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Abstract
Numerical results are presented for the stability analysis of the wake induced by a cuboidal roughness
element mounted on a flat plate inside a Mach 6 freestream. Linear BiGlobal stability calculations are
carried out for a single frequency on a spanwise plane located behind the roughness, using base flows
obtained from laminar Navier-Stokes simulations. The results show that the Mack mode is the most
unstable perturbation growing in the boundary layer, followed by varicose and sinuous deformations of
the low-velocity streak that characterizes the wake flow structure. The shock wave induced at the leading
edge of the flat plate is found to have a significant stabilizing effect on the flow field. The use of a higher
wall temperature stabilizes the Mack mode but increases the growth rate of the varicose perturbation.

1. Introduction

Boundary layer transition is a critical factor in the design of high-speed vehicles. Turbulent boundary layers are
characterized not only by increased skin friction, and hence drag, but also by large heat transfer rates that lead to
challenging aerothermodynamic loads. The local turbulent heat flux in the surface of a conventional reentry body
can be an order of magnitude larger than in the laminar regime.30 Although hypersonic boundary layer transition has
been an active research topic for decades, the physical mechanisms involved in the process are not well understood
yet. As a consequence, the existing transition prediction tools for practical hypersonic applications still rely mainly on
empirical correlations. This fact has important implications in the design process, involving large safety factors that
lead to oversizing of the thermal protection systems, with the consequent reduction of the payload capacity. In order
to improve the transition prediction capabilities for the design of future high-speed applications, new methodologies
involving a higher degree of flow physics for each particular case should be developed. According to Reshotko,21 the
use of experimental-based correlations should be replaced by methods based on stability theory and transient growth
considerations. Nowadays, global linear stability theory has become a viable tool for relatively simple geometries from
the computational point of view, which is able to provide accurate results in the first stages of the transition process.25

The presence of three-dimensional isolated roughness elements on the surface of a body –such as those encoun-
tered during an atmospheric entry due to factors like damaged heat shield tiles, gap fillers or remains of contaminants–
are known to have an important impact in the transition process. The perturbations generated by these elements can
accelerate the growth of incoming disturbances and introduce additional instability mechanisms in the flow field, even-
tually leading to a premature occurrence of transition. For instance, global infrared observations of in-flight roughness-
induced transition were performed during the last reentry of the Space Shuttle Endeavour by Horvath et al.11 The results
showed that boundary layer transition over the windward surface of the Orbiter started to take place in an asymmetric
manner after the nose region. After data analysis, it was concluded that transition was most likely caused by some
form of isolated roughness near the nose landing gear door. A review of the most popular isolated roughness-induced
transition criteria, based on empirical data, is given by Tirtey.26

Even if a physics-based prediction of roughness-induced transition is not available nowadays, recent experi-
mental and numerical investigations have considerably increased our knowledge, see for example.10, 13, 27, 29 The flow
structure in the wake behind discrete roughness elements is mainly characterized by strong counter-rotating vortices
that persist a long distance downstream in the transitional wake. These vortices lift-up low-momentum fluid from the
body surface and give rise to low-velocity streaks that are surrounded by regions of high wall-normal and spanwise
shear. Given the strong inhomogeneity of the flow field in the wall-normal (y) and spanwise (z) directions, classical
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linear stability theory (LST) is no longer a valid technique for this problem. In order to obtain meaningful results,
the amplitude functions considered in the stability analysis must be dependent on both y and z coordinates, with no
restrictions on their shape. This approach, in which the perturbations are inhomogeneous in two spatial directions but
homogeneous in the third one and in time, is hereby referred to as BiGlobal stability theory, as introduced by The-
ofilis.24 A significant amount of high-speed roughness-induced transition investigations by means of global instability
theory have been carried out in the recent years, both for supersonic and hypersonic flows and mostly for elements
mounted on top of a flat plate. Groskopf et al.10 performed temporal BiGlobal analyses of the stability of the wake
behind isolated 3D cuboidal roughness elements in a Mach 4.8 boundary layer, and compared the results against direct
numerical simulations (DNS), reporting a very good agreement of the disturbance amplitude shapes. Similar analyses
were developed by De Tullio and coauthors27 at Mach 2.5 and by Paredes18 and De Tullio & Sandham28 at Mach 6 for
the same configuration, in both cases comparing DNS results against spatial BiGlobal and PSE-3D stability theories.
For the two studied cases, the two-dimensional eigenfunctions obtained from the BiGlobal stability computations and
the growth rates extracted from the PSE-3D simulations were both found to be in close agreement with the DNS data.
On the experimental side, Kegerise et al.13 carried out measurements of the disturbance amplitudes behind a diamond
element in a flat plate at Mach 3.5, and compared them against the spatial distribution obtained by the BiGlobal stability
analyses of Choudhari and coworkers5, 6 with satisfactory results, thus reinforcing the validity of the theory for the cases
considered. In all the investigations performed, the dominant wake instability modes were found to be varicose (even)
and sinuous (odd) deformations of the low-velocity streak that characterizes the wake flow structure. Moving to a more
practical configuration, Theiss & Hein22 performed BiGlobal computations on the wake behind different roughness
elements located on the heat shield of a reentry capsule in a Mach 5.9 freestream. For all their cases considered, the
varicose wake modes were the most amplified in terms of maximum N-factors, with the cylindrical roughness element
being the most effective shape. Similar findings were also reported by Theiss et al.23 on an extended study including
PSE-3D calculations on the same configuration.

In the present study we analyze, by means of BiGlobal stability theory, the instability of the wake induced by
a sharp-edged cuboidal roughness element mounted on top of a flate plate in hypersonic flow. The freestream values
considered are the high-Reynolds number run conditions of the von Karman Institute (VKI) H3 tunnel.26 The effect of
the flat plate leading edge on the instability characteristics of the flow is investigated by means of three different base
flows, respectively corresponding to an infinite flat plate with no leading edge, a finite flat plate with a sharp leading
edge and a third one with a circular (blunt) leading edge. Furthermore, the influence of wall temperature on the stability
is also examined through two different wall temperature boundary conditions, namely, an isothermal wall at ambient
temperature and an adiabatic wall.

2. Governing equations

The governing equations considered in this study are the Navier-Stokes equations for a Newtonian fluid. They consti-
tute a system of nonlinear partial differential equations that expresses the fundamental laws of conservation of mass,
momentum and energy of a fluid. Denoting the primitive variables of the fluid as density ρ, pressure p, temperature T
and velocity components ui (i = 1, 2, 3), the system can be written in conservation form and in a Cartesian reference
frame as

∂ρ

∂t
+
∂(ρui)
∂xi

= 0, (1)

∂(ρui)
∂t

+
∂(ρuiu j)
∂x j

+
∂p
∂xi
− ∂τi j

∂x j
= 0, (2)

∂(ρE)
∂t

+
∂(ρEui + pui)

∂xi
+
∂qi

∂xi
− ∂(uiτi j)

∂x j
= 0, (3)

where t is the time coordinate, xi is the ith spatial coordinate and E = e + uiui/2, with e being the specific internal
energy of the fluid. The viscous stress tensor τi j is defined as

τi j = µ

(
∂ui

∂x j
+
∂u j

∂xi
− 2

3
∂uk

∂xk
δi j

)
, (4)

where µ is the dynamic viscosity of the fluid and δi j is the Kronecker delta. The conductive heat flux vector qi is
modeled using Fourier’s law of heat conduction, given by

qi = −k
∂T
∂xi

, (5)
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with k denoting the thermal conductivity of the fluid. Under the assumption of a calorically perfect gas, the system is
closed through the perfect gas equation of state together with two additional thermodynamic relationships, respectively
expressed as

p = ρRT, e = cvT and cv =
R

γ − 1
, (6)

where R is the specific gas constant, cv is the specific heat at constant volume and γ is the ratio of specific heats. Here,
air is considered with the values γ = 1.4 and R = 287.18 J/(kg·K). Sutherland’s law is used to account for the variation
of the dynamic viscosity with temperature, such that

µ = µre f

(
T

Tre f

)3/2 Tre f + S
T + S

, (7)

with S = 110.4 K and the reference values µre f = 1.716×10−5 kg/(m·s) and Tre f = 273.15 K. Furthermore, the Prandtl
number is assumed constant with a value of Pr = 0.72, so that the corresponding thermal conductivity is calculated as
k = µcp/Pr, where cp denotes the specific heat at constant pressure. The similarity parameters that define the problem
are γ and the freestream Reynolds, Mach and Prandtl numbers, respectively denoted by Re∞,M∞ and Pr∞.

2.1 Formulation of the linear stability problem

Following classical linear stability theory, the primitive flow variables q = [u, v,w,T, p]T are split into a steady refer-
ence state q̄, also known as base flow, and a small unsteady perturbation field q̃:

q = q̄ + εq̃, (8)

with ε � 1. The base flow is assumed to be locally parallel in the streamwise (x) direction, so that q̄ = q̄(y, z) at a
given x coordinate. As stated before, due to the high shear that characterizes the wake base flow in the wall-normal and
spanwise directions, the amplitude of the perturbations is considered to be a function of both y and z. The ansatz of the
modal perturbations for this case can be written as

q̃(x, y, z, t) = q̂(y, z) exp[i(αx − ωt)] + c.c., (9)

where q̂ is the two-dimensional amplitude function, α is the wavenumber along the streamwise direction, ω is the
angular frequency and c.c. denotes the complex conjugate.

In this work, the spatial approach is considered. In such a framework, ω is real and represents the angular
frequency of the perturbations. On the contrary, α is complex, with the real part αr = <{α} being the streamwise
wavenumber of q̃ and the imaginary part αi = ={α} its spatial growth rate. With this definition, a positive value of αi

means a spatial decay of the amplitude function whereas αi < 0 implies spatial growth.
The governing equations of the linear stability problem are obtained by substituting the ansatz in equation (9)

into the Navier-Stokes system (equations (1) to (3)), then subtracting the base flow components and finally neglecting
the non-linear terms, which are of order O(ε2). In the end, the resulting linear system of partial differential equations
can be written in the following compact form

Aq̂ = αBq̂ + α2Cq̂, (10)

where A, B and C are complex and nonsymmetric differential matrix operators, whose specific structure for the im-
plementation used in this study can be found in the work of Groot.8 After discretization of equation (10), an algebraic
generalized eigenvalue problem (GEVP) is obtained, which is nonlinear in the eigenvalue α. The problem is linearized
by means of the companion matrix method,4 defining the following auxiliary vector: q̂+ = [û, v̂, ŵ, T̂ , p̂, αû, αv̂, αŵ, αT̂ ,
αp̂]T , so that the two-dimensional GEVP becomes

A+q̂+ = αB+q̂+, (11)

with

A+ =

[A −B
0 I

]
and B+ =

[
0 C
I 0

]
, (12)

in which A, B and C denote the discrete matrix operators and I is the identity matrix. It is important to note that this
procedure duplicates the size of the system to be solved.
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Figure 1: Schematic representation of the problem geometry and the computational domain used to calculate the base
flow for the stability analysis (not to scale).

3. Numerical methodology

3.1 Calculation of the laminar base flow

The geometrical configuration analyzed here consists of a sharp-edged cuboidal roughness element mounted on top of
a flat plate. The freestream values considered correspond to the high-Reynolds test conditions of the VKI H3 hyper-
sonic wind tunnel,26 which are summarized in Table 1. Because of the low freestream temperature (total temperature
T0 = 500 K) no high-enthalpy effects are expected in the flow, so the assumption of a calorically perfect gas is justified.
Depending on the case, the flat plate wall is either considered to be isothermal, with a wall temperature of Tw = 300
K, or adiabatic. The first option is a reasonable approximation of the situation encountered in the wind tunnel, char-
acterized by short operating times, whereas the second one is more representative of flight conditions. The numerical
solution of the base flow is fully laminar, and is carried out using the CFD package CFD++ on a block-structured
grid consisting of hexahedral cells, respectively obtained with blockMesh. The spatial discretization is based on a
second-order upwind finite volume scheme, featuring a limited total variation diminishing (TVD) flux interpolation to
minimize numerical oscillations in the vicinity of discontinuities. Regarding time integration, an implicit (backward
Euler) scheme with multigrid acceleration is employed.

A representation of the computational domain used to obtain the base flow is shown in Figure 1. As it can be
observed, the domain is located below the shock wave induced at the flat plate leading edge, and can be considered to
be a subset of a bigger domain which includes the complete flat plate. This approach has already been used in similar
analyses with successful results.22, 27, 28 It helps to reduce the computational effort needed to obtain a converged base
flow while adding flexibility to test different inflow conditions. Nevertheless, it requires the imposition of adequate
inflow profiles at the inflow and top boundaries, which usually come from another numerical solution of the Navier-
Stokes equations or from a self-similar boundary layer12 computation. The top boundary has a slope in order to avoid
roughness-induced shock waves to impinge on it, at an angle given by the corresponding Mach wave for the freestream
conditions: θ = arcsin(1/M∞) ≈ 9.59 degrees. Furthermore, due to the spanwise symmetry of the geometry under
study, only half of the element is considered. The size and location of the roughness element are determined following
the approach of De Tullio et al.,27 in which the roughness has a height (h) equal to the displacement thickness of the
boundary layer (δ∗) at a location defined by the Reynolds number Reδ∗ = u∞δ∗/ν∞ and the freestream conditions. The
value for Reδ∗ employed here is the same as the one used in that study, namely Reδ∗ = 8200, which, with the freestream
parameters considered, gives a roughness height of h = δ∗ = 0.32 mm. The planform shape of the roughness element
is a square with edge length d = 6h. The leading edge of the roughness is placed at a streamwise distance of 34h
from the inlet of the computational domain, which is in turn located at a streamwise distance of 16h measured from
the streamwise position where the displacement thickness of the self-similar boundary layer matches δ∗. Using a self-
similar boundary layer profile based on the conditions given in Table 1 with an isothermal wall at Tw = 300 K, the inlet
of the domain is determined to be located at xin = 1.52 cm with respect to the flat plate leading edge. As for the size
of the computational domain, the streamwise and spanwise lengths are respectively Lx = 150h and Lz = 20h, and the
domain height at the location of the roughness leading edge is Ly = 10h.

Regarding the boundary conditions, the primitive flow variables are prescribed at the inlet and the top boundaries
of the domain with values that are either obtained from a converged numerical solution in a bigger domain without the
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Table 1: Summary of the freestream conditions used in the computations.

M∞ T∞ [K] p∞ [Pa] Re∞/l [1/m]

6 60.98 1963.42 2.60 × 107

30 32 34 36 38 40 42 44 46 48 50

0

1

2

3

30 32 34 36 38 40 42 44 46 48 50

0

1

2

3

4

5

Figure 2: Detail of the computational grid used to obtain the base flow in the region near the roughness element. Only
every four grid points in the streamwise and spanwise directions and every six in the wall-normal direction are shown.

roughness element or from a self-similar boundary layer computation. Note that when no roughness is present, the flow
field is constant along the spanwise direction and the problem becomes two-dimensional, so that the values to prescribe
can be computed through a 2D simulation. This is an additional advantage of using a subdomain with prescribed inflow
data. At the center and side planes, symmetry conditions are specified, such that the actual problem would correspond
to a spanwise array of discrete elements. Finally, at the wall and outlet boundaries the no-slip and supersonic outflow
conditions are respectively used. With respect to the initial conditions, the flow field is initialized with the freestream
values and the system is integrated in time until a decrease of eight orders of magnitude in the averaged residual is
achieved.

An overview of the numerical grid employed to calculate the base flow is represented in Figure 2, in the region
surrounding the roughness element. In order to maintain a reasonable computational effort, the mesh is stretched
towards the element in all directions. The cell spacing is uniform up to the roughness height in the wall-normal
direction and up to the roughness width in the spanwise coordinate. From then on, a constant expansion ratio is applied
until the domain boundary, always keeping a continuity in the cell sizes between the uniform and the expansion regions.
In the streamwise direction, the grid is respectively clustered towards the leading and trailing edges of the roughness,
also employing a constant expansion ratio. The ratios are uniquely defined by the number of cells desired on a given
edge and the length of that edge. Under these considerations, the number of respective cells in the streamwise, wall-
normal and spanwise directions is 560, 340 and 240, resulting in a total count of about 43 million cells. In order to
check the convergence of the base flow, an additional computation has been carried out on a finer mesh by increasing
the number of points in the streamwise and wall-normal directions by 25%, reaching a total of 70 million cells. For a
case prescribing the self-similar boundary layer solution at the inflow and top boundaries, Figure 3 shows a comparison
of the boundary layer profiles at the roughness centerline and the streamwise velocity and temperature contours on a
spanwise plane, all of them evaluated at the domain outlet for the two different meshes. It can be seen that both grids
give the same base flow results, so the coarser mesh has been employed in all the computations reported in this work.

5

DOI: 10.13009/EUCASS2017-60



WAKE INSTABILITY ANALYSIS BEHIND A ROUGHNESS ELEMENT IN HYPERSONIC FLOW

0 0.4 0.8 1.2

0

5

10

15

20

25

30

0 2 4 6

Figure 3: Comparison of the base flow obtained with the designed grid and a finer grid with a 25% increase in the
number of cells in the streamwise and wall-normal directions, for a case prescribing the self-similar boundary layer at
the inlet and top boundaries. (left) Boundary layer velocity and temperature profiles at the roughness centerline (z = 0)
at the domain outlet (x = 150h). (right) Contours of streamwise velocity and temperature at the outlet spanwise plane.

3.2 Solution of the generalized eigenvalue problem

The numerical solution of the stability problem given by equation (10) is performed using VKI’s Extensible Stability
& Transition Analysis (VESTA) toolkit, originally developed by Pinna.19, 20 The particular structure of the matrices A,
B and C is automatically derived and implemented in MATLAB by means of a tool based on the Maxima computer
algebra system. The 2D partial differential eigenvalue problem resulting from the BiGlobal approach is assembled
and discretized in MATLAB by means of the Chebyshev collocation method. This technique is based on a Lagrange
polynomial interpolation in a structured grid with a non-uniform point distribution given by the Chebyshev-Gauss-
Lobatto collocation points, defined on a transformed domain with spanwise and wall-normal coordinates respectively
denoted by ξ and η, with ξ, η ∈ [−1, 1]. It has to be noted that the computational domain for the stability analysis of
interest consists of a spanwise plane orthogonal to the flat plate wall, so the use of a rectangular grid is suitable for the
solution. In the majority of practical problems, the transformed grid does not coincide with the physical domain under
study, and therefore adequate geometrical mappings have to be considered. In the computations presented in this work,
the mapping originally introduced by Malik15 is applied, which allows placing half of the grid points below a given
location. For the wall-normal direction, the transformation is given by

y =
yiymax(1 + η)

ymax − η(ymax − 2yi)
, (13)

where ymax is the coordinate at which the stability domain is truncated and yi denotes the location where the number of
discrete points is split into two halves. The same mapping is also applied along the spanwise coordinate. In this way,
the grid used for solving the stability problem is clustered towards the boundary layer and the roughness centerline,
which are the regions where the strongest base flow gradients are encountered.

Before solving the discrete GEVP, appropriate boundary conditions must be set for the perturbations. At the wall,
the no-slip condition is enforced by setting the velocity perturbations to zero by means of an homogeneous Dirichlet
condition. The same is also applied for the wall temperature disturbance, whereas the pressure fluctuation is determined
by means of a compatibility condition satisfying the wall-normal momentum equation at y = 0. In the wall-normal
far-field boundary, the perturbations are forced to decay by also imposing a Dirichlet boundary condition. Regarding
the spanwise boundaries, the symmetry of the problem is again exploited in order to reduce the computational effort.
In both the centerline and the spanwise far-field boundaries, symmetry or antisymmetry boundary conditions are spec-
ified. In the symmetric case, all the disturbances are set to zero except the spanwise velocity perturbation (ŵ), whose
derivative normal to the boundary must be null. The latter is achieved through an homogeneous Neumann boundary
condition. On the other hand, for the antisymmetric case the previous considerations are inverted, so that Neumann
conditions are specified for û, v̂, T̂ and p̂, and Dirichlet for ŵ. Specific details of the current implementation are given
in.8

The classical algorithm for solving generalized eigenvalue problems is the QZ method, which is able to compute
the complete eigenvalue spectrum. Nevertheless, its computational cost makes it feasible only for the solution of small
problems. For the cases investigated in this work, the discrete matricesA+ and B+ reach a dimension of order O(105),
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Table 2: Summary of the different cases analyzed.

Case Wall temperature BCa Reh h/δ99 Inflow data

1 Isothermal (Tw = 300 K) 324 0.57 Self-similar boundary layer

2 Isothermal (Tw = 300 K) 362 0.56 Smooth flat plate with sharp leading edge

3 Isothermal (Tw = 300 K) 297 0.41 Smooth flat plate with circular leading edge (r = 0.5 mm)

4 Adiabatic 171 0.47 Self-similar boundary layer
aBC stands for boundary condition

and as a result other options have to be considered. For such large-scale problems, the most common alternative is the
implicitly restarted Arnoldi algorithm, which is an iterative method that only provides a given number of eigenvalues
in the vicinity of a specific region. The solver built in VESTA toolkit makes use of the parallel implementation of the
algorithm given by the PARPACK library,16 which is written in Fortran, and employs the Message Passing Interface
(MPI) standard. The Arnoldi iteration works optimally for extracting eigenvalues near the boundaries of the spectrum.
However, in the majority of situations the interest is focused on interior values that are closer to the origin. In order
to modify the search region, the so-called shift-invert transformation is applied, which transforms the problem into the
following one

(A+ − σB+)−1B+q̂+ = νq̂+, with ν =
1

α − σ, (14)

where σ is the shift-invert parameter, around which the eigenvalues are sought. The large matrix inversion involved in
the solution process is based on a LU decomposition that is also performed in parallel by means of the Scalable Linear
Algebra PACKage (ScaLAPACK) library.3 A complete description of the parallel solver, including the interfacing
between the necessary libraries as well as different validation cases is provided by Naddei.17 Additional validations
of the BiGlobal solver for analyzing the stability of high-speed boundary layers developing over a smooth flat plate
can be found in the study of Groot.8 The code has also been tested against experimental data in the case of the wake
instabilities behind a micro-ramp mounted on top of a flat plate in incompressible regime by Groot et al.,9 delivering
satisfactory results.

4. Results

A summary of the different cases investigated in this work is provided in Table 2. The parameter Reh denotes the
roughness Reynolds number, defined as Reh = uhh/νh, where uh and νh are the streamwise velocity and the kinematic
viscosity of the fluid evaluated at the streamwise location of the roughness leading edge and at a height of y = h.
Typical values reported in the literature above which transition starts to take place range around Reh ≈ 300 − 500.22

The value of h/δ99 describes the ratio between the roughness height (h) and the local boundary layer thickness at the
streamwise position of the leading edge of the roughness element, denoted by δ99. The value of δ99 is by definition
determined when u/u∞ = 0.99, using the inflow data boundary layer profiles associated to each particular case. On
the one hand, cases 1 to 3 are used to study the effect of the flat plate leading edge on the instability of the wake. The
only difference between them is the inflow data that is prescribed at the inlet and the top boundaries of the domain,
namely, the self-similar boundary layer profile, the solution from a 2D CFD simulation considering a flat plate with a
sharp leading edge, and the flow resulting from another 2D computation assuming a flat plate with a circular leading
edge of radius r = 0.5 mm. On the other hand, in case 4 the wall is assumed to be adiabatic while keeping the rest
of the parameters identical to the first set-up. This last case is used to assess the influence of the wall temperature
on the instability characteristics of the flow. The adiabatic wall temperature of the self-similar boundary layer can be
estimated through the approximate relation12 Tad/T∞ = 1 + Pr1/2 [

(γ − 1)/2
]

M2
∞, which, with the parameters used in

this work, gives a value of Tad ≈ 434 K. Therefore, the use of the ambient temperature (Tw = 300 K) corresponds to a
cold wall boundary condition.

The main features of the base flow are depicted in Figure 4, which shows results for case 1. The roughness
creates two regions of separated flow, located immediately upstream and downstream of it. As it can be observed,
this low velocity fluid causes a significant displacement of the boundary layer and induces a compression wave in the
upstream region of the roughness leading edge, which eventually develops into an oblique shock further downstream.
As the flow turns over the top of the roughness, an expansion wave is generated, immediately followed by a fan of
compression waves that merges into an additional oblique shock as the flow reattaches downstream of the element.
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Figure 4: Base flow results for case 1. (a) Mach number contours on the streamwise (xy) plane at the roughness
centerline (z = 0), showing the roughness-induced shock and expansion waves. (b) Streamwise velocity contours at the
roughness center plane. (c) Streamwise velocity contours on a xz plane at y = h/2. The white lines represent isolines
of u = 0, delimiting regions of separated flow.

The spanwise structure of the flow field is presented in Figure 5, which shows contour plots of the streamwise shear
magnitude, defined as

us =

√(
∂u
∂y

)2

+

(
∂u
∂z

)2

, (15)

on a plane located at a distance of x = 140h with respect to the inlet of the domain. A pair of strong counter-rotating
vortices can be identified, also visible in Figure 4(c), which form at the edges of the roughness due to a pressure
difference between the side and the top surfaces of the element. These streamwise structures lift-up low-momentum
fluid from the surface of the flat plate and give rise to a mushroom-shaped low-velocity streak,5 which is surrounded
by regions of high-shear and large shear gradients in the wall-normal and spanwise directions.

Regarding the spatial stability analysis, all the calculations are performed at a nondimensional frequency of
F = 0.14, expressed as F = f h/u∞, where f is the dimensional frequency, and at x = 140h. The corresponding
dimensionless angular frequency then has a value of ω = 2πF = 0.88. These values have been chosen following
the DNS results of De Tullio & Sandham27 on a similar problem, where this frequency is the one with the highest
disturbance growth rate and the plane is located at a distance where a significant linear development of the dominant
instability modes has been attained. On the other hand, the mapping parameters considered for all the cases are as
follows: ymax = 16h, zmax = 10h, yi = 2.5h and zi = 2h.
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Figure 5: Contours of streamwise shear magnitude in the spanwise plane located at x = 140h. The white dashed lines
represent a projection of the roughness element.

4.1 Effect of the flat plate leading edge

Results of the stability calculation for case 1 are presented in Figure 6, which shows the spatial BiGlobal spectrum and
the two-dimensional streamwise velocity amplitude functions –also known as eigenfunctions– of the most unstable
discrete modes obtained at the specified location and frequency. The number of eigenvalues requested to the Arnoldi
algorithm was 200, with a shift of σ = 0.95. Different grids have been tested in order to check the convergence of
the spectrum with respect to the number of grid points in both the spanwise (Nz) and the wall-normal (Ny) directions,
providing at the same time a direct visualization of the location of continuous, discrete and spurious numerical modes.
A discretized vertical continuous branch located at αr = ω can be observed, which is a characteristic feature of the
truncation of the stability domain.8 According to Balakumar & Malik,2 the modes composing this branch represent
entropy and vorticity waves. Although not shown in the picture, two additional horizontal continuous branches located
in the real axis respectively at the right and left of the vertical branch can also be found in the spectrum. These branches
are associated to the supersonic nature of the flow, and in this case represent acoustic waves. It has been checked
that such branches can actually be retrieved when changing the shift of the transformed GEVP and/or solving for a
larger number of eigenvalues. Several spurious modes appear scattered along the imaginary axis at a nearly constant
wavenumber of about αr = 0.91, which do not show any grid convergence. Their unphysical nature has been further
confirmed by looking at the associated amplitude functions. The discrete, and physically interesting, eigenvalues are
located at the right of the continuous branch, spanning different wavenumbers in the range approximately between
αr = 0.92 and αr = 1. These modes are completely converged with respect to Nz, while convergence is close with
respect Ny, specially for the unstable eigenvalues. In the remaining stability calculations performed in this study, a grid
resolution of 100 × 110 is employed.

Nine unstable discrete modes are identified, labeled with letters from (a) to (i), respectively associated to the
contour plots of the streamwise velocity amplitude functions. For the particular frequency and streamwise position
considered, the leading instability mode (a) is the Mack mode, which develops in the lateral boundary layer starting
at the sides of the roughness element and spanning the complete computational domain in the spanwise direction.
The nature of this mode is not associated to the presence of the roughness and therefore it can also be retrieved both
with a BiGlobal analysis considering a clean flat plate or by means of linear stability theory. The second dominant
instability mode (b) also peaks at the sides of the element, with an antisymmetric shape function showing a similar
amplitude distribution to that of the Mack mode. The same is true for modes (e) and (f). It is argued that modes (b),
(e) and (f) are oblique perturbations of the same family as the Mack mode, with an increasing spanwise wavenumber
β. Their diagonal-like distribution along the spectrum supports this argument. On the other side, modes (c) and (d)
respectively correspond to the most unstable varicose (even) and sinuous (odd) deformations of the low-velocity streak,
whose amplitude functions are maximum in the high-shear layer surrounding the mushroom-shaped structure. These
are the most unstable perturbations developing in the wake behind the roughness element, with the varicose mode
showing a slightly higher growth rate in this case. The wake of the element also sustains the growth of two additional
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Figure 6: Spatial BiGlobal spectrum and contours of the normalized magnitude of the streamwise velocity eigenfunc-
tions, |û|/max(|û|), for case 1 (F = 0.14, x = 140h). The letters in parenthesis associate the location of a given mode in
the spectrum with its amplitude function. The eigenfunctions represented correspond to the case with 100 × 110 grid
points.

modes, denoted by (h) and (i), which have very small growth rates and their amplitude peaks are located at the interface
between the streamwise vortices, the rising streak and the lateral boundary layer. It is worth noting that, as could be
expected, the regions where the amplitude functions of the wake modes are higher mainly correspond to the areas with
larger shear magnitude gradients. Finally, mode (g) is associated to the leading wake fluctuations (c) and (d). Similarly
to perturbations (b), (e) and (f) in the case of the Mack mode, this mode is believed to correspond to an oblique (β > 0)
instability of the same family as the varicose and sinuous modes. In fact, all the modes located in the diagonal line
at the right of the vertical continuous branch are oblique variations of the varicose and sinuous deformations, with
increasing β when moving towards lower growth rates. Mode (g) is then the first oblique perturbation located in such
diagonal branch.

The results obtained agree qualitatively well with the BiGlobal analysis of Paredes,18 performed at the same
frequency and streamwise position on a DNS base flow with the same roughness geometry and size but at different
freestream conditions. In that study, the Mack mode is also the dominant instability mechanism, followed by the
antisymmetric perturbation found in Figure 6(b) and the varicose mode, although no sinuous instability is reported. On
the same problem, Van den Eynde & Sandham7 report that the varicose mode is linked to the development of the Mack
mode and has a very similar nature, i.e. an acoustic mode that is trapped within the wake behind the roughness element
and reflects back and forth between the wall and the sonic line of the low-velocity streak.

Focusing on the case with a sharp leading edge (case 2), it can be seen in Figure 5 that the base flow is very
similar to that of case 1. Nevertheless, some small differences are noticeable, and the local thickness of the boundary
layer is slightly higher than when the self-similar profile is considered. These discrepancies are more pronounced in
the stability results, illustrated in the left plot of Figure 7, which shows a comparison of the spectrum obtained for cases
1 and 2. It can be seen that the shock induced at the flat plate leading edge is stabilizing the boundary layer. Although
the topology of the spectrum remains the same in both cases, all the discrete modes in case 2 have a lower growth rate
than in case 1. Even if the leading edge shock is weak, it creates a small entropy gradient that produces a vorticity
interaction of sufficient strength to modify the stability of the flow field. The stabilizing effect of the entropy layer
is much stronger when a blunt leading edge is considered. The right plot in Figure 7 presents the resulting spectrum
for the stability analysis of case 3. As it can be observed, no unstable modes have been retrieved for this case. It can
be noticed in Figure 5 that the shear gradients that surround the low-velocity streak in case 3 are smaller than in the
other configurations, already suggesting that the wake instability mechanisms might be considerably weaker. In order
to confirm this result, on one side, a larger area of the BiGlobal spectrum has been scanned by performing BiGlobal
stability computations with different shifts at a smaller resolution. On the other side, an LST analysis has been carried
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Figure 7: (left) Comparison of the spatial BiGlobal spectrum for cases 1 and 2. (right) Spectrum for case 3. For clarity,
spurious numerical modes are not shown.

out at the lateral, low-disturbed boundary layer. None of the calculations have revealed unstable modes neither, so
it is argued that the flow field is stable for this case at the particular frequency and streamwise position considered.
The effect of the entropy layer on the linear stability of supersonic boundary layers over smooth blunt flat plates and
cones was investigated by Balakumar.1 The reported findings show that the entropy layer that is formed in the bow
shock induced by the blunt leading edge persists for a long distance downstream, leading to a strong stabilization of
the boundary layer.

4.2 Effect of the wall temperature

The base flow obtained when considering an insulated flat plate (case 4) presents substantial differences with respect
to the isothermal solution (case 1). As it can be seen in Figure 5, both the boundary layer and the roughness-induced
vortices are considerably thicker when the wall is assumed to be adiabatic. This is expected owing to the higher wall
temperature achieved in this case, since a larger volume of fluid is needed to accommodate the same mass flow due to
the lower density. The shape of the streak is also modified, in this case having a region of increased streamwise shear
in the upper part, that is of similar magnitude as the shear produced by the counter-rotating vortices.

The results of the stability analysis performed to examine the effect of the wall temperature on the stability of
the flow field are displayed in Figure 8. The eigenvalues obtained in case 1 are also shown in the spectrum to allow
for a direct comparison. As before, the letters in parenthesis identify the unstable discrete modes. The topology of the
spectrum and the eigenfunctions is similar to the isothermal case, but the relative importance between the dominant
instability modes presents some differences. In general terms, the boundary layer is more stable in this case. Focusing
on the particular instability modes, the Mack mode (a) is once again the dominant perturbation, although with a lower
growth rate than before. It is known from classical linear stability theory, see for instance Mack,14 that higher wall
temperatures have a stabilizing effect on the Mack mode, thought to be due to the local decrease in the Mach number.
The varicose (c) mode is however more unstable than in the previous case, and this time it has a very similar growth
rate to the Mack mode, making it the second most unstable disturbance for this particular flow field. The amplitude
function of the varicose mode presents a strong peak region in the upper part of the streak, associated to the increased
shear appearing in the base flow in the same area. It is argued that this change in the low-velocity streak makes the
wake more unstable, with the leading wake instability manifesting as a varicose deformation. On the contrary, the
sinuous mode (d) is shifted down, becoming less unstable than when considering an isothermal wall. Modes (b) and (e)
once again correspond to oblique disturbances of increasing spanwise number associated to the Mack mode, whereas
mode (f) is another oblique manifestation of the wake instabilities, in this case with an antisymmetric eigenfunction.
The last mode (g) is of the same kind as in case 1, namely, a disturbance peaking at the interface between the streak,
the roughness-induced vortices and the lateral boundary layer.
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Figure 8: Spatial BiGlobal spectrum and contours of the normalized magnitude of the streamwise velocity eigenfunc-
tions, |û|/max(|û|), for case 4 (F = 0.14, x = 140h). The letters in parenthesis associate the location of a given mode
in the spectrum with its amplitude function. The resulting spectrum for case 1 is also displayed for comparison. For
clarity, spurious numerical modes are not shown.

5. Conclusions

The instability of the wake behind a cuboidal roughness element mounted on a flat plate inside a Mach 6 freestream
has been investigated using linear BiGlobal stability theory. The base flows employed have been obtained by means
of perfect gas laminar Navier-Stokes simulations using a second-order accurate finite volume scheme. The roughness
induces a strong counter-rotating vortex pair that gives rise to a mushroom shaped streak through the lift-up of low-
velocity fluid from the flat plate surface. This structure is surrounded by regions of high shear stress and large shear
gradients in the wall-normal and spanwise directions. The spatial growth rate and the two-dimensional amplitude func-
tions of the instability mechanisms present in the flow have been computed at a particular nondimensional frequency
of ω = 0.88 and at a streamwise position of x = 140h from the domain inlet. At these conditions, the Mack mode is the
most unstable perturbation growing in the boundary layer, followed by varicose and sinuous fluctuations that develop
in the region surrounding the low-velocity streak that characterizes the wake. The amplitude functions of the wake
instabilities are found to be maximum in the regions where the base flow has the strongest shear gradients. Different
oblique instabilities associated to both the Mack and wake modes also present a significant growth, suggesting that
they might as well play an important role in the transition process.

The effect of the flat plate leading edge on the stability characteristics of the flow field has been analyzed by
considering sharp and blunt flat plates. The weak shock wave induced at the sharp leading edge turns out to have a
noticeable stabilizing effect on the flow behind the element, attributed to the interaction between the entropy gradient
generated by the small curvature of the shock and the boundary layer. The stabilization is much stronger when a
blunt leading edge is assumed, up to the point that when a circular leading edge of radius r = 0.5 mm was used, the
BiGlobal solution did not deliver any unstable discrete modes in the roughness-induced wake. The influence of the
wall temperature has also been examined by comparing the stability results obtained with isothermal (Tw = 300 K)
and adiabatic (Tad ≈ 434 K) wall boundary conditions. When the adiabatic wall is considered, the Mack mode is
considerably stabilized, whereas the varicose perturbation becomes more unstable, approximately achieving the same
growth rate as the Mack mode for the specific conditions under study.
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