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Abstract 
An inward-turning inlet is designed and its starting characteristics, as well as the flow control, are 
numerically researched first, then a test model of the researched inlet is manufactured and some 
verification experiments are launched in the current paper. The main designed Mach number of the 
inlet is 6.5. The diameter of the inlet throat is 50mm. The total contraction of the inlet is 5.6, and the 
internal contraction from the end section of the entrance to the throat is about 1.7. The nominal Mach 
number of the experiments is 5, at which the numerical research shows that the inlet can start but can’t 
self-start. In order to make the inlet self-start, some flow-control with bleeding are investigated and the 
reasonable position of the bleeding zone, the area of the zone, and the orifice ratio of the zone are 
obtained from numerical simulation. On the base of these numerical results, some replacement parts 
with bleeding are designed for the test model. The experiments are carried out in a routine cold-flow 
blow-down hypersonic wind tunnel. The outlet section of the round-cross-section nozzle used in the 
current experiments has a diameter of 0.5m, and the nominal Mach number of the nozzle is Ma5. The 
total pressure of the tests is about 10atm, and the total temperature is about 360K. In the tests, silk 
threads and shock wave schlieren video are used as flow visualization methods to show the structure of 
the flow field, by which to judge the status of the inlet. The bleeding parts can be replaced to conduct 
the research of the flow control at typical unstarted status. The tests get the typical starting 
characteristics of the inward-turning inlet with and without the flow control. All the results prove that 
the flow control is effective and that the design method and the numerical simulation of the inward-
turning inlet are soundly reliable. 

1 Introduction 

The research of inward-turning inlet [1],[2] is a hot research field comparing with those of planar compressional ones 
and axisymmetric compressional ones for hypersonic frame/propulsion integrated vehicles, because an inward-
turning inlet has many advantages such as strong compression, low drag, high integration and etc. In fact, the inward-
turning inlet has some similarities to side-wall compressional inlet, but the compression of the former is better-
proportioned than that of the latter.  
The design method of typical inward-turning inlet [3] is totally different from other inlets. Generally speaking, there 
are three main processes to design an inward-turning inlet. Firstly, a basic flow field adopting an inner conical 
compression [4],[5],[6],[7] is designed often by using MOC. Secondly, a series of streamlines are extracted from the basic 
flow field designed in the previous process for the use in the next process. Lastly, the captured curve or the outlet 
outline should be specified so that those streamlines extracted in the previous process can be put in the proper 
positions on the curve, thus a flow tube or an inward-turning inlet is constructed. 
But the aero-performances of such an inward-turning inlet will always decline when the leading edge of the inlet is 
blunted or the sharp corner of the entrance is blended, or the surface of the inlet is reshaped to satisfy the overall 
need of the frame/propulsion integration. In order not to decline the aero-performances, some special handling 
should be done for the design. These handlings will be introduced in the current paper. 
The inward-turning inlets has particular features [8] that makes its aerodynamic performances different from other 
inlets. For example, on the one hand, three dimensional compression leads to strong compression and high flow 
capturing, on the other hand, the starting problem may be serious for there is no natural window for air flow to 
overflow. Meanwhile, three spatial compressions will also form a thick boundary layer which comes from the 
upstream and accumulates at the shoulder of the inlet, where there always is strong interaction of shock/boundary 
layer when an incident shock generated from the inlet cowl gets to the same place. Moreover, the flow field becomes 
particularly complex after this interaction and the interferences between streamlines enhance the complex, thus the 
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7 Conclusion 

An inward-turning inlet is designed and its aero-performances are researched in this paper. Through the research, 
some conclusions can be drawn as follows. 
(1) In the design, some special handlings considered include blunting the leading edge for a basic flow field, 
blending the sharp corner aerodynamically, and transiting the flow tube surface to satisfy the overall need. All these 
handlings can increase the aero-performances of inward-turning inlets. 
(2) The starting and self-starting characteristics are the key techniques for inward-turning inlets. Far-Init and Zero-
Init numerical techniques can get the starting and self-starting characteristics of the inward-turning inlet. In order to 
judge the state of the inlet, such methods should be used as the pressure distribution, internal cross section aero-
parameters, as well as wall tracing method. 
(3) Bleeding in the shoulder of the inlet is an appropriate and convenient way to control the flow field to improve 
the starting and self-starting characteristics of the inward-turning inlet. 
(4) The test results in the blow-down hypersonic wind tunnel show that the silk-threads method is a good way to 
judge the state of the inward-turning inlet. The results also show that the flow control is effective and that the design 
method and the numerical simulation of the inward-turning inlet are soundly reliable. 
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