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Abstract 
The research on formed of liquid droplet radiators' dispersed flow temperature profile was done. It was 

shown that the process is accompanied by wave phenomena. An analysis of these waves' influence on 

radiative system charachteristics was carried out. 

1. Introduction 

For solving some urgent problems of the use of space it is necessary to essentially raise the power-to-weight ratio of 

space vehicles. The most problem constituent of their power systems is the low-grade heat rejection system. 

Micrometeorite vulnerability of conventional panel radiators and those out of heat pipes increases quickly with 

increasing rejecting power (and the surface area along with it). Armoring of radiators surfaces inadmissibly raises the 

space vehicle mass. The use of the frameless systems of low-grade heat rejection may be a way out. The idea of liquid 

droplet radiator (LDR) involves the heat rejection with the aid of the heated droplet flow. The droplet generator 

disperses the heated heat-transfer agent, the collector picks up the cooled droplet flow (Fig.1).  

The problem of calculating the equilibrium profile of the temperature of the fine-dispersed sheet of high-temperature 

(T>600 K) LDR under the radiation cooling is considered in [1]. The solution was found for an absorbing-dissipative 

flat layer. Its emissivity depends on the optical thickness and the albedo of the dissipation of particles. This regularity 

becomes true after the initial transient period, in the course of which the agreement of the temperature distribution and 

the dissipation source function takes place. At the same time, for low-grade LDR (T<500К) the time to reach the 

steady-state process may exceed the droplet transit time in a sheet.  The thermal calculation of such radiators should 

be carried out taking into account the transient processes. 

 

 

Figure 1: Liquid droplet radiator. 1 - The generator of drop flow; 2 – Hydro-collector; 3 - Droplet flow; 4, 5 - The 

pipeline. The velocity of droplets u is directed along the axis x. 
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2. Mathematical formulation of the problem of cooling the disperse flow 

We study the droplet sheet, consisting of several parallel thin droplet layers - the elements of its structure. The size of 

drops is around 2∙10-4 m, and optical thickness is much greater than unity. The index y is used to identify the particles. 

Taking into account the mutual overradiation of drops, the cooling equation of the test particle in the flow is written 

as: 

 

 𝑚𝑐𝑢
𝑑𝑇(𝑥,𝑦)

𝑑𝑥
= −4𝜋𝜀(𝑟, 𝑇)𝜎𝑇4(𝑥, 𝑦) + 𝑄(𝑥, 𝑦) (1) 

 

where T(x,y) - temperature; x, u, r and c – are the coordinate of the center, velocity, radius of the drop and heat capacity, 

respectively; σ – is the Stefan-Boltzmann constant; ε(r,T)  total emittance of the droplet of radius r at given 

temperature. Measured in [2] infrared emission of working fluid DC-705 gives value ε ≈ 0.6 in a practically interesting 

range of radius and temperature of drops. Summand Q(x,y) describes the radiative interaction of drop with the sheet 

and the external radiation. In the case of the solitary drop, Q = 0. If the drop interacts with external (eg solar) radiation, 

then 𝑄 = 𝜀⨀𝑃⨀𝑦, where 𝑃⨀𝑦 – the power of solar radiation, falling on the drop with the index y, 𝜀⨀ - coefficient 

absorption of solar radiation. Overradiation of a certain particle y' from the drop stream with the drop under study is 

described by the function 𝑄(𝑥) = 4𝜋𝜀(𝑇)𝜎𝜑 𝑇4(𝑥 − Δ𝑥 , 𝑦′), where 𝜑 – is the coefficient of overradiation of drops y 

and y', Δ𝑥 – is the distance between the droplets under consideration. If α = 4𝜋𝜀𝜎/𝑚𝑐𝑢, the overradiation of drop with 

the sheet is described by the dependence: 

 

 𝑄(𝑥, 𝑦) = 𝜀𝛼 ∫ ∫ 𝑓𝑥,𝑦(�̃�, �̃�)𝑇4(�̃� − 𝑥, �̃�)𝑑�̃�𝑑�̃�
𝑙+𝑥

𝑥

 

�̃�≠𝑦
 (2) 

 

where l – is the length of drops fligh in the sheet, fx,y - is the distribution function of the radiation coefficient of the 

particle with the index y located at the point with the coordinate x. The physical meaning of the integral is the 

summation of the energy of the overradiation of all drops of the sheet with the drop under study.  

The conditions for cooling of drops in each droplet layer are the same, so the index y determines the number of the 

structure element. It is assumed that the distance between the droplet layers is much greater than their thickness, which 

is why for layers with numbers i and y: 𝑓𝑥,𝑦(�̃�, �̃�) = 𝑓|𝑖−𝑦|(�̃�). In this case, the problem of cooling of drops (1) can be 

represented as the problem of interaction of structural elements 

 

 −
1

𝛼

𝑑𝑇𝑦(𝑥)

𝑑𝑥
= 𝑇𝑦

4(𝑥) − 𝜀 ∑ ∫ 𝑇𝑖
4(�̃� + 𝑥)𝑓|𝑖−𝑦|(�̃�)𝑑�̃� − 𝜀⨀𝑃⨀𝑦/𝛼

𝑙−𝑥

−𝑥
𝑁
𝑖=1  (3) 

 

where Ty - is the temperature field in the drop layer with the number y, N – is the number of layers in the sheet [3]. 

3. Idealized problem of establishing the temperature profile 

We neglect the influence of external radiation on the process of cooling of drops. In addition, we will consider that 

drops in LDR cool down slowly enough. Under these assumptions, the system of integral equations (3) reduces to the 

concentrated problem 

 

 −
1

𝛼

𝑑𝑇𝑦(𝑥)

𝑑𝑥
= 𝑇𝑦

4(𝑥) − 𝜀 ∑ 𝜑|𝑖−𝑦|𝑇𝑖
4(𝑥)𝑁

𝑖=1  (4) 

 

where 𝜑|𝑖−𝑦| = ∫ 𝑓|𝑖−𝑦|(�̃�)𝑑�̃�
𝑙/2

−𝑙/2
. 

It is seen from equation (4) that in the case of the freely cooling drop (values of all the coefficients 𝜑|𝑖−𝑦| = 0), the 

temperature depends on the coordinate according to the following law: 

 

 𝑇1(𝑥) = 𝑇0(1 + 3𝛼𝑇0
3𝑥)−1/3 (5) 

 

where Т0 – is the initial temperature of the drops. We divide equation (4) by T1
4. Further, the change of variables is 

realized. 

 

 
𝜉 = (1 + 3𝛼𝑇0

3𝑥)−1/12

𝑇𝑦(𝑥) = 𝑇0𝜉4𝜏𝑦(𝜉)
 (6) 
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The physical meaning of the value ξ – is the cooling rate of the solitary drop; dimensionless temperature, τ is the ratio 

of temperatures of the drop, which cools down in the drop stream of DCR to the temperature of the free cooling drop. 

In new variables, the system (4) is written in the form: 

 

 
1

4
𝜉

𝑑𝜏𝑦

𝑑𝜉
= 𝜏𝑦

4 − 𝜏𝑦 − 𝜀 ∑ 𝜑|𝑖−𝑦|𝜏𝑖
4𝑁

𝑖=1
.
 (7) 

 

We will simulate the cooling of a droplet flow consisting of two structure elements – the core and periphery (for 

example, an optically thick cylindrical sheet – see Fig. 2). The temperature field at its center 𝜏𝑐varies slowly, at the 

periphery 𝜏𝑝 – much faster. The cooling equations take the form: 

 

 

1

4
𝜉

𝑑𝜏я

𝑑𝜉
= (1 − 𝜑1)𝜏𝑐

4
− 𝜏𝑐 − 𝜀𝜓1𝜏𝑝

4

1

4
𝜉

𝑑𝜏𝑝

𝑑𝜉
= (1 − 𝜑2)𝜏𝑝

4
− 𝜏𝑝 − 𝜀𝜓2𝜏𝑐

4
 (8) 

 

where ψ1, ψ2 – are the angular emission coefficients of the core of the flow to the periphery and vice versa, and φ1 and 

φ2 - are the self-irradiation coefficients of the core and the periphery of the flow. 

 

 
Figure 2: The model of droplet flow consisting of core and periphery. The numbers denote: 1 - the periphery of the 

flow, 2 - the core of the flow. 

 

Let’s consider the system of equations (8). At the moment of establishing the equilibrium temperature profile, its right 

side is zero. For values of the angular emission coefficients satisfying the energy conservation law, the system (8) has 

only one physically meaningful equilibrium position τc
* и τp

* (the remaining three correspond to negative temperature 

values). To analyze the behavior of the system (8) in a small neighborhood of the equilibrium values  τc
* and τp

*, we 

introduce the local variables δx and δy such that: : τc= τc
*+δx и τp = τp

*+δy.  The linear approximation of the system (8) 

in the vicinity of the equilibrium position is written in the following form: 

 

 

1

4
𝜉

𝑑

𝑑𝜉
𝛿𝑥 = [4𝜏𝑐

∗3(1 − 𝜑1) − 1]𝛿𝑥 − 4𝜀𝜓1𝜏𝑝
∗3𝛿𝑦

1

4
𝜉

𝑑

𝑑𝜉
𝛿𝑦 = [4𝜏𝑝

∗3(1 − 𝜑2) − 1]𝛿𝑦 − 4𝜀𝜓2𝜏𝑐
∗3𝛿𝑥

.

 (9) 

 

For the compactness of the representation, we introduce the following notation: 

 

 �̂� = (
4𝜏𝑐

∗3(1 − 𝜑1) − 1 −4𝜀𝜓1𝜏𝑝
∗3

−4𝜀𝜓2𝜏𝑐
∗3 4𝜏𝑝

∗3(1 − 𝜑2) − 1
),  𝛿𝜏 = (

𝛿𝑥
𝛿𝑦

).  (10) 

 

In them, the system (9) is written in the form: 

 

 
1

4
𝜉

𝑑

𝑑𝜉
𝛿𝜏 = �̂�𝛿𝜏. (11) 
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Equation (11), written for the system of two equations, can easily be generalized to the case of higher dimensionality. 

Since   decreases with increasing of x, the trajectories of the solution of system (11), corresponding to the motion 

along the eigenvectors of the matrix �̂� with positive values, turn out to be stable and vice versa. The analysis of the 

eigenvalues of the matrix �̂�  is carried out for the  values of coefficients ψ1, ψ2, φ1 and φ2, which satisfy the law of 

conservation of energy. In this case, the equilibrium point of the system (8) corresponding to the equilibrium 

temperature profile of the droplet flow and represents the stable node. For the parameter values of the problem ψ1=0,3, 

ψ2=0,12, φ1=0,85 and φ2=0,3, ε=1, the equilibrium position has the following coordinates: τc
*≈2,36 а τp

*≈1,67. The 

eigenvalues of the matrix Â  are: λ1≈15,97, λ2≈3,09. Figure 3 shows the characteristic phase portrait of the system (8). 

When moving along the trajectory 1, the function τc, which characterizes the cooling of the core of the flow, varies 

monotonically, and the change in the peripheral temperature τp is non-monotonic. The non-monotonic behavior of the 

function τp has a noticeable effect on the emissivity of the disperse flow. 

 

 
Figure 3: Phase portrait of the dynamic system (8). 

   

Let’s estimate the velocity of establishment of the equilibrium temperature profile in the droplet flow. We change the 

variables, denoting by the symbol l the distance between the coordinate of some point in the space {τc, τp} and the 

equilibrium position of the system (8). We assume that the trajectory of the system in the space {τc, τp} is a straight 

line connecting the point with the coordinates {1, 1} and {τc, τp}. The motion along this straight line will be 

described by the equation: 

 

 
1

4
𝜉

𝑑𝑙

𝑑𝜉
= 𝜆1𝑙, (12) 

 

where λ1 –  is the maximum eigenvalue of the matrix �̂�. It is not difficult to see that the solution of the differential 

equation (11) with the condition 𝑙0 = 𝑙(𝜉 = 1) = ((𝜏𝑐
∗ − 1)2 + (𝜏𝑝

∗ − 1)
2

)
1/2

, can be written in the form: 

 

 𝑙/𝑙0 =  𝜉4𝜆1 = (1 + 3𝛼𝑇0
3𝑥)−𝜆1/3 ≈ (𝑇𝑓/𝑇0)

−𝜆1

, (13) 

 

where Тf – is the final average temperature of the droplet flow. In the case of a drop in the temperature of the droplet 

flow in DCR 360-310 К and λ1 ≈ 15, the right side of the relation (12) is equal to ≈ 0,1. In this example, the droplet 

temperature field near the tank is ten times closer to the equilibrium position of the dissipative system (7) than at the 

beginning of the cooling process.  
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4. Determination of the temperature profile in the presence of perturbations 

Let’s investigate how the presence of perturbations can effect on the process of establishing the profile of the 

temperature of the radiation-cooling droplet flow: external radiation, long-range radiative interactions, a decrease in 

the integral degree of blackness of the working medium during cooling, etc. The effect of these factors complicating 

the calculation will be modeled by the value of Ψ (x) in the cooling equation: 

 

 −
1

𝛼

𝑑𝑇𝑦(𝑥)

𝑑𝑥
= 𝑇𝑦

4(𝑥) − 𝜀 ∑ 𝜑|𝑖−𝑦|𝑇𝑖
4(𝑥) − Ψ𝑦(𝑥) 𝑁

𝑖=1 . (14) 

 

After the passing to variables ξ and τ, this cooling equation is written in the form: 

 

 
1

4
𝜉

𝑑𝜏𝑦

𝑑𝜉
= 𝜏𝑦

4 − 𝜏𝑦 − 𝜀 ∑ 𝜑|𝑖−𝑦|𝜏𝑖
4 − Ψ�̃�(𝜉)𝑁

𝑖=1 . (15) 

 

We assume that perturbations have a weak effect on the solution of problem (13). We calculate the influence of the 

value Ψ�̃�(𝜉) in the linear approximation. In a neighborhood of the equilibrium position of the unperturbed problem 

(7), the trajectory of the system is described by equation: 

 

 
1

4
𝜉

𝑑

𝑑𝜉
𝛿𝜏 = �̂�𝛿𝜏 − Ψ⃗⃗⃗⃗(𝜉).  (16) 

 

where Ψ⃗⃗⃗⃗(𝜉) - the vector whose y-component is equal to Ψ�̃�(𝜉). The equilibrium position of systems (11) and (15) does 

not coincide. We introduce the vector 𝛿𝑟, which connects the equilibrium positions of systems (11) and (15). From 

equation (15) it follows that 

 

 𝛿𝑟(𝜉) = �̂�−1Ψ⃗⃗⃗⃗(𝜉)  (17) 

 

where �̂�−1 - matrix inverse to the matrix �̂�. Taking this equation into account, the system (15) can be written in the 

following form: 

 

 
1

4
𝜉

𝑑

𝑑𝜉
𝛿𝜏 = �̂�[𝛿𝜏 − 𝛿𝑟(𝜉)] . (18) 

 

From this relation, it is seen that the equilibrium position of system (15) moves with velocity of 
𝑑

𝑑𝜉
𝛿𝑟(𝜉). Because of 

the presence of perturbations, the solution of the system (14) is at some distance Δ from the equilibrium position. We 

shall evaluate Δ on the basis of relation (11). The calculation shows the following result: 

 

 Δ =
1

𝜆1
‖

𝑑

𝑑𝜉
𝛿𝑟(𝜉)‖,  (19) 

 

where ‖
𝑑

𝑑𝜉
𝛿𝑟(𝜉)‖ – the norm of velocity vector 

𝑑

𝑑𝜉
𝛿𝑟(𝜉). 

Let’s investigate the effect of external radiation on the solution of the problem (8) of establishing the temperature 

profile in droplet flow consisting of the core and periphery. We will consider that the Sun influences on the periphery 

of the flow, heating it with radiation with a thermal power of 𝜀⨀𝑃⨀. We neglect the direct effect of solar radiation on 

the cooling of the core of the flow. In this case, Ψc=0, а Ψp=𝜀⨀𝑃⨀. Then Ψя̃(𝜉) = 0, Ψп̃(𝜉) =
𝜀⨀𝑃⨀

𝛼𝑇0
4𝜉16.  For the 

abovementioned parameters of the problem ψ1, ψ2, φ1, φ2 and ε, the value 

 

 Δ ≈
𝜀𝑃⨀

𝛼𝑇0
4

1

𝜉17.Δ =
1

𝜆1
‖

𝑑

𝑑𝜉
𝛿𝑟(𝜉)‖ .

 (20) 

 

For full-scale DCR with size of drops of 10-4 m and the initial temperature of drops of T0=600 К, the value is Δ≈0,4. 

Similarly, an analytical calculation of the effect on the process of establishing the temperature profile of the droplet 

flow of long-range radiation interactions is carried out. 
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5. Numerical solution of establishment problem 

Fig. 4 shows results of numerical solution of the problem of droplet flow cooling: 

 

 −
1

𝛼

𝑑𝑇𝑦(𝑥)

𝑑𝑥
= 𝑇𝑦

4(𝑥) − 𝜀 ∑ 𝜑|𝑖−𝑦|𝑇𝑖
4(𝑥 − Δ𝑥) − 𝜀𝑃⨀𝑦

𝑁
𝑖=1 , (21) 

 

where the value Δx describes the effect of long-range radiation interactions. The problem was solved for the droplet 

flow consisting of the core and the periphery (analog of (8)). In the calculation, the following parameter values were 

used ψ1=0,3, ψ2=0,12, φ1=0,85, φ2=0,3, ε=1. Initial condition is: τc = τp = 1. The value of εʘРʘ/(αT0
4) was assumed to 

be equal to 0.15, and the ratio of the length of the radiation interactions to the length of the transit of drops in LDR -   

Δx/L = 0,05. The initial temperature of drops was assumed to be equal to 800 K, and the value α of such that the final 

value ξ was 0,4. The numbers indicate solutions with the following parameters. Curve 1 is a calculation with allowance 

for solar radiation but without distant overradiations. Curve 2 is an idealized problem of establishing the temperature 

profile (without solar radiation and without distant overradiations). Curve 3 - both solar radiation and distant 

overradiations were taken into account. Curve 4 - only distant overradiations are taken into account. 

 

 

Figure 4: Numerical solution of the cooling problem (20). On the abscissa axis τc is plotted, and τp is plotted along 

the ordinate axis. 1 - Only solar radiation is considered; 2 - Both solar radiation and distant radiation interactions 

weren’t taking into account; 3 - both solar radiation and distant radiation interactions are considered; 4 - only distant 

radiation interactions are taken into account. The initial condition is: τc = τp = 1. 

 

Figure 4 shows that the vector connecting the ends of trajectories 2 and 3 (vector 2-3) with the high accuracy is equal 

to the sum of vectors 2-1 and 2-4. From this it can be concluded that the linear expansions on δx and δy with the 

sufficient accuracy describe the process for estimating of temperature profile.  
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6. The discussion of results 

The establishment of temperature in a freely cooling dispersed flow can occur non-monotonically and is accompanied 

by wave phenomena those characteristic for the flow model consisting of the core and the periphery. The non-linear 

process of establishing the temperature profile affects the energy characteristics of frameless systems for the removal 

of low-potential heat in space.  
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