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Abstract

This study completes [1] presented at EUCASS 201&.investigate the resolution of the launcher
ascent trajectory problem by the so-called Hamiltanobi- Bellman (HJB) approach. The method
gives a global optimum without any initializatiomopedure; nevertheless, the computational cost
increases quickly for high dimension problems. Titgate this, the payload mass was excluded from
the parameters managed by the HIB equations. Afoiemulation is proposed to consider explicitly
this parameter, while limiting the computation tim&n illustration is proposed on a heavy class
launcher, for a GEO mission. This study has beefopeed in the frame of the CNES Launchers
Research & Technology program.

1. Introduction

A brief recall of the assets motivating the applama of the HIB approach for launcher trajectoryiroation is
proposed, together with an overview of the assediatinciples and of the technical status at tleadrthe previous
study. Then, a theoretical formulation allowingréintroduce explicitly the payload mass in the H&Bolution is
proposed. An implementation and associated chaeage then presented. In the end, the HIB algoigloperated
to optimize the trajectory of a heavy class launcfa a typical GEO mission; results are analygéth regard to a
solution obtained through a shooting method.

For any acronym in the following text, please refei§”Acronyms” at the end of the paper. For anythrematical
notation in the following text, please refer to $iRenclature” at the end of the paper.

2. Motivations and previous results

2.1 Mapping of optimization methods and associateidsues

Most of optimization methods rely on necessary @wrdof optimality. In the field of control optirmation, we can
quote the Pontryagin Maximum Principle [2], whickes relationship between real and dual states,Damett

Approach [3], which can be declined in various disization strategies of the control and of théestApproximate
approaches can also be considered to simplify lfe@ithm implementation by looking for the optingdlution in a
restrained control shape family, but leading taila gptimal solution.
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Figure 1: lllustration of classes of optimizatigupaoaches

Algorithms derived from exact optimization approashpreviously mentioned can be used to find annmaiti
solution, but it should be emphasized that themoiguaranty that this solution is the global oplione, because
these approaches deal only with necessary conglitiboptimality.

Besides, most of these algorithms are typicallyratgel through iterative processes; as a consequitmeéses the
guestion of initialization, and convergence. Figdangood initial guess (in the sense that it woeddl to a solution
of good quality at the end of the iteration progesm be quite tricky, in particular when dealinghaduality and
when the area of convergence is restricted. Efftate also to be put on the iterative processsgo get an optimal
solution in a reasonable time. A detailed presemiaif optimization algorithm families can be fouimd4].

With regard to local methods, the HIB approachtivasmajor assets: first, the background theory r@ssto obtain
the global solution when it exists. Secondly, timplementation of the HIB approach does not recuiseiterative
process, freeing the engineer from tricky tasks #éna initialization and convergence. These greae® justify the

motivation for the efforts made jointly by CNES aBMNSTA on applying HIB approach to optimize laumche
trajectories.

2.2 Elements related to the HJB approach — discrefgroblems

Let us consider the following problem: we look the path starting at point a, and allowing reachoint d in
minimum time.

dt

Figure 2: lllustration of the Dynamic Programmingniéiple
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The dynamic is such that, at any time, the timarival depends only on the current state and enctintrol we

choose; in particular, it is considered that thstdry of dynamic state prior to the current sta#s ho explicit

influence on the future state. In this frame, theeddea at the origin of Dynamic Programming [ynioe expressed
in this term: if the optimal trajectory from poiatto point d goes through point b, the portion o trajectory

linking point b to point d is also the quickest Ipdtetween these latter points. If it was not, theorld exist a

quicker trajectory between point a and point d. Nmmsidering the quickest trajectory between pbiahd point d,

this smaller optimization problem can be solvedéfknow that this trajectory goes through poirdral so on.

This simple-looking idea is at the origin of a pafuéapproach that can be used to solve an optomadrol problem:
starting from the target, we look for the pointsnigereachable in a given time dt. The locus of fhaént may be
understood as a level curve, which is memorizeatti8g from this curve, the location reachable givgen time dt is
determined; this new level curve represents thedad points reachable in 2dt, and is memorizeds €bmputation
is running until the farthest level curve crossesnp a. Then, this propagation phase, which is tireeerse
propagated, stops.

Now, starting from point a, we use the level curméch have been successively memorized duringptbpagation
phase to determine the quickest path, the timeifigwn direct sense from 0 to dt, then from dt tif, 2and so on
until reaching point d. This is the reconstructirase. Let us notice that not only the best patttisty from point a
can be reconstructed, but all the paths startimg fny point included inside the level curve cnoggoint a.

As previously described, the Dynamic Programmingragch proposes to solve an optimal control problgm
considering it as a part of a more global familyoptfimal control problems: to find the optimal p&tbm point a to
point d, one may find the optimal path from poiniobpoint d, and so on. The HIB equation extensapproach,
expressed in discrete domain, to continuous optoatrol problem. As recalled hereafter, solvingBHaquation
leads to a “value function”, which characterizes tiptimal control problem family mentioned befaad which can
be determined as the solution of a first order inealr Partial Differential Equation which dimensigirelated to the
number of variables involved in the problem.

The resolution of this equation relies on a retrogagation phase starting from the final targee {tijection on the
final orbit), and “flowing” back in time on the $éadomain. Once the value function is computedhendomain, the
minimal time trajectory is determined during a mestouction phase, by “descending” timely (from thenchpad to
the final orbit) along the domain path where thtuggunction is the lowest, It is then possiblegtet the optimal
feedback control law and the corresponding optitregectory, typically by using a classical secomder Runge-
Kutta scheme.

2.4 Challenges related to the implementation of thelJB approach

The HJB equation is set in the whole space Ri-¥#th d = 6; nevertheless, in order to perform potations a
finite domain is used, on which the HJIB equatiodissretized. For this a uniform space grid is empshe time step
is chosen constant for simplicity. Advanced nuraritechnics are then applied to efficiently evatudhe

approximation of the value function, which corresgs to the propagation phase previously described.

Main issues related to HIB approach are due tstiomg dependence of computation efforts (in teofsmiemory

size and computation time) to the number of dinmmsof the optimization problem to solve: theseéssare due to
the fact that the HIB equation is a partial difféi@ equation which has to be solved in termstafesand time
which all are discretized. Besides, in the framettef HIB approach, parameters behave like additistades

(associated to steady dynamics), which increasauh@er of dimensions to consider.

When dimension of the problem increases (typicalypve dimension 3), numerical computation becovesy

challenging. This is what Robert Bellman describgsthe curse of dimensionality”; for a typicalgbrdimensional
trajectory such as the one presented here aftedirhignsions have to be considered (see 8’Numeraslits”);

considering a very rude discretization of 10 pointeach dimension (decreasing the computationracgy we still

get 10exp(12) points to handle. In the frame ofmtner trajectory optimizations, efforts have beershed on
dealing with high dimension problems.

During the last study, the analysis of the laundlight sequential showed that the payload mass nedonly the
criterion to maximize, but it also intervened gsagameter, which influenced the dynamics of allftigiat phases. In
order to reduce the dimension of all the sub problehe HJIB resolution was run considering theqad/imass as a
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constant. The criterion to be minimized in the HiBblem was the combustion duration, which corradgdo the
propellant consumption; this formulation allowedpeessing the launcher trajectory optimization peoblas a
minimum time problem, which matched the notion edichability inherent to the HIB approach. At thd ehthe
reconstruction, if the optimal trajectory did naieuall the available propellant, it meant thatltheacher could bring
a heavier payload: the above process was run antie with an increased value of the payload ma@ks. process
went on until payload mass variations tended tadggigible. This scheme preserved the properti¢$J&f approach
assuring to reach the global optimal solution. Utifeately, it also imposed to run iteratively seteHJB
computations, leading to a significant computati@ftort.

payload mass

no yes

[ 3 optimaltrajectory

Figure 3: Implementation of the HIB approach

3. Mathematical formulation. Optimal control problem of a hybrid
system

A formulation of the trajectory optimization problesuitable for HIB computations implies firstly aegise
characterization of the flight sequential, andhef variables to optimize (control, parameters).

3.1 Presentation of the reference problem

A mission toward GEO orbit with an “Ariane5-likeduncher is considered. The choice of this missiqastified by
satellite market considerations and also becauselitdes several elements which are challengingtdie HJB
approach implementation: the state domain is largeghly 36 000 km around the Earth, required léendncrease
of speed of more than 10 000 m/s), the missiontiuras long (more than 5 hours), the number ofipaters is also
important, as detailed hereafter.

The objective is to optimize the launcher trajegten as to maximize the payload mass injected erGIRO orbit.
The configuration of the launcher relies on twddsplropulsion boosters fired on ground burning stemeously, a
cryogenic lower stage ignited on ground and sfiémating after booster jettisoning, and a cryogemper stage.
The engine of the upper stage can be ignited setreras in flight; the total combustion durationgpread among
the different burns. In addition, the perigee atté of the transfer orbit reached at the end offitee upper stage
boost should be at least 180 km. For all the emygitlee profile of thrust magnitude is pre-set oougd; the
trajectory is commanded through the orientatiothadist.

The launcher is operated from French Guyana; flgatftarts with a vertical take-off, goes on withpitch over
maneuver at a constant angle rate which intensityle optimized, and is followed by a atmospheravity turn
phase during which the launcher thrust is steecedrding to a null aerodynamic angle of attack pathas to limit



DOI: 10.13009/EUCASS2017-71

Eric Bourgeois, Olivier Bokanowski, Hasnaa Zidani &mya Désilles

aerodynamic loads on launcher structures. The ahiwiulaunch, characterizing roughly the geograghitirection
of the plane in which occurs the atmospheric flighs also to be optimized.

The atmospheric phase (named hereafter “Phase i3 with the booster jettisoning; above begins die-
atmospheric phase (firstly, with the flight of teecond stage: “Phase 1”) during which the thrusntation is fully
optimized. The upper stage injects the satellitettemn GEO orbit thanks to two boosts; respective lmastion
durations (“Phase 2" and “Phase 4") and associaddibtic phase (“Phase 3”) length have to be optah.

3.2 Introduction of the “consumption time” variable

The final timet, of the mission is unknown because it depends emtiation of the ballistic flightz that has to be
optimized. As all the propellant of the launchersitnbe consumed at the end of the mission, the $uheaurations
of the phases 1 and 4 of the flight correspond¢hé entire consumption of the secoBgl engine, leading to:
(t; —ty) + (tr — t3) = Mp,/PE2. Then, the total consumption time is given by:

M
T:i=—22 4t —t,. @)
ﬁEZ

The idea now is to introduce a new time variablbat corresponds to the duration of the propeltamsumption
during the phases 1, 2 and 4 of the flight, a®fed:

t_to lftE[to,tz[
S = tz - to ifte [tz,t3[ (8)
t - t3 + (tz - to) lft E]t3,tf]

and we will denote = s(t) the above correspondence. It is clear that[0, T] and thats = 0 for t = t,. Observe
also thats(.) is continuous, and remains constant equal te s(t,) =t, —t, for t € [t,,t;]. Conversely, we can
definet = t(s), thent(s) will have a jump as, = t, — ty: t(s;) = t,, andt(s}) = t;. In the sequel we will denote
s,: = t, — t; the duration of the first boost of the second etaggine. This value is an optimization variablee T
definition of the consumption time variahlés illustrated hereafter:

flight time
tf
t3
t2
t1
combustion
t0 time
s s s =T |

Figure 4: Relations between the physical time Wdgiaand the “consumption” variabte
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3.3 Dynamical system and state transfer function

Let x:= (1, 4,v,v,X) € R® be the physical state vector. andre€ R, be the payload mass. This mass is constant
during the flight; hence its evolution equatiorsisply:

m=0 9)
The fundamental principle of dynamics allows usxpress:

x:=f(x,u) (20)
with u(.) the launcher control

Let y:= (x,m) = (r,4,v,7,x,m) € R® be the state vector of the system. First, we éhice the transfer function
for the ballistic flight phase. During this phatiee thrust force is zero, because the upper stagjeeis off, and the
right hand side of the equations (10) does not ni@épen the total mass of the system {launcher+pai}ldé
anymore. Therefore, the launcher’s motion is goséroy an uncontrolled and autonomous differentisiesn:

{Z (t) = (p(z(t)), t € [t21t3] (11)
z(t2) = Yo
whereg(z) denotes the function of the right hand side o) &ith no thrust force

Now, introduce the associated flow map(t,y,), so that the solution of (11) satisfiegt) = ®(t,y,). The
application® can be considered as a state transfer functidnadsmciates to a terminal state of the phasetBeof
flight z(t,) = y(s(ty)") = y(s;) the starting state of phasa@;) = y(s(t3)*) = y(si), by:

y(s) = @(tp,y(s0)) 12)
wherertg is the duration of the ballistic flight

Now, during phases 1, 2 and 4 (i.e., f@ [t,, t5]), the system is controlled hy= (a, §), the two orientation angles
of the thrust force. By using the time variablengf@rmation (8) and the fact thsili(t) = M(t(s)), we can write all
time-dependent quantities of equations (10) astioms of the variables. Therefore the system of differential
equations (9) and (10) can be re-written as:

y'(s)=f(sy(6s)uls), se€f0s]
y(sH) = o (z5,y(s0)), 13)
y'(s) = f(s,y(s),u(s)) s€ls,T]

where the functioffi(. ) represents the right hand sides of (9) and (1@®)sas the consumption time variable.

The combined notions of combustion duration anfla map leads to (13), which can be interpreted dwsybrid

system: the link between the kinematic conditiontha extremities of the ballistic phase (whicloigy controlled

by its duration) can be evaluated separately fitoendynamics of the propelled phases occurring bedod after this
ballistic phase. As soon as the flow niaf, y,) is computed, the relationship between the kinesvainditions at
the extremities of the ballistic phase is knowre ttynamics “switches” instantaneously from thet ficsthe second
upper stage boost. As a consequence, the commgatiesented in 85 can be computed separatelyhéset
propelled phases, the global physical consistemzy @ptimality of the trajectory being assured tlané the

formulation proposed in 84, which takes into ac¢dba hybrid dynamics proposed here.

3.4 State constraints

Because the target orbit is at a low altitude, ecipd constraint on the dynamic thermal flow hadéosatisfied
during the phase 2 of the flight:

0.5 p(r)v® < 555.0 W/m? (14)
wherep(r) is the density of the atmosphere at altitude
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The model of density for atmosphere at high alétuded in this work is defined by a tabulated fiomctThe value
of the constraint is arbitrarily set to a value @/horder of magnitude may be representative witaadard mission
analysis. Then the set of state constraint&®iris defined by:

K := {y=(x,m)€R® 0.5p(r)v’ <555} (15)
3.5 Target set

The target set is the GEO orbit. In order to repmest in the space of spherical coordinated,, #,v,y,x) € R®,
standard formulas from orbital mechanics are usegharticular one can express the eccentrieity), the major
semi-axisa(x) and the inclinatiori(x) as functions of the five spherical coordinates R°. Then the target set, in
R®, is defined by:

C:={y = (x,m) €RS, s.t. e(x) = 0,a(x) = 42168000.0 m, i(x) = 0.0 rad, m = 0} (16)
3.6 Optimal control problem

Denoteyy () = (xy(-), my(+)) the solution of (13), with initial datg(0) =y, and for controlsi(-) in a the set of
admissible control¥ 4:

U,q: = {u: (0, T) > R? measurable, u(s) € Ua.e.}. 17
with U: = [0,2n] x [, 7] 17

The optimal control problem (P) corresponding t® @EO mission can be formulated as follows:

sup my(T)

s.t.

(Dyy = (xy, my) is solution of (13) associated to u

with y(0) =y € Xy X [0, +00],

(iD)y4(s) €K, Vs€[O0,T], (18)
(iii)s, € [sy*", s9%] and 15 € [0, T%]

with y(s)) = @ (15, ¥(s7))

(w)yy (T) € C.

A

As mentioned earlier, the duration of the balliflight Tz may be equal t6. The control problem can be seen as a
control of a hybrid system where the control stygténcludes (at most) one possible switch. The @viilg is
controlled byrg € [0, T#X], the duration of the ballistic flight. The valuéthe bounds®, si3* andt@* can be
chosen by using some physical considerations. kample, one can considef™ =t, —t,, sP* =T and

W =T,

4. HJB approach

The method that will be used to solve the probl@h is based on the definition of two reachability pems
associated with different phases of the flightalinthe sequel, for any subsebf R® with a boundary)S, dg denotes
the signed distance functionSpdefined byds(y) = dist(y, dS) if y € S, anddgs(y) = —dist(y, dS) otherwise.

4.1 A reachability problem associated to the secorubost of the second stage

From now on, for ang € [0, T] andy € R®, we denote bysy () = (x5, (), mgy(-)) the trajectory starting iy at
the initial times and associated t(-) € U,q:

y' () =fE&yE)u®) <¢€[0s]
y(sh) = &(t5,y(s7))

y' ) =1y u), §E€ls,T]
y(s) =y

(18)
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Let us define the value function, fo€ [s™", T] andy € R®, by:

wo(s,y) = inf {dc(yt, ()Y max de(v3,®)} 19)
(wherea Vv b: = max(a, b))

The control problem (19) corresponds to a classitatimum running cost problem with fixed horiz&nProblem
(19) has no “explicit” state constraint. In faat, this new setting, the termax dK(y;{y(E)) plays the role of a
penalization that a trajectory would pay if it \dtés the state constraints. The advantage of anrgid(19) is that
the functionw, can now be characterized as the unique continsausion of an HIB equation; indeed, from [6] and
[7], the following result holds.

Theorem 2 (i) The functiomw, is the unique Lipschitz continuous viscosity sointof the following HIB equation
on[s™n T] x RE:

min(—0swo(s,y) + H(s,y, Dywo(s,¥)), wo(s,y) — dg(¥) = 0,

wo(T,y) = dc(¥)Vdg (¥)
where for any € [0, T],y € K andq € R®: H(s,y, q): = max — (f(s,y,u),q)

(and whered;w andD,w represent respectively the time and space derestand] is defined as in (17))

(20)

Here,dy is a “fictitious cost” that a trajectory would pé#yit leaves K; it comes from the presence of shi@-norm
termzrr%a%(]dK(y;‘,y(E))in the cost function which defines,.
€|s,

(i) Moreover, we have:

Wo(s,y) S0 & Ve>0, Ju, € Uy, de(yss(T)) <&

u (21)
and d (¥5,,(§)) < e V¢ € [5,T]

For a detailed definition of the viscosity notigriease refer to the monograph of [8]. Assertioh ginounts to
saying that ifw, (s, y) < 0 then there exists a trajectary, that is as close as desired to the ta€get

4.2 A reachability problem associated to probleniP)

Now, define a more general control problem,s@ [0, T] andy € R®, by:

wes,y) = inf {do(u, M)V max di ()} (22)

To characterize the value function as a solution of HIB equation, we need to intredine “jump” operatoM
defined, for any Lipschitz continuous functionby:

Ma(s,y): = [Bnirrnlax]a(s, P(1,x)). (23)

ze[0,7]
By using the viscosity notion in HIB theory, ona gaiove the following result:
(i) The functionw is Lipschitz continuous.
(i) We have:

w(s,y) = wy(s,y) Vs € [sM%* T], Vy € RS. (24)
(i) The functionw is the unique Lipschitz continuous viscosity siointof the following HIB equation:

min(—dsw + H(s,y, Dyw),w — di(¥)) = 0, on (s"**,T) x R® (25a)
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min(—d;w + H(s,y, Dyw) , w—dg(y),w — Mw,(s,y)) = 0 on (s"", smax) x R® (25b)
min(—d;w + H(s,y, Dyw),w — dg(y)) = 0 on (0, s"™) x R® (25c¢)
w(T,y) =dc(y)Vdg(y)  fory€R® (25d)

Equation (25a) together with the final boundaryditan (25d) confirm the assertion that= w, on [s]"®*, T] X
RY. Also, equation (25b) indicates that the optintedtegy may include at most one switch at tepe [s™i", s™ax],
By definition of the value functiow, it follows that:

w(0,y) <0 & 3s, € [s/", sM%*], 37, € [0, TI]

Ju, on [0,s,] s.t. wy (s*,é(rB,y;,“(s*))) <0 (26)

5. Application of the HIB approach to launcher tragctory optimization

As in [1], a formulation of the launcher trajectooptimization has been proposed in order to reptage high
dimension problem by a set of smaller ones, withosihg the global optimality. The principle isdonsider a cost
function which is separable in time, or in otherrev@ cost function which value depends at each tinig on the
current state (and naturally on the control), aotlan the history of previous states. In such e&aif the problem
to optimize relies on control and parameters odegrat different phases, it is possible to cutghabal problem in
smaller ones only ruled by current “active” contaold/or parameters. Each sub problem can be sebaakntially,
while the global optimality is maintained thankstie combining effort of memorization operatedhat €énd of each
sub propagation phase and to the matching opelmtdeen the sub problems during the global recoctsbn
phase.

5.1 Resolution procedure for the problen(P)

Lety = (x(p), m) € X, X [0,+oo[ be an initial state composed of the physical stgpd € X,, state of the launcher
at the end of Phase 0 of the flight corresponding thoice of shooting parametgrg P,,;; and payload mass.
From (21) and (24), it follows that ik(0,y) < 0, then there exists a timg € [s™",s™3]  a ballistic timetg €
[0, T§'**], and a control law(-) defined o0, T] of the form:

u (s) ifs€e[o,s,[
u(s) = (25)
u,(s) ifsel[s,T[

such that the corresponding solutighsatisfies:

{y(O) =y € X X [0,+00[, yy/(s) EK Vs € [0,T] (26)

y(s}) = ¢(1,¥(s7)), and y/(T) € C.

The HJB equation is set in a whole continuous stateain; nevertheless, in order to perform companata finite
domain is used, on which the HIB equations (22&b), (25¢) and (25d) are discretized. For thisidoum space
grid is chosen; the time step is chosen constansifaplicity. Advanced numerical technics are trapplied to
efficiently evaluate the approximation of the fuootw which corresponds to the propagation phase preljou
described.

Therefore, to solve the problefh), one can proceed as follows:
- compute the séf, of possible states of the launcher that can behezhat the end of Phase O for a large sample of
parametergy, w);

- evaluate the applicatioh for different starting points of the grid assoethto the first upper stage boost, and for
different ballistic phase durations, this paramdiemng the only one controlling the phase (no emgtmust is
available by definition);
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- solve the HJB equation of Theorem 2 to get an@pmation ofw,. The computation starts from the GEO orbit,
which is perfectly known; then, all the sets ofdamatic conditions are time reverse propagatedzahéol being the
orientation of the thrust;

- solve the HJB equation (25) to obtain an appretiom of the value functiow. To do so, a second HJB retro-
propagation is considered from the end of the @ipgier stage boost to the beginning of the exo-spmeric phase.

- define on the s&X, the function:
m*(x) = sup{m | w(0, (x, m)) < 0} (26)

This function corresponds to the biggest payloadarthat is possible to steer to the GEO orbitiatarfromx.
Finally, the optimal mass is given by:

Mype = supm”(x) (27)

x€Xo

- reconstruct the optimal trajectory. Lete X, be such thatn*(x*) = m,,.. By the definition of the se{, one can
identify the optimal shooting parametess € P,,,; such thatx* = I'(p*). Hence, we get the shooting parameters
p" = (", w"). Moreover, by using the value functiom, one can reconstruct an optimal trajectory andthet
durations, of the first boost of the second engine, the domatg of the ballistic flight, and the control laws dfet
phases 1, 2 and 4. The optimal trajectory and &sedc control are finally determined by performitige
reconstruction among the trajectories resultingiftbe matching of the different sub problems.

boost 1 ballistic phase boost 2

w0

W )

Figure 5: Schematic representation of the numenicplementation for the HIB computations

The dynamic states at the interfaces of all themoblems are handled thanks to multi-dimensiongdrpolations
minimizing the loss of information occurring at teecounter of the different dynamic state “wavenfsd generated
during the propagation phases.

5.2 Numerical results

The launcher trajectory optimization toward GEQad$ved by applying the HIB described previouslyt. wseprecise
some elements about the flight dynamics considdfrediauncher is considered to respond instantaheao the
control (thrust orientation); in particular, inertilynamics around the center of gravity is considéo be negligible,
the launcher is a point on which are concentrabed weight, thrust and aerodynamics forces. Thedtajy is
considered in three-dimensional space: the stafiedas three positions, three velocities, and sqadaameters:
pitch over rate, launch azimuth, ballistic phaseatian, allocation of propellant consumption amadheg two upper
stage boosts, payload mass. This leads to 11 diomengo which the time (which is also discretizetipuld be
added.
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The trajectory is optimized with two independengasithms: one relying on a shooting method, theeoth
corresponding to the HIB implementation strategyipusly described. The trajectory optimized by sheoting
method is named “referenced trajectory”: the asdgedi numerical code is validated and representatfivVENES
trajectory/performance studies performed in stash¢krncher engineering analysis.

It should be recalled that the flight dynamics iempknted in HIB algorithm had already been validatgd], by
comparing a trajectory simulated using the flighih@mics implemented in HIB algorithm and taking iatcount
the control associated to the reference trajectorihe reference trajectory.

Now, an HJB optimization is performed, in orderstve the initial problem presented in 82.1: to maze the
payload mass on the GEO orbit, while optimizingahtrols and parameters. Several computationsusreeach
corresponding to a different state grid discretizat

Table 1: Grid sizes considered

Optimization Grid Size
(r x L x latitude x v x gamma x Khi)

1 boostl 20%20%20x20x30%3
1 switch 20x15x20x20%20%3
1 boost 2 20%x15x20x20%20%3
1 payload mass range (kg) [0.96+m1.02m]

2 boostl 20%x20%x20%x20%x30%3
2 switch 20x15%20x20%20%3
2 boost 2 20x15%x20%x20%x20%3
2 payload mass range (kg) [0.94m1.06g]

3 boostl 30%x20x30%x30%x40x4
3 switch 25%15x30x30%x30%4
3 boost 2 25%15x30x30%x30x%4
3 payload mass range (kg) [0.94m1.06m)]

The “Optimization 1" grid corresponds to a rudedgallowing to reduce the amount of computation. Dimdy
difference between “Optimization 2" grid and theeyious one is the payload mass range amplitude. The
“optimization 3" grid is refined with regards toetprevious one. The associated results at the énkdeoHJB
optimizations are given hereafter:

Table 2: Trajectory characteristics

Data PMP HJB
Reference Optimization 1  Optimization 2  Optimization 3
trajectory
Propellant consumption of upper stage 19 746 19 802 20138 20173
first boost (kg)
Propellant consumption of upper stage 4 754 4 545 4291 4320
second boost (kg)
Payload mass (kg) m Mo Mo 1.01m
Duration of the ballistic phase (s) 18 885 18 609 9 0I5 18 706
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The comparison of the “reference” and “optimizatibntrajectories shows that the HIB computatioreisffa first
good approximation of the optimal trajectory wittt@arse state grid discretization, allowing to ggireliminary
result in a short time at limited computation cost.

Compared to “optimization 1” trajectory, the “optmation 2” trajectory allows to verify that the val of the
maximized criterion (payload mass) is non sensitivedhe payload mass range amplitude, which cantt to
validate the overall numerical stability of the H&Bmputation. The differences on the propellantscomptions
between boosts 1 and 2, and on the ballistic pasgtion between the two boosts, are moderateyeftetts the
flatness of the optimization problem for this phagéight.

With respect to “optimization 2" trajectory, theptimization 3" trajectory shows a slight improverhémterms of
payload mass, associated to limited variationsropgllant consumption repartition and ballistic phaluration. As
preliminary characterized in [1], the HIB compudas relies partly on the grid fineness, which igusiéd as a
compromise between numerical accuracy and compatéitne. In the sense, the moderate differences regpect
to the PMP optimal solution should also be rela@di considering the analysis of the accuracy oactign

conditions discussed hereafter.

The trajectory profile of the “reference” and “Qptkation 3” trajectories are plotted from the lainmtil the end of
the first boost of the upper stage here below.

altitude (km) longitude (rad) latitude (rad)
=102 =100 =101
- PMP
- HIB
0 |
0 0
0 200 dboTlm& siéco 80 1000 0 200 AooTKme. seezio 800 1000 0 200 aéoTKme. sztio 800 1000 tlme (S)
lat. velocity (m/s) long. velocity(m/s) radial velocity(m/s)
0 =104
0
-10° . . o ‘ ~10° , _ time (s)
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Time, sec Time, sec Time, sec

Figure 6: Opt3 trajectory profile — boost1

These results are completed with the second bddlsé aipper stage, presented on the next page.
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Figure 7: Opt3 trajectory profile — boost2

The “reference” and “optimization 3" trajectorieave a global good consistence, which is even isecavith

respect to the results shown in [1]. As recalledg®) the maximal payload mass was determined byirgpla

sequence of HIB problems, the number of the lagerg limited so as to maintain a reasonable wdatputation
time. The fact that the payload mass is now explichanaged in the HIB computation helps to deteenthe

payload mass more accurately. Moreover, it showdrdralled that the second upper stage boost wusdmb t
considered as an impulsive one in [1], correspanttinforget the trajectory losses occurring dutimig maneuver.
Now, the whole launcher orbital transfer is fullydelled in the HIB computations, which helps to rione the

computation accuracy.

As shown in Figure 7, the altitude at injectionfetd from a moderate inaccuracy; the velocity, \whis here
expressed relatively to the target (GEO orbit)nas totally nulled at the injection. These erroraynprobably be
related to the grid discretization and could beadlby refining it.

The computation time is roughly five hours, it Imast divided by two with respect to the previouslgsis, where
several HIB computations were required to finddpgmal trajectory. It is worth noting that the ilementation
relies on parallel computation, taking benefit bé tpower offered by a computer network organizedugh a
cluster. While still being a non-negligible amounit time, it should be emphasized that the procesuliy

automatic, freeing engineers from time consumirigreguch as initialization and convergence tasksreover, this
duration is small enough to allow computation im$h mode” during a single day work, or during nasrking

hours leading to results available at the beginoiingext working session.

Hereafters are given some illustrations of theetrtgry profile, from launch base to final GEO ortiit red are the
propelled phases, ballistic phases are in blue):
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Figure 8: Trajectory profile of the upper stagessetboost

6. Perspectives

An improvement axis would be to consider the HIJBrapch as a way to improve local indirect approautieed,
the gradient of the level set function correspoiedthe dual state considered in the Pontryagin Waxn Principle.
The HJIB approach could be used to provide a coagtimate of the dual state at the beginning oftthgctory,
feeding the shooting method classically derivedmfrthe expression of transversality relationshiphe THIB
approach would be used with a not too much refiged to speed up calculations; then the local aagnowould
only be used to converge quickly toward the glaj@imum.

Acronyms
HJB Hamilton Jacobi Bellman
PMP Pontryagin Maximum Principle
CNES Centre National d’Etudes Spatiales
ENSTA Ecole Nationale Supérieure des Techniqueséées
UMA Unité des Mathématiques Appliquées
GTO Geostationary Earth Orbit
GEO Geostationary Transfer Orbit
Lsc Lipschitz semi continuous

Nomenclature

t Time

to Lift-off time, in seconds

ty Start of first upper stage boost

t, End of first upper stage boost

ts Start of second upper stage boost

t End of second upper stage boost (injection on GEO)
r Geocentric altitude, in kilometers

L Longitude with respect to Greenwich meridianradians
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[7]

(8]
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Latitude with respect to Equator, in radians

Launcher velocity magnitude, in meter per second

Launcher velocity slope with respect to local honizin radians
Launcher velocity azimuth with respect to instaetaus trajectory plane, in radians
Launcher dynamics

Set of initial state

State target

A trajectory satisfying the flight dynamics

Set of admissible controls

Set of admissible trajectories

tilting angle rate

launch azimuth

Duration of the ballistic phase

Final time (injection on GEO)

Combustion time

Payload mass

Payload mass injected on GEO orbit for the PMBregfce trajectory
Kinematic state

Kinematic + mass state
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