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Abstract
Hypersonic vehicles need to withstand high thermal loads during their mission. In case of very high
energy flows ablative materials are used to build a Thermal Protection System (TPS). The outgassing due
to the pyrolysis of the TPS directly affects the boundary layer stability. This paper studies the effect of
wall blowing under controlled conditions, such as porous surfaces, and propose a model for a continuously
blowing surface, thus mimicking the behavior of an ablativeheat shield. The two models displays a similar
shift to lower frequencies for the instabilities growth rate peak and an increased instability of the boundary
layer.

1. Introduction

Hypersonic vehicles reentering from planetary missions orcruising in suborbital flights need to withstand high thermal
loads due to the strong shock in front of the body and the high friction at the wall. A mishandling of the resulting
aerodynamic heating can potentially endanger the mission,therefore a Thermal Protection System (TPS) is usually
put in place. In case of very high energy flows ablative heat shields are usually preferred, dissipating most of the
energy by means of pyrolysis and ablation. A direct effect of the heat flux imposed at the wall is the sublimation
process, that produces an outgassing flow into the boundary layer. As a consequence the surface recedes along the
wall normal. Material properties are irregularly distributed resulting in flow inhomogeneities; for this reason, small
variations in the blowing velocities arise from the ablating surface, imposing tiny wall velocity perturbations. Such
additional disturbances impact heavily the flow stability,potentially moving upstream the expected transition onset.
If not correctly taken into account the premature laminar-to-turbulent transition can breed an unforeseen and drastic
heat flux peak at the wall (see for instance Elison & Webb4), possibly leading to a catastrophic protection system
failure. This worst-case scenario is currently mitigated by the use of increased safety factors in space vehicle design.
Nevertheless such a TPS oversizing limits the total payload, further increasing the overall cost.

Additionally to the boundary layer laminar-to-turbulent transitions, ablation phenomena add chemical reactions
at the wall, as well as surface roughness and blowing; this work addresses mainly the effect of blowing, assessing
the influence of continuous wall outgassing on boundary layer stability. Historically, Linear Stability Theory (LST)
analyzed the interaction between blowing and boundary layer stability by focusing on the deformed mean flow, com-
pletely neglecting the perturbations originated by unevenblowing (see, for instance, by Malik18). The simplicity of
this approach is still widely used nowadays (Johnsonet. al14 and Ghaffari et al.13).

More recently Fedorov15 modeled the effect of pores on the second Mack’s mode instability. Blowing was
not considered, even if his development allows for it. This development is highly interesting for this application,
mainly because experimental setups analyzing wall blowingare carried out very often by means of a porous wall.
Unfortunately this is quite different from the outgassing originated by ablative wall pyrolysis because the whole surface
expels gases, instead of small discrete and localized pores.

A complete simulation of the harsh hypersonic environment is very hard to achieve, primarily because of the
complex interactions and concurrency of multiple phenomena. The high temperature reached in the flow triggers
chemical reactions and species dissociation, not to mention wall catalysis. Experimental reproduction of the surface
sublimation with a realistic boundary layer is difficult and, as a consequence, many setups achieve boundary layer
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blowing by means of a porous surface. These experiments usually blow through the pores the same fluid used in the
free stream, for instance air. Pyrolysis outgassing introduces new species with respect to the ones naturally available
in dissociated air. Few experiments (as for instance the onereported by Fischer6) introduced different species into
the boundary layer by means of a mock-up partially made of sublimating material. Unfortunately, Fischer closely
mimicked only the presence of different species, while the density (and in general all the other properties) of the
pyrolysis gas, together with the surface chemistry reactions, are not reproduced. Similarly, the faithful numerical
reproduction of a hypersonic scenario tackling ablation, porosity and transition encounters many difficulties and it still
represents a challenge. Furthermore, applications to reallife vehicles would require a snappy tool able to influence
early design decisions.

For this reason the use of Linear Stability Theory (LST), together with the eN method, is widely recognized as a
sound and fast prediction method. Therefore an appropriatemodeling of porous surface and blowing influence on the
stability of boundary layers would be beneficial to the understanding of such a phenomenon.

In this regard, the difference between the blowing imposed by a porous surface and the one created by a surface
sublimating at once is clear. The current work refers to these models respectively asdiscreteandcontinuousblowing
to highlight the differences.

The present work will treat a continuous blowing surface, mimicking an ablative TPS wall, deriving a new set
of boundary conditions. A comparison and a verification of these new boundary conditions have been realized in
the LST solver available in the VESTA toolkit,23 using a Chebyshev pseudo-spectral collocation method. Thebasic
idea revolves around the design of a specific compatibility condition resulting from a simplification of the blowing
mechanism. The current work deals with hypersonic flows around a flat plate with no pressure gradient. The effect on
perturbation frequencies and growth rates is investigatedin the following sections.

2. Governing equations

An unsteady laminar flow where only small perturbations are present can be easily decomposed in a steady and an
unsteady part:

Q(x, y, z, t) = Q(x, y, z) + q′(x, y, z, t) , (1)

whereQ is a generic flow variable. The mean flowQ is assumed to be steady, thus constituting the base flow on which
the stability analysis is carried out. Perturbationsq′(x, y, z, t) are usually represented as mutually independent waves

q′(x, y, z, t) = q̃(y) exp(i(αx+ βz− ωt)) + c.c. (2)

The perturbation amplitude ˜q(y) is dependent only on the wall normal coordinate as a direct consequence of the quasi-
parallel flow assumption. Moreover, the latter hypothesis imposes no variation on any mean flow quantity along the
streamwise and spanwise direction. As a consequence, vertical mean velocity is usually considered zero and it is
actually negligible for a boundary layer flow.

These hypotheses are standard in the Linear Stability Theory (LST) analysis and they are usually associated with
homogeneous boundary conditions. LST equations for compressible flows are abundantly reported in literature, as for
instance by Mack17 and Malik.20 The version actually implemented in this work is not reported here for the sake of
conciseness but it is the same as the one used by Pinna.24 Such traditional system of equations cannot take into account
the perturbations introduced in the boundary layer by the wall blowing, but it is naturally limited to the study of blowing
effects on the mean flow, neglecting any unsteady behavior at thewall. On the other hand, in real applications, it is not
possible to have an ideally even blowing: in order to take into account any irregularity in the wall blowing, boundary
conditions need to be reconsidered.

Perturbations on the vertical velocity induced by a blowingwall are directly correlated with all the other distur-
bances at the wall and in the domain. For this reason, ˜v(0) must be treated as a function of all the other variables and it
cannot be directly imposed as a Dirichlet boundary condition. As a matter of fact, such an assignment would change
the nature of the system that would no longer be an eigenvalueproblem. Two different boundary conditions modeling
wall blowing are treated in the remaining of this work: a porous wall and a continuously sublimating wall.

All the equations are made non-dimensional with the usual LST reference quantities taken at the boundary layer
edge: velocityUe ,temperatureTe, and Blasius lengthℓ = νex̂/Ue. Transport and other thermodynamic properties are
evaluated considering the temperature at the boundary layer edge. For sake of clarity, the following naming convention
is adopted hereafter: hat variables ( ˆq) are dimensional and non-hatted variables (q) are non-dimensional, with the
subindexw referring to wall variables.
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2.1 Porous model

Blowing through a porous surface has been modeled by Gaponovet. al.7–12 and Fedorov et. al.5,16 The idea is to link
the value of velocity perturbations to pressure ones at the wall through an admittance:

ṽ(0) = Kp̃(0). (3)

The idea was also proposed by Carpenter & Porter1 without giving a dependency ofK on the porosity parameters.
This dependency was obtained by Gaponov8–10,12and Fedorov5 from the classic solutions of the Navier-Stokes equa-
tions describing acoustic waves traveling inside a long circular tube (see Daniels3 and Gaponov7). The full derivation
can be found in the aforementioned references and leads to Eqs. (4-10).

kν = r

√
i ωρw

µw
Re, (4)

Z1 =
i ω

Tw

J0(kν)
J2(kν)

, (5)

Y1 = − i ωM2
e

(
γ + (γ − 1)

J2(
√

Pr kν)

J0(
√

Pr kν)

)
, (6)

Z0 =
√

Z1/Y1 , (7)

Λ =
√

Z1 Y1 , (8)

n =
Spores

Stotal
=
π r2

s2
, (9)

K =
n
Z0

tanh(Λh) , (10)

wherer is the pore radius,s is the distance between pores,h is the porous layer height,n is the porosity,J0 and J2

are the Bessel functions of order 0 and 2,Z1 is the impedance that characterizes the transmission line,Y1 is the shunt
admittance,Z0 is the characteristic impedance andΛ is the propagation constant.

Note that these expressions were developed for porous coatings. The acoustic condition therefore considers that
there is a hard impenetrable surface under the porous layer,thus assuming ˜v(−h) = 0. This assumption is valid both
for pyrolysing surfaces and blowing experiments. Pyrolysing surfaces will feature a porous layer on top of a composite
layer with resin and fibres, thus being acceptable to assume the wall-normal velocity perturbation to be zero on it.
Blowing experiments typically feature several porous layers with different sizes. Having one of these layers with very
small pore radius, allows to assume ˜v to be zero on it.12 This is usually the case, in order to stop the waves inside the
blowing chamber from entering the wind tunnel. Therefore, the porous coating condition is, in any case, suitable for
the considered porous wall configurations.

2.2 Continuous blowing model

A sublimating wall, whose outgassing is distributed over the surface itself, imposes a new balance at the wall and the
impenetrability condition is no longer valid. Analogouslyto the porous case, a relation between the vertical perturbation
velocity and all the other variables at the wall has to be found. For a distributed blowing it is less consistent to apply
acoustic analogies, similar to what Gaponov did, as there are no localized cavities that expel gases. Regardless of the
source of the wall perturbation, the linearized continuityequation has to be satisfied. Therefore it is possible to evaluate
the linearized continuity equation at the wall. This operation is performed coherently to the well known y-momentum
conservation manipulation, that have been already used to obtain the pressure compatibility conditions, as, for instance,
shown by Malik.19 The continuity equation:

∂ρ

∂t
+
∂ρU j

∂x j
= 0 , (11)

is linearized, simplified according to the LST assumptions and then evaluated at the wall. The resulting equation reads:
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P
( − Ty + T ∂y

)
ṽ+ (−i ωT − Vw Ty + Vw T ∂y) p̃+ P

(
i ω − Vw ∂y

)
T̃ = 0. (12)

Eq. (12) is then imposed as a boundary condition to obtain thenormal velocity perturbation at the wall. This approach
is similar to what is proposed by Mortensen22 to study stability with ablation. In that case, continuity close to the wall,
in the form of different surface mass balance conditions, is imposed to account for the wall ablation induced recession.

2.3 Limitations and inconsistencies

As already specified in section 2, LST comprises a number of assumptions to be respected. This clear theoretical
framework supplements the limitations coming from classicboundary-layer theory. For this reason, the blowing veloc-
ity should not exceed a specific threshold: it shall be lower thanVw ∼ 1/Reℓ. WhereVw is made non-dimensional by
the boundary-layer streamwise velocityUe andReℓ = Ueℓ/νe. This does not prevent its application to practical cases
with higher blowing rates, but a further validation againstexperimental data would be mandatory.

The introduction of a blowing velocityVw in the base flow brings in an important inconsistency with respect
to the aforementioned LST framework, regardless of the boundary condition used in the LST solver. This deviation
is inherently linked to the parallel flow assumption; that is, the negligibility of variations along the streamwise and
spanwise coordinates, i.e.Q ≈ Q(y). Such a hypothesis entails∂x(ρU) ≈ 0 and∂z(ρW) ≈ 0, which, through the
continuity equation, also leads to∂y(ρV) ≈ 0 in the whole domain. This condition can be strictly satisfied either by
requiring zero vertical velocity and corresponding derivatives

V = ∂yV = 0, (13)

imposingV(y = 0) = 0 even if blowing or suction are present, or by making the product of the mean normal velocity
and the mean density constant in all the domain:

V = −C/ρ. (14)

In the latter case, the freestreamV(y = ∞) is assumed to beVw/ρw. Note thatVw andρw are both non-dimensional.
Classically, authors dealing with this inconsistency13,14,18have simply argued that sinceVw << 1, it is fair to assume
Eq. (13). Boundary conditions imposed in this way are exactly the same with or without blowing and the only difference
lies in the other mean flow variables (U, W, etc.). However, this assumption, even though it is satisfied when comparing
the freestream velocity with the blowing velocity, it is notsatisfied in the lower region of the boundary layer. Asy
approaches 0,U is reduced until, eventually,U ∼ V.

Eq. (14) seems to be more consistent, since it allows forV(0) = Vw and it also includes some decay of the
normal velocity throughout the domain. However, this decayis not physically correct, since it is solely proportional to
the density. This means that after the boundary layer limitδ, ρ(y > δ) ≈ 1 and thereforeV(y > δ) ≈ Vw/ρw, rather than
zero. This error would be present in the freestream region. The error introduced by Eq. (14) is expected to be smaller,
since in the freestream regionV would be much lower than 1, but, as a matter of fact, it would besimply spread over
a larger region. Furthermore, the use of this assumption would need a new derivation of the stability equations. Many
terms containingV would appear, requiring a major update of any existing stability code.

The present work proposes to treat the existing inconsistency by modeling the normal velocityV(y) with a
discontinuous function:

V(y) =

{
Vw y = 0
0 y > 0

. (15)

Moreover, the derivatives of the normal velocity with respect to the normal coordinateVy andVyy are considered zero
in all the domain. The main advantage of this approach is thatclassic LST codes can be used without any major
modification aside from the boundary condition, and still keep a good representation of the normal velocity in the
region close to the wall. Nevertheless, it is not free from error. The discontinuous definition of the velocity means that
the continuity equation applied on the mean variables at thewall will not be satisfied, since∂y(ρV) = Vw ∂yρ , 0.

The implementation inside the VESTA toolkit23,25 was achieved by simply modifying the boundary conditions.
Aside from the additional boundary condition in Eq. (12), modeling the non-zero normal velocity perturbation, the
compatibility condition on the pressure perturbation at the wall will have to be modified to account thatVw , 0:
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( i ω t1,w

Tw

− β
2 µw

Re
− µwα

2

Re
+

(
− Vw t1,w

Tw

+
2µT,w + λT,w

Re
Ty,w

)
∂y +

ℓ2,w µw

Re
∂yy

)
ṽ+

+
ℓ1,w µw

Re
(
i β ∂yw̃+ i α ∂yũ

) − ∂y p̃+
µT,w

Re
(
i βWy,w + i αUy,w

)
T̃ = 0, (16)

wheret1,w = γM2
ePw, ℓ1,w = 1+ λw/µw andℓ2,w = 2+ λw/µw.

Quantifying the error committed by each of the possible approaches is not trivial. The first approach (Eq. (13))
introduces an error of the orderVw ∼ 1/Reℓ (see Cebeci & Cousteix2) in the boundaryy = 0. The second one (Eq. (14))
also introduces an error of orderVw ∼ 1/Reℓ but in the regiony > δ. The proposed approach (eq. 15) does not introduce
an error in the boundary values, but unlike the others, it does not respect the continuity equation in the proximity of
y = 0, which introduces an error of orderVw (∂yρ)w ∼ (∂yρ)w/Reℓ.

Both approaches introduce an error, however it is reasonable to expect that the proposed approach (Eq. (15))
approximates reality more accurately, since both the boundary conditions are respected, and the disagreement of the
continuity condition is not very significant (values of (∂yρ)w are typically around 10−6 − 10−4 for hypersonic boundary
layer).

3. Verification and validation

The current implementation is compared against Gaponov & Ermolaev’s experimental and LST results.11 This test
case is for a 44 cm flat plate with no pressure gradient in a coldhypersonic flow. The corresponding condition are
presented in Tab. 1. The coating is experimentally applied between 50 mm and 170 mm. In Fig. 1, the amplification
factor is plotted against the position along the surfacex. The amplification factorA is defined as:

A(x)
A0
= exp

(∫ x

x0

−αi (ξ) dξ

)
, (17)

whereA0 is the amplitude of the perturbation atx0 = 70 mm which is fixed to 1.
Two cases are plotted with the same porosityn = 0.39, the same pore radius ˆr = 5µm and two different values

of the porous-layer heightĥ = 0.4 mm andĥ = 2.5 mm. As one can see, the agreement between the LST calculation is
excellent. It is worth noting that the amplitude retrieved experimentally departs from the theoretical curve producing
a much sharper increase in the growth rates. This difference is caused most probably by the appearance of the later
stages of transition, not captured by the linear theoretical model.

Re1,e

[
m−1

]
Me Pr Te [K] β

[
mm−1

]
F̂ [kHz]

6.6× 106 2 0.72 161.11 0.22 10

Table 1: Flow parameters in the experiments, and the LST simulations performed by Gaponov & Ermolaev.11

4. Results

Several tests are performed with the two different boundary conditions. The porous boundary condition depends on
3 different parameters: pore radius, porosity and porous layer height. According to a preliminary set of calculations,
porosityn (Eq. (9)) seems to be the least important, even though not entirely negligible. The influence of this parameter
on a Mach 4.5 calculation is shown in Fig. 2. Despite the fact porosity is not completely negligible, its effect on the
growth rate is considerably lower than the one obtained fromthe pore radius and the porous-layer height (see the
analysis of Miró21). For this reason, porosity is not investigated any furtherin this paper and is kept constant atn = 0.8.

The actual process leading to the creation of a porous material can vary significantly, thus leading to different
sizes and distribution types. In the current work four different height and radii, shown in Tab. 2, have been chosen to
carry out a parametric study. Mean flows are retrieved by means of a self-similar solution, according to the condition
reported in Tab. 3. Wall blowing has been computed with a selfsimilar solution. Albeit this may not be directly
representing a real application, it allows to study in greater detail the physics, with limited computational resources.
The natural implication is that the actual blowing velocitydecreases with the Reynolds number, because of the constant
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Figure 1: Comparison between the experimental, and LST results obtained by Gaponov & Ermolaev12 against VESTA’s
LST results. The flow conditions are those in Tab. 1. LST VESTA toolkit, Gaponov & Ermolaev12

experiments, Gaponov & Ermolaev12 LST.
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Figure 2: Influence of the porosity on stability for a case with porous coating (ˆr = 0.05mm & ĥ = 0.4mm) and for the
flow conditionsρe = 1.899× 10−2 kg m−3, Pre = 0.72,Me = 4.5,Te = 61.61 K, T̂w = 311 K,γ = 1.4, withReℓ = 1500.

n = 0.6; n = 0.8; n = 0.99

h1 h2 h3 h4

ĥ [mm] 5 3.5 3 0.5

r̂ [mm] 5 3.5 3 0.5

Table 2: pore radius and height used for all the simulations
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Case Mach Reℓ T̂∞ [K] p̂∞ [Pa] B

A 6 2000 70 4000 2.828e-05
B 8 2000 70 4000 2.828e-05

Table 3: Flow conditions for the mean flow calculations

value of the Blasius function at the wall. On the other hand, amore realistic blowing, mimicking an ablative material,
would not decrease the wall blowing speed according to the Reynolds number. In such a situation the effect on the
transition onset would depend also on the blowing intensityat previous locations; boundary layer history will not be
addressed in the current paper. In the current work the blowing velocity for the Mach 6 and Mach 8 flat plate simulation
has been derived from the valuefw = −0.04. The non-dimensional wall blowing velocity is linked to the value of the
Blasius function at the wall by means of the relation

fw = K Reℓ ρwVw , (18)

where, for a flat plate,K = −1/
√

2. For the Mach 6 case, this corresponds to a dimensional velocity Vw = 0.1974 m/s.
It is worth noting the compatibility of the blowing magnitude with the theoretical limitations of the model shown in
sec. 2.3. In order to represent the blowing with respect to the free stream it is convenient to introduces as well a
non-dimensional blowing parameter:

B =
ρ̂wv̂w

ρeUe
, (19)

which represents a mass flux for equivalent surfaces. This isuseful to scale similarly different blowing in different
freestream conditions. In this work the blown fluid will be the same than the free stream one, nevertheless for denser
pyrolysis gases, the higher density will disturb more the incoming flow. Denser must not be confused with heavier
(higher molecular weight), since Stalmach et al.26 reported that it is the lighter blowing gases that have a stronger
destabilizing effect. The blowing parameter is linked to the Blasius functionat the wall by

B =
fw

K Re
, (20)

whereK = −1/
√

2 for a flat plate. The fluid considered in this work is air with aconstant Prandtl numberPr = 0.7,
a specific heat ratioγ = 1.4 and a gas constantR = 287.05 J kg−1 K−1. The specific heat at constant pressurecp =

1004.5 J kg−1 K−1. Viscosity is computed with Sutherland’s law

µ̂ = µ̂re f


T̂

T̂re f


3/2 T̂re f + Ŝ

T̂ + Ŝ
, (21)

using µ̂re f = 1.716× 10−5 Pa s,Ŝ = 110.6 K, T̂re f = 273.15 K; bulk viscosity is estimated by mean of the Stokes
hypothesis. The small blowing velocity used in this work triggers only a small modification in the mean flow as visible
in Fig. 3(b). If the perturbation velocity is assumed to be zero, ṽ(0) = 0, that is no special boundary condition is applied
to the solver, only minor differences are expected on the mean flow stability. Fig. 3(a) confirms this trend only for
the first Mack mode, showing growth rates calculated with a homogeneous vertical velocity boundary condition lying
close to the ones obtained for a flow without any blowing. Second Mack mode, instead, has its peak displaced at lower
frequencies with higher growth rates. Despite the fact thatthis is a very common approach, this case represents an
ideal set up rather than a realistic one, where wall blowing is a further source of flow perturbation. Because of its ideal
nature this case represents a valid benchmark in the analysis of the different boundary conditions. The growth rate
peaks appear around 411 kHz for the blown boundary layer and at 428 kHz for the case with zero imposed velocity at
the wall.

If the corresponding boundary layer blowing is introduced by means of a porous layer, the growth rate of the
unstable frequencies varies considerably. The mean flow is still the one presented in Fig. 3(b), leading to the growth
rates in Fig. 4 for different arrangement of the porous layer. In Fig. 4(a) the smallest height is taken while comparing
the four different radius sizes. Smaller radii smooth down the peaks, shift them to lower frequencies and lower the peak
height. On the other hand, between different radii, the peak shift remains almost constant moving to 173 kHz for a big
radius and 166 kHz for a small one. A second peak lying approximately around 400 kHz appears also with the porous
boundary condition: or the biggest radii its growth is comparable to the boundary layer without blowing while, for the
smallest radius r4 it is slighlty damped, consistently to what observed for the first dominant peak. Fig. 4(b) shows that
perturbations become more unstable for shallower porous layers. Several peaks occur in the diagram for bigger layer
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Figure 3: Growth rates for a Mach 6 flat plate with and without blowing with ṽ(0) = 0. Flow conditions are taken for
case A in Tab. 3: , no-blowing; fw = −0.04.(left) Mach 6 profiles: velocity no-blowing; ,
velocity fw = −0.04, , temperature no-blowing; ,temperaturefw = −0.04. (right)

heights (h1, h2, h3), while for the shallowest one (h4) the peak distribution shows only two peaks with one of them at
a similar frequencies than the second Mack mode for the no-blowing case.

The many peaks found for bigger pore height have a growth comparable with the second Mack mode obtained
with homogeneous wall perturbation, even though it is generally lower. For the smallest height possible the growth rate
increases considerably, reaching values approximately one order of magnitude bigger than the first Mack mode that
would naturally peak around those frequencies, if obtainedwith the homogeneous boundary condition. On the other
hand, with respect to the second Mack mode, the enhanced growth rate corresponds to, approximately 30% of the no-
blowing case. It should be noted that the growth rate level increased approximately of one order of magnitude. Unlike
the effect of pore radius, larger porous layer heights shift considerably the frequency of the most unstable mode, from
slightly above 200 kHz down to 166 kHz. More interestingly, for higher porous layers a series of peaks of comparable
sizes appears at lower frequencies, while only one is visible for the h4 case. Results obtained for a porous surface
without blowing provide a very similar trend of the growth rates. Similarly to Fig. 3(a) the little blowing is so small
that the effect of the mean flow profile is rather small.

A comparison between the porous model and the continuous blowing one proposed in this paper is available
in Fig. 5, where it is possible to observe that a continuous blowing displays a further shift of the peak at an even
lower frequency while retaining, at least in this case, a similar growth rate. In terms of peak height and peak shift it
is interesting to note that the porous wall boundary condition tends to return growth rates similar to the continuous
blowing one. The most important difference lies in the absence of multiple peaks and the wider range of highly
unstable frequencies. While difficult to verify experimentally, such a difference remains reasonable because, unlike the
boundary condition proposed by Gaponov, there is no acoustic coupling. It has been already found by Miró21 that the
two boundary conditions get closer and closer as the pore dimensions keep increasing, reaching practically the same
value for ˆr = 10 mm and̂h = 10 mm.

Obviously the Mach number plays a significant role in the growth rate of the disturbances. The test performed
used the condition of case B in Tab. 3. Fig. 6(a) shows an interesting drop of the instability for Mach 8. This is visible
as well in Fig. 6(b), where the same mean flow is used but the pores are considered much smaller. For smaller pore
radius and height, the peak is shifted toward higher frequencies.

A comparison of the behavior of the continuous boundary condition at different Mach number is shown in Fig. 7.
This figure reports as well a Mach 8 calculation performed on aprofile obtained withfw = −0.05. The tiny difference
in the profile produces a small difference also in the growth rate. Even when using the continuous blowing boundary
condition, a Mach number increase tends to stabilize the flow. On the other hand the shift in frequency is more limited,
despite being always present.

5. Conclusion

An analysis of the newly implemented boundary conditions inside VESTA toolkit has been discussed. The implemen-
tation of a porous boundary condition has been successfullyverified against experiments and other implementations
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(a) Analysis of radius influence for the smallest porous layerheight h4:
, r1; , r2; r3, r4.
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(b) Analysis of height influence for the smallest pore radius r4: ,
h1; , h2; h3, h4.

Figure 4: Effect of porous height and radius for a Mach 6 flat plate
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Figure 5: Growth rates for a Mach 6 flat plate comparing all different boundary conditions. Flow conditions are taken
for case A in Tab. 3. homogeneous b.c., no blowing; homogeneous b.c.fw = −0.04; continuity b.c.,
fw = −0.04; porous b.c., radius r1, height h1; porous b.c., radius r4, height h4
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(b)

Figure 6: Comparison of Mach 6 and Mach 8 growth rate for a porous boundary condition for the biggest radius and
height (on the left) and smallest radius and height (right). Mach 8 fw = −0.04, Mach 6 fw = −0.04
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Figure 7: Comparison between Mach 6 and Mach 8 growth rates for at Re 2000 for a continuous blowing boundary
condition. Mach 8 fw = −0.04, Mach 8 fw = −0.05, Mach 6 fw = −0.04
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reported in literature. Furthermore a new boundary condition reproducing the outgassing of a pyrolysing surface has
been developed. Despite the lack of experimental evidence,due to the difficulty of performing such experiments, the
two boundary conditions have been found to agree on their basic behavior.

The present work found that both models provided a substantial increase of the growth rate peaks with a shift of
the corresponding frequencies toward higher values. Such ashift is always present even when a simple homogeneous
boundary condition is considered, and it could be partiallylinked to the different boundary layer thickness induced by
the wall vertical velocity. On the other hand the stronger shift displayed with the two models discussed in the present
work is linked to the actual behavior of the perturbation.

It is found that the two boundary conditions return similar results once the porous layer has big enough pores. In
the work of Miró21 such an equivalence is found for pores with a radius and height of 10 mm.

The present cases show that a smaller enhancement of the instabilities is associated with a growing Mach num-
ber. On the other hand, calculations at lower Mach number reported by Miró showed a smaller growth rate peak in
comparison to what has been found in this work for Mach 6 and Mach 8. Therefore a more systematic study on the
Mach number should be carried out to fully characterize these boundary condition with respect to that parameter.
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