (19) 

 

With Eq.(19), the pitch dynamics is expressed with an input-affine form. With help of this equation the control input 

can be derived explicitly. Now we can move to the inner loop of autopilot system; the pitch rate loop is applied to a 

proportional-derivative type controller 

 

 r q i qq K e K e  
     (20) 

 

where, 𝑒𝑞 means the error between pitch and its desired rate which comes from outer acceleration loop. 𝐾𝑟 , 𝐾𝑖 are 

control gain, respectively. Now cumulating equations from Eq.(18) to Eq.(20) gives the control fin 

 

𝛿𝑝 =
1

𝑔𝑚
[−𝑓𝑚 +

1

𝑄𝑠𝑑
{𝐼𝑦𝑦𝐾𝑟(𝑒𝑞 + 𝐾𝑖 ∫ 𝑒𝑞) + 𝑟𝑝(𝐼𝑥𝑥 − 𝐼𝑧𝑧)}]   (21) 

 

where, 𝑓𝑚, 𝑔𝑚 is defined as following  

 

𝑓𝑚 = 𝐶𝑚0 +
𝐷

2𝑉𝑇
𝐶𝑚𝑞𝑞     (22) 

𝑔𝑚 = 𝐶𝑚𝛿
      (23) 

 

Note the control input has three design parameters: 𝐾𝑎, 𝐾𝑖, and 𝐾𝑟 . This is almost same structure compared to the 

classical 3 loop autopilot system. These gains should be carefully designed although their affection is not so severe 

compared to the classical 3 loop controller.  

 

2.3 Autopilot gain optimization 

The proposed back-stepping nonlinear autopilot has three parameters to be determined. These control gain should 

satisfy the stability and performance criterion. However, for the non-linear control system, there is no common 

standard to evaluate the stability margin in the frequency domain; Most of them are too complicate or improper to 

apply directly autopilot design process. For the above reason, time domain response is taken as a major index for 

evaluating the performance and stability of proposed nonlinear algorithm. 

In order to find the nonlinear control gain, the optimization process is utilized in this paper. Choosing a proper 

performance index and constraints is an essential factor for the optimization. As a performance index for the control 

gain, the rise time of a step response is considered. Since achieving a fast response of the missile is one of the most 

important virtues in autopilot design. And the overshoot of acceleration loop is also taken as a cost function. 

Including this index may sacrifice the fast rise time performance, but considering overshoot takes a part of stability 

margin in nonlinear time domain response. While minimizing these performance indices, several constraints can be 

taken into account. In this problem, the time response of the acceleration loop under 6DOF circumstance is 

considered as a constraint.  

As an optimization engine, the modeFRONTIER is used. It is a supervising program for composing the multi-

disciplinary design optimization environment; by using this tool, it is possible to combine several useful programs 

such as visual studio, MATLAB and so on. In figure 1 shows one example of the optimization environment used for 

obtaining the optimal control gain set. 
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Figure 1:  Developed optimization environment example 

 

3. ADAPTIVE SLIDING MODE CONTROL DESIGN 

3.1 Sliding mode control design 

Let’s consider following sliding mode surface 

 

𝑆𝑞 = 𝑠3(𝑞𝑐 − 𝑞) + 𝑠4 ∫(𝑞𝑐 − 𝑞)       (24) 

 

Differentiating above equation with time results 

 

𝑆�̇� = 𝑠3(𝑞�̇� − �̇�) + 𝑠4 ∫(𝑞�̇� − �̇�)       (25) 

 

Suppose the sliding surface holds following equation 

 

𝑆�̇� = 𝑘𝑠𝑆𝑞 + 𝑘𝑒𝑠𝑖𝑔𝑛(𝑆𝑞)     (26) 

 

Prop1. The sliding surface 𝑺𝒒 in Eq.(24) keeps the sliding manifold with Eq.(26) 

Prof) Let’s consider following positive definite function as Lyapunov function 

 

𝑉 =
1

2
𝑆𝑞

2       (27) 

 

The first time derivative of Eq.(27) gives 

 

�̇� = 𝑆𝑞 𝑆𝑞
̇       (28) 

 

Now, inserting the Eq.(26) into Eq. (28) results 

 

�̇� = 𝑘𝑠𝑆𝑞
2 + 𝑘𝑒𝑠𝑖𝑔𝑛(𝑆𝑞)𝑆𝑞     (29) 
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If 𝑘𝑠 < 0, 𝑘𝑒 < 0 are hold, the first derivative of Lyapunov function is always negative definite. Therefore, the 

sliding surface Eq.(24) holds its sliding manifold.■ 

 

Interconnecting Eq.(25) and Eq.(26) obtains 

 

 𝑠3(𝑞�̇� − �̇�) + 𝑠4 ∫(𝑞�̇� − �̇�) = 𝑘𝑠𝑆𝑞 + 𝑘𝑒𝑠𝑖𝑔𝑛(𝑆𝑞)   (30) 

 

If the sliding surface is designed with 𝑆3 ≠ 0, then Eq.(30) can be rearranged as following. 

 

�̇� = 𝑞�̇� +  
𝑠4

𝑠3
(𝑞𝑐 − 𝑞) −

𝑘𝑠

𝑠3
𝑆𝑞 −

𝑘𝑒

𝑠3
𝑠𝑖𝑔𝑛(𝑆𝑞)      (31) 

 

Now, using the pitch rate equation in Eq.(5), the pitch moment can be explicitly expressed as  

 

𝑀 = 𝐼𝑦𝑦 {𝑞�̇� + 
𝑠4

𝑠3
(𝑞𝑐 − 𝑞) −

𝑘𝑠

𝑠3
𝑆𝑞 −

𝑘𝑒

𝑠3
𝑠𝑖𝑔𝑛(𝑆𝑞)} + 𝑟𝑝(𝐼𝑥𝑥 − 𝐼𝑧𝑧)  (32) 

 

Consequently, the control input can be computed  

 

𝛿𝑝 =
1

𝑔𝑚
[−𝑓𝑚 +

𝐼𝑦𝑦

𝑄𝑠𝑑
{

𝑠4

𝑠3
(𝑞𝑐 − 𝑞) −

𝑘𝑠

𝑠3
𝑆𝑞 −     

𝑘𝑒

𝑠3
𝑠𝑖𝑔𝑛(𝑆𝑞)} +

𝑟𝑝

𝑄𝑠𝑑
(𝐼𝑥𝑥 − 𝐼𝑧𝑧)]    (33) 

 

Next, the sliding mode control gain should be found. Before proceeding to seek the sliding gain, note that we already 

have an optimal control gain set for the similar nonlinear control structure. Observing the resulting sliding mode 

control input, it is easily found that except the sign function augmented term, every term has a matching element in 

basic nonlinear control input shown in Eq.(21). Consequently, there should be some relationship between the 

previous optimal gain and the sliding mode control gain. Concentrating on the similarity Eq.(21) and Eq.(33) leads  

 
𝑠4

𝑠3
− 𝑘𝑠 = 𝐾𝑟           (34) 

−𝑘𝑠
𝑠4

𝑠3
= 𝐾𝑖𝐾𝑟           (35) 

 

To specify the sliding mode control gain, solving simultaneous equations gives  

 

𝑘𝑠
2 + 𝐾𝑟𝑘𝑠 + 𝐾𝑖𝐾𝑟 = 0     (36) 

 

Therefore the sliding mode control gain can be as 

 

𝑘𝑠 =  
−𝐾𝑟−√𝐾𝑟

2−4𝐾𝑖𝐾𝑟

2
     (37) 

𝑠3 = 1       (38) 

𝑠4 = −
𝐾𝑖𝐾𝑟

𝑘𝑠
      (39) 

 

Because, ks ≠ 0 should be kept, a negative solution candidate is selected for the gain ks. With these relationships, 

the sliding mode control without a sign function augmented term, has the same property with basic nonlinear control 

law. 

 

3.2 Design adaptive sliding gain 

The control gain ke makes the proposed control system have sliding mode property; with non-zero ke, the proposed 

controller forces states to the sliding surface that is a sliding manifold. This term however exerts negative effect on 

the system so called chattering phenomenon or unanticipated oscillation like to the high gain application. To alleviate 

this phenomenon, the adaptive sliding mode control technique is proposed; once the state stays on the sliding surface, 

then the driving additional effect is diminished. So as to satisfy this purpose, the sliding mode gain shown In Eq.(26) 

is set as following 
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      (40) 

 

where, the parameter 𝑘𝑎𝑑 is determined by following adaptive law 

 

 

 

q

q q

adk
S

S S









 











ò

ò
     (41) 

 

where, 𝛬, 𝜎, 𝜉 and, 𝜀𝜎 are all positive constants. Making good use of a proper adaptive constant, the proposed sliding 

mode control structure generates an additional control input to drive the states in the sliding manifold with quick. It is 

derived to decrease this extra input after satisfying the purpose of control; This also prohibit the build-up control 

signal from chattering around sliding manifold after reaching the surface.  

 

Prop 2. For |𝑺𝒒| ≥ 𝜺𝝈 , the proposed adaptive system makes the state converge to the sliding surface 𝑺𝒒 

exponentially. 

Prof) Differentiating the sliding surface manifold written in Eq.(26) gives 

 

�̈�𝑞 = 𝑘𝑠�̇�𝑞 − 𝜉|𝑆𝑞|𝑠𝑖𝑔𝑛(𝑆𝑞)
      

      (42) 

 

This equation can be rewritten as following  

 

�̈�𝑞 −  𝑘𝑠�̇�𝑞 + 𝜉𝑆𝑞 = 0     (43) 

 

Therefore the sliding surface 𝑆𝑞  has two eigenvalues : 

 

 𝜆𝑆𝑞
=

𝑘𝑠±√𝑘𝑠
2−4𝜉

2
      (44) 

 

One should note that 𝑘𝑠 < 0 induces the time domain solution to converge exponentially if the deterministic equation 

is negative. Even for the positive deterministic equation case, the convergent property is hold since ξ > 0; 𝑘𝑠
2 >

𝑘𝑠
2 − 4𝜉 is always satisfied. In this reason, the sliding surface 𝑆𝑞  converges exponentially. ■ 

 

In the view point of control input, the augmented input invoked by the sign function can be explained as a local 

maximum control force is provided to the system for fast decreasing of off-set signals into the sliding manifold. This 

enables the sliding mode control to regulate disturbances and reject uncertainties. If the states arrive to the sliding 

manifold, that is |𝑆𝑞| < 𝜀𝜎, decreasing of extra input except maintaining the sliding surface input will be helpful to 

cope with next un-expected circumstances. 

 

4. NUMERICAL SIMULATION EXAMPLE 

4.1 Basic back-stepping control example 

The suggested control structure starts from the basic back-stepping control. Except the sign function term, all control 

gain is determined by the basic nonlinear control gain. To find the nonlinear optimal gain, the developed multi-

disciplinary optimization environment is used. In this environment, three cost functions are considered; it generates 

an optimal gain Pareto curve shown in figure 2. 

Among these candidate gain set, an optimal control gain set can be chosen by considering the gain continuity of 

adjacent scheduling design points and design purpose. Figure 3 displays the step response of back-stepping nonlinear 

autopilot with optimal gain. Upper diagram explains the response of major axis response of close loop system, and 

lower figure shows minor axis response. In major axis response, the rising time is read under 0.2sec without excess 
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overshoot. In classical 3 loop control case the minor axis response was a big issue. The coupling signal with major 

response was inevitable, but the proposed back-stepping scheme regulates this parasitic maneuver almost under 1G 

level as shown in figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Adaptive sliding mode control example 

To check and evaluate the performance of proposed algorithms, a programmed command scenario is tested under 

several different conditions. Firstly, under a normal condition, numerical simulations are performed for the 3-loop 

linear controller, the basic back-stepping control and the proposed adaptive sliding mode control, respectively. As we 

expected, in an ideal environment, the proposed nonlinear controllers show better performance compared to the 

linear one as shown in Fig 4. The main reason for the degradation in off-axis is that the linear control system does 

not consider the aerodynamic bank angle as a slack variable.  

Figure 5 represents the result of external wind is applied to the 6DOF nonlinear simulation. Compared to the 

previous result, the performance of the basic back-stepping control is a little degraded. The nonlinear controllers use 

the information of angle of attack and side slip angle; this makes the nonlinear controller superiority to classical one. 

Ironically, the main reason for the performance deterioration in the windy environment is identical; the erroneous 

using of aero-based data degrades the nonlinear control performance. 

 Nonetheless, the adaptive sliding mode control reduces this declination by the help of the additional driving input 

invoked by the sign function. Note the classical controller has same performance even in the windy disturbance 

circumstance.  

 

5. CONCLUSION 

The nonlinear control based on the back-stepping technique with optimal gain is proposed. The control gain is 

optimized by using multi-disciplinary optimization environment. To enforce the performance of suggest nonlinear 

autopilot, the adaptive sliding mode concept is adopted. So as to use the existing optimal nonlinear gain, the relation 

between back-stepping gain and sliding surface parameter is explored. The efficiency of suggested autopilot is 

evaluated by numerical simulations for a sample case. In nominal case, the performance of nonlinear controller is 

superior to the classical one. In a disturbance environment, the degradation is not evitable; however, the proposed 

adaptive sliding mode control lessens this weakness in nonlinear structure.  

 

Figure 2: Sample Pareto curve for back-stepping control 

 

Figure 3: Basic nonlinear controller response 
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Figure 4: Normalized Acceleration Response (No wind)    Figure 5: Normalized Acceleration Response (Wind) 
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