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Abstract
Different pressure profiles on the frontside and backside of radial impellers create forces in axial direction.
In high head turbopump assemblies for liquid rocket engines axial thrust is inevitable, especially during
start-up transients, harsh environment operations, and throttling. Various passive and active axial thrust
balancing systems exist. This paper concentrates on active systems, where the rotor assembly moves
axially to compensate unbalanced axial force and the hub of the impeller acts as a balance piston. The
function of two systems will be described. Analytical and numerical methods are applied to determine
axial forces. The analytical formulations of each part in the system of an active balancing setup are
implemented into a program and it is verified and validated with results from simulations. The numerical
method also is validated and shows good agreement with data from literature. In a case study of a 120 kN
engine LOx turbopump impeller, analytical and numerical results for the axial forces and the leakage flow
are presented for an active balancing system with one governing gap and for a system with two governing
gaps. Calculations have been done for three rotation speeds and a rotor displacement of 0.5 mm around
the nominal position. The results are shown and discussed.

1. Introduction

Expertise in designing turbopumps is being built up in Germany. In the course of this the project KonRAT, a German
abbreviation for application of rocket propulsion components for aerospace transport systems, has been founded at the
Ludwig Bölkow Campus in Bavaria. Key objectives of this project are establishing design procedures within turbop-
umps for cryogenic oxygen, investigations of selected problems in turbopumps and additive manufacturing methods
for aerospace applications like turbopump parts and rocket engine valves. One of the work packages covers the aspect
of secondary systems. Besides the main flow path through the inducer and the impeller on the side of the pump and the
stator and the rotor on the side of the turbine, several additional fluid systems and fluid paths exist in turbopumps for
liquid rocket engines, for example the flow through bearings for lubrication and cooling needs and through the seals
as leakage and purge flow but all kind of gap flows, too. Different pressure levels on fluid exposed areas in those gaps
cause forces in axial direction. Thus, in turbopump assemblies axial thrust is inevitable. In this context the secondary
flow systems in the rotor stator cavities of the impeller play a major role. In order to reduce the forces on the already
highly loaded bearings the axial thrust should be predicted precisely and minimized by design.

Rotor bearings in turbopumps for liquid propellant rocket engines (LRE) are highly loaded components. Typ-
ically they are operated at very high rotational speeds and under cryogenic conditions while being lubricated by the
medium conveyed (e.g. oxygen, methane or hydrogen in liquid form), which generally has very low viscosity and
therefore low lubricational quality. Under these circumstances the bearings are supposed to have as little rolling resis-
tance as possible. If the propulsion system is meant to be reusable, the demands for service life towards the bearings
will be even higher. As a consequence, the load on these must be kept as low as possible. Because of the high pressure
level and different pressure distributions in the side cavities of the impeller there would be a large amount of axial
thrust if no measures were taken to balance axial forces. This would mean a high load on the rotor bearings and would
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significantly reduce their service life. Therefore axial thrust balancing plays an important role in increasing reliability
and in extending service life of bearings in turbopumps for LRE.

2. Background on Axial Balancing

Axial thrust on the rotor assembly emerges from different types of forces, for example pressure forces, impulsive fluid
forces or gravitational forces. Typically, pressure forces acting on the impeller account for the most part of axial thrust.
Thus, efforts towards balancing concentrate on this part of the turbopump. Because of centrifugal forces, the pressure
in the cavities between casing and impeller on both its sides generally decreases from the high impeller exit pressure
at the impeller outer radius to lower pressure levels towards the center. Furthermore, the pressure distribution on the
suction side of the impeller drops down sharply to suction pressure level at a labyrinth seal or slip ring seal located at
the inner end of the suction side cavity. On the backside of the impeller there is no such sharp drop of pressure. Since
areas on both sides of the impeller, which the pressure acts on are usually about the same size, an imbalance in axial
thrust arises as a result of the different pressure profiles.

2.1 Passive Axial Balancing Systems

Measures to balance axial forces usually aim to change the pressure distribution on the backside of the impeller so that
there is an equilibrium under steady state conditions. The imbalance during transient operation is kept to a level which
the rotor bearings can handle. The behavior of passive systems is not affected by a displacement of the rotor and axial
forces are in balance just for a specific point of design. Passive balancing can be achieved by installing a labyrinth
seal or a annular gap seal and back flow holes on the backside of the impeller to match the pressure distribution on
both sides. Other options are impeller back vanes and balancing holes which increase the leakage flow in the backside
cavity. Both measures increase the fluid rotation and thus decrease the axial force.

2.2 Active Axial Balancing Systems

In active systems the pressure distribution in the backside cavity and therefore the axial force towards the suction side
sets in according to the displacement of the rotor assembly. Annular and radial gap orifices are used to create this effect.
A change in nominal axial force results in rotor movement which leads to the change of the width of one or more gaps
in the balancing system. As a consequence, the axial balancing force will change. Once axial forces are balanced, the
rotor assembly will stop moving. Therefore active systems can adjust to altered operating conditions.

2.2.1 Balancing System with One Governing Gap

Active balancing systems with one governing gap typically incorporate an annular gap in the outer region of the impeller
backside and an axial gap between casing and impeller backside at an inner radius. Further inside from the axial gap
there are holes for the leakage flow to return into the main flow channel to a location with low pressure. In some cases
the gap flow goes through bearings for cooling purposes before reentering the impeller main flow. Active systems
generally involve a leakage flow from the impeller outlet through various gaps and balancing holes back into the main
flow. Thus pressure losses occur across narrow gaps which depend on the amount of leakage and the gap width. In a
system with one governing gap there is a first pressure drop at the annular gap. As a consequence the pressure level
in the backside cavity of the impeller generally decreases and so the axial force towards the suctions side is reduced.
As a result of centrifugal forces pressure decreases further towards the center. A second pressure drop down to almost
suction pressure level occurs at the axial gap. Across the balancing holes and the cavity in front of these there is only
a slight pressure loss. Consequently, the width of the axial gap or the displacement of the rotor assembly respectively
determines the level of pressure in the backside cavity of the impeller and thus the level of axial force towards the
suction side.

2.2.2 Balancing System with Two Governing Gaps

The basic layout of a balancing system with two governing gaps is similar to the system with one governing gap. The
axial gap, the balancing holes and the impeller backside cavity are configured in the same way. The annular gap is
replaced by a second axial gap at the outer radius of the impeller. It is designed in a way so that it closes when the inner
axial gap opens. In these systems there is also a leakage flow that runs through the backside cavity, including both axial
gaps and so, depending on their width, causing pressure losses across them. The pressure level and thus the axial force
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towards the suction side is determined by both axial gaps in such a system. In case the rotor assembly moves towards
the suction side, the outer gap closes and the inner gap opens, which results in a bigger pressure drop across the outer
gap and a lower pressure drop across the inner gap. As a consequence, the pressure level in the backside cavity and
the axial balancing force decrease. If the rotor assembly moves in the opposite direction, the pressure level and the
balancing force increase.

Figure 1: An axial balancing system with one governing gap system (left) and a system with two governing gaps (right)

2.3 Description of the Flow

2.3.1 The Flow inside a Rotor-Stator Cavity with superposed Throughflow

In calculations for pressure and axial force acting on the impeller the flow inside a rotor-stator cavity with superposed
throughflow plays a key role. In such a cavity the fluid is at no-slip at the stator wall and at the rotor wall. Therefore
the fluid is at rest at the casing wall and rotates with the local tangential velocity at the impeller wall: cu = ω r. There
are boundary layers on both sides of the cavity. In those, the tangential velocity cu decreases from the rotating wall
towards the center of the cavity and it increases from the casing wall towards the center. There are various types of
flow that can form in a rotor-stator cavity. Daily and Nece [3] have identified four flow regimes in their work:

Flow Regime I: laminar flow and boundary layers interact
Flow Regime II: laminar flow and boundary layers are separated
Flow Regime III: turbulent flow and boundary layers interact
Flow Regime IV: turbulent flow and boundary layers are separated

If the boundary layers are separated a core region forms where tangential velocity is constant. In turbopumps for LRE
typically a flow of regime IV is present. The discussion in the present paper therefore focuses on that type of flow.
The rotation of the fluid causes centrifugal forces. Since rotation is higher next to the impeller wall than next to the
casing wall, fluid is conveyed outwards. For continuity reasons, the fluid flows back inwards at the casing wall. Thus, a
circulation of fluid forms in the meridional plane and boundary layers form at the rotor and the stator wall. To describe
the flow in a rotor-stator cavity the fluid rotation ratio

k =
β

ω
=

cu r
ω

=
cu

u
(1)

is introduced. It describes the relation between local rotational fluid speed in the core region β and the impeller
rotational speed ω. If there is no throughflow, k is constant: k(r) = k0. In the core region the gradient in pressure equals
the centrifugal force:

dp
dr

= k2(r)ω2 r2 ρ. (2)

If the pressure p2 at the outer radius r2 of the cavity is given, the pressure distribution can be calculated with

p(r) = p2 − ρω2
∫ r2

r
k2(r) r dr. (3)
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The axial force acting on the rotor can be quantified using

FR =

∫ r2

rN

p(r) r dr. (4)

Zilling [13] found a correlation for the fluid rotation ratio k0 in rotor-stator cavities without throughflow based
on their geometry:

k0 =
1

1 +
(

rW
r2

)2
√(

rW
r2

+ 5 tax
r2

)
C f ,W/R

(5)

with C f ,W/R =
λW
λR

=
λU
λR

being the relation between the friction coefficient of the stator wall and the rotor wall. The
equation accounts for fluid wall friction at the rotor, the stator wall, at the outer casing wall and at the hub wall. The
boundary layers at those walls are considered to be similar to a turbulent pipe flow and the radius of the hub to be
negligible.

In turbopumps for LRE a leakage flow that runs from the impeller outlet with a high pressure level to the impeller
inlet with a low pressure level passing through the impeller side cavity exists. It flows along the casing inwards and
carries along the angular momentum of the main flow. Thus, the leakage flow boosts the fluid rotation in the impeller
side cavity. With a superposed throughflow the fluid rotation ratio k is no longer constant and varies with the radial
position. Typically k increases radially inwards for centripetal throughflows. Möhring [6] formulates a differential
equation for rotor-stator cavities with superposed throughflow. It accounts for wall friction at the stator and the rotor
wall and also for the angular momentum of the throughflow which enters the cavity through a annular gap at the outer
radius. Furthermore the angular momentum of the secondary flow in radial direction are considered. Wall shear stress
is assumed to be of Blasius-type and the velocity distribution in the boundary layers to be according to the one-seventh
power law. Correlations for the thicknesses of the boundary layers are taken from the case of a disk rotating in an idle
environment and so the fluid rotational ratio is given by:

dk
dx

= 0.07875
πω x8/5

Q Re1/5
u

r3
2


(

1 − k0

k0
k
)7/4

− (1 − k)7/4

 − 2
k
x

(6)

where x = r
r2

is the non-dimensional radius, Q the volumetric leakage flow and Reu = ω r2
2/ν the rotational Reynolds

number.

2.3.2 The Flow in an Annular Gap

An annular gap in the context of axial thrust balancing is formed by a stationary outer ring element and an inner rotating
cylinder. The gap width sangap is significantly smaller than the average radius rangap. If there is an axial throughflow,
which is characterized by Reax =

2 sangap c̄ax

ν
with the axial flow velocity c̄ax, a pressure loss ∆pangap will occur. The axial

flow through the gap is superposed by a rotational flow with its characterizing Reynolds number Rer,angap =
2 sax ω rangap

ν
.

The magnitude of the rotational flow is greatly dependent on the amount of rotation before the gap. On the one hand
the pressure drop across the gap consists of the lossy constriction of the flow at the gap entry, of the losses related to
the formation of the developed gap flow and of the losses of the deceleration and the turbulent dissipation at the end
of the gap. All the losses are summed up in the loss coefficientζEA: ∆pEA =

ρ
2ζEAc̄2

ax. On the other hand the pressure
drop across the gap comprises the friction loss of the fully-developed gap flow: ∆pλ = λangap

ρ
2

l
2sangap c̄2

ax
. Like presented

in [12], the total pressure loss across the annular gap is given by

∆pangap =

(
ζEA + λangap

l
2 sangap

)
ρ

2
c̄2

ax (7)

and the volumetric gap throughflow by

Qangap = 2 π rangap sangap

√√
2
ρ

∆p

ζEA +
λangap langap

2sangap

. (8)

The friction coefficient λangap depends on the type of flow in the gap. For low Reynolds numbers Reangap and Rer,angap

the flow is laminar and friction is independent of the rotational speed. Annular gap flows in turbopumps for LRE are
of turbulent character and according to Gülich [4] λangap can be calculated with

λangap

λ0,angap
=

1 + 0.19
(

Reu,angap

Reangap

)2
0.375

(9)
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with
λ0,angap =

0.31
[
log10

(
0.135 ε

sangap
+ 6.5

Reangap

)]2 (10)

being the friction coefficient for a non-rotating cylinder and ε the throatiness of the gap walls. The development of the
fluid rotational ratio in axial direction in an annular gap can be quantified with

k = 0.5 + (kin − 0.5) exp
− λangap z

4 sangap

1+ 0.75

1+4
(

Reangap
Rer,angap

)2


. (11)

2.3.3 The Flow in an Axial Gap

An axial gap consists of two ring face elements which are at close distance and a flow perpendicular to the rotation axis
runs between them. The gap width is significantly smaller than the inner radius of the faces and one of them rotates
while the other face is at rest. Pressure losses in an axial gap are similar to those in an annular gap. At the entry of the
gap there are losses because of the acceleration and constriction of the flow: ∆pE =

ρ
2 ζE c̄2

i . Along the walls of the gap
friction further increases the losses: ∆pλ =

ρ
2
λangap ri

2 sangap
c̄2

i (1 − ri/ra). Furthermore there are additional losses at the end of
the gap because of deceleration and turbulent dissipation: ∆pA =

ρ
2ζA (ri/ra)2c̄2

i . The rotation of the fluid in the gap and
therfore the centrifugal forces, which result in an increase in pressure in outward direction, are taken into account by
∆pZ =

ρ
2 k2 ω2(r2

a − r2
i ). Also there is a nozzle effect which increases pressure for a throughflow inwards. Wagner [11]

found for the volumetric throughflow of an axial gap

Qaxgap = 2 π ri saxgap

√
ρ

2
∆paxgap − k2 ω2 r2

a (1 − a2
r )

ζE a2
r + λaxgap

ri
2 saxgap

(1 − ar) + ζA
. (12)

with ar = ri/ra. The pressure distribution in the gap is given by

paxgap(r) = pE +
ρ

2
c̄2

i

ζA +
λaxgap r2

i

2 saxgap

(
1
ri
− 1

r

)
− r2

i

r2 +
k2

axgap ω
2

c̄2
i

(r2
a − r2

i )

 (13)

and the axial force by

Faxgap =

∫ ro

ri

paxgap(r) r dr. (14)

λaxgap is calculated with equations 9 and 10 and the Reynolds numbers Reaxgap =
2 saxgap c̄i

ν

√
ar and Rer,axgap =

2 saxgap ω ra

ν

√
ar.

3. Description of the Applied Methods

3.1 Analytical Method

The analytical calculation programs presented in this paper can determine the pressure distribution and the axial thrust
acting on the backside of the impeller. Furthermore the volumetric leakage flow through the backside cavity is calcu-
lated. Input parameters include geometrical impeller, cavity and gap data, rotational impeller speed, suction pressure,
impeller pressure head and rotational speed of the fluid at the impeller exit. The programs are subdivided into separate
program modules for each particular flow affecting part of a balancing system, such as e.g. an axial gap or a rotor-stator
cavity. All elements of a balancing system that affect the flow influence each other. Therefore the analytical formula-
tions of all parts need to be solved in a combined context. Thus, the program blocks are linked by means of leakage
flow and pressure loss. Because of continuity, the volumetric flow through each element has to be the same:

Q = Qrscav = Qangap = Qaxgap.

Also the sum of the pressure losses or respectively the pressure decreases of all elements must be equal to the impeller
pressure head: ∑

i

∆pi = ∆pImp = p2 − pS . (15)

The analytical equations of the balancing systems are solved iteratively. In the first iteration step generical initial values
for the iterative variables are specified. The calculations done with these values result in new values for the iterative
variables and with them the calculation process starts over. To avoid strong numerical oscillation of the solution values
and therefore instabilities a damping coefficient d for the leakage mass flow variable is used. The iterative process stops
as soon as the change in volumetric leakage flow Q is below a specified limit.
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3.1.1 Program for a Balancing System with One Governing Gap

The calculation program for a balancing system with one governing gap consists of four program modules: an annular
gap block, two rotor-stator cavity blocks and an axial gap block. Figure 2 shows the iterative calculation process for
such a system. An iteration run starts with the calculation of the pressure loss ∆pangap across the annular gap and the
fluid rotation ratio kE at the end of the gap from the leakage flow Qn and the fluid rotation ratio at the entry of the gap
kin. For that equations 7, 9, 10 and 11 are used. With kE , Qn and with equations 3, 4, 5 and 6 the rotor-stator cavity
module for the section between the annular gap and the axial gap calculates the pressure decrease in the outer cavity
∆pr−s, the distribution of the fluid rotation ratio in the whole backside cavity k(r) and the axial force Fr−s acting on
the impeller in this section. With the pressure drops of both previous modules, k(r), the suction pressure pS and the
impeller exit pressure p2 = pS + ∆pImp, the pressure drop in the inner rotor-stator cavity ∆pn

B and the wall friction
coefficient λn

axgap the program block for an axial gap determines the axial force Faxgap acting on the impeller in the gap,
the new leakage flow Qn+1 and the new wall friction coefficient λn+1

axgap. The calculations in this module are based on
equations 9, 10, 12, 14 and 15. The (last) program module for the rotor-stator cavity between the axial gap and the
balancing holes determines the new pressure drop ∆pn+1

B and the axial force FB of this section of the impeller backside
cavity with k(r) and equations 3 and 4. The pressure in the sector between the balancing holes and the hub is assumed
to be equal to suction pressure. The axial force is given by: Fs = pS π

(
r2

i − r2
H

)
. The axial forces of each section are

summed up to the total axial thrust on the backside of the impeller: Fbs = Fs + Fb + Faxgap + Fr−s.

Figure 2: The iterative calculation process for the backside cavity of a balancing system with one governing gap

3.1.2 Program for a Balancing System with Two Governing Gaps

The calculations program for a balancing system with two governing gaps is similar to the program for a system with
one governing gap. It also has two rotor-stator program modules and a block for an inner axial gap but for the annular
gap module a second axial gap program block comes in place. Figure 3 shows the iterative calculation process for this
kind of balancing system. An iteration run begins with the calculation of the pressure loss across the outer axial gap
∆paxgap,o and the axial force in the gap Faxgap,o which acts towards the hub side. From there on the calculation process
is identical to the program for a balancing system with one governing gap. For a balancing system with two governing
gaps the total axial thrust on the backside of the impeller is: Fbs = Fs + Fb + Faxgap,i + Fr−s − Faxgap,o.
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Figure 3: The iterative calculation process for the backside cavity of a balancing system with two governing gaps

3.2 Numerical Method

To assess the functionality and the calculated values of the programs presented, numerical RANS flow simulations
are carried out. In a first step, the flow in a rotor-stator cavity with superposed through-flow is analyzed. In the next
step, the CFD model of the rotor-stator cavity is adapted to the geometry of the investigated impeller, and extended
to represent the backside cavity of the impeller of either a balancing system with one governing gap or a system with
two governing gaps. The extended models also include the particular gap configuration of the balancing system and
a further gap for the through- flow to return to both the main and impeller exit streams. The numerical procedure for
all cases is based on the Finite-Volume Method using collocated, structured grids, and the axisymmetry hypothesis in
the mean section. The solving process is done with the commercial software ANSYS CFX 16.2 [1] with convergence
criteria set to 10−5 RMS.

3.2.1 Simulation Model of a Rotor-Stator Cavity

The experiments from Poncet with water in the gap between a rotating disk at high speeds and a non-rotating casing
wall are compared to the numerical predictions. The geometry of the CFD model for a rotor-stator cavity is based
on the experimental setup in that publication [7]. The simulation domain is a 1◦ segment of the entire cavity with an
inflow opening at the top for the through-flow to enter, and an exit opening at the hub. The grid consists of 279 cells in
the radial direction and 79 cells in the axial direction. This grid has proven to be sufficient to provide grid-independent
solutions. The grid has been refined at the rotor and the stator walls to resolve the boundary layers. The fluid is
water at 25 ◦C (density ρW = 997 kg

m3 , dynamical viscosity µW = 8.899 · 10−4 kg
m s ) assumed to be incompressible and

isothermal. Turbulence is modeled with Menter’s SST-k-ω model, which has already successfully been applied to this
kind of flow [2]. At the static walls, the velocity is set to zero, and the tangential velocity of the rotor wall is ω r. The
distribution of the tangential velocity at the entry gap is linear, from cΘ = ωR2 at the outer edge of the disk to cΘ = 0
at the outer stator wall. In the axial direction, a parabolic velocity profile is set according to the through-flow rate CW

with cz = CW νR2/
[
π

(
R2

3 − R2
2

)]
at the peak and cz = 0 at the outer edge of the disk as wells as at the outer stator wall.

There is no flow in radial direction at the entry opening. Latter boundary conditions are set as proposed by Poncet,
Chauve and Schiestel. At the exit opening an outward mass flow with ṁ = CW νR2 ρW/360 is defined.
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3.2.2 Simulation Models of Active Balancing Systems

The dimensions of the balancing systems are based on the geometry of an LOx impeller for a 120kN expander cycle
engine under development in the project KonRAT [9]. Details on design and requirements for the turbopump can be
found in [5] and [8]. In the preliminary KonRAT design the outer impeller diameter r2 is 50 mm. Both simulation
domains, for a balancing system with one governing gap and for a system with two governing gaps, are one 1◦ segment
of the backside cavity of the impeller. They both include half of the main flow at the impeller exit where the leakage
flow branches off, an inner axial gap with a width between 0.05 mm and 0.45 mm (depending on the case) and a
back flow channel of 0.7 mm width. This represents balancing holes since they can not be modeled in one segment.
All narrow gaps have chamfers of 0.1 mm × 45◦ at their entries and exits. The width of the backside cavity is set
to 2.05 mm for which the relation G = br−s/r2 = 0.0036 is the same as in [7]. The model of the system with one
governing gap has an annular gap with a width of 0.25 mm and a length of 3 mm. The model of a system with two
governing gaps has a further axial gap with a length of 5 mm and the backside cavity is extended to 58.2 mm. Details
of the domains’ dimensions can be seen in figures 7 and 9. The meshes are refined at all walls of the cavity, gaps,
and resolve the boundary layers down to the viscous sublayer. The faces of the cells are aligned with the flow where
possible, and cover roughly 220000 cells (system with one governing gap) or 286700 cells (system with two governing
gaps) respectively. The fluid is defined as liquid oxygen at 90.2 K (density ρLOx = 1130 kg

m3 , dynamical viscosity
µLOx = 1.85×10−4 kg

m s ) which is considered to be incompressible and isothermal. Turbulence is modeled with Menter’s
SST-k-ω model. At the impeller exit profiles according to the one-seventh power law for the tangential and meridional
velocity cΘ and cr are set so that they are zero at the impeller wall and peak in the main channel mean with w2u and
w2m. In the mean of the channel a symmetry plane is defined. Static pressure is specified at the entry to the volute
(pVol = ps + ∆pImp) and at the back flow channel exit (pb = ps). At all rotor and stator walls all velocity components
are set to zero, except for the tangential velocity cΘ at the rotor which is ω r.

4. Verification and Validation of the Applied Methods

4.1 Numerical Validation Case

With the CFD model of a rotor-stator cavity described earlier simulations were carried out at a Reynolds number of
Re = ω r2

2/ν = 1 × 106 with three throughflow rates and at Re = 4, 15 × 106 with CW = 5929. The computed
profiles of the non-dimensional tangential and radial velocities c∗

Θ
= cΘ/(ω r) and c∗r = cr/(ω r) at the radial location

x = 0.56 are presented in figure 4 and compared to LDA data from the experiments in literature [7] and the predictions
of the Reynolds stress turbulence model therein. z∗ = z/br−s is the non-dimensional axial coordinate with z∗ = 0
corresponding to the rotor side and z∗ = 1 to the stator side. At low centripetal throughflow rates the fluid in the core
region rotates slower than the rotor and begins to overtake latter at higher rates. With an increased Reynolds number
of Re = 4.15× 106 the relative rotation speed of the core is lower than with Re = 1× 106. With increasing throughflow
the radial velocity profile becomes more and more centripetal. Increased disk speed boosts the centrifugal forces at
the rotor and therefore rises the outward flow at this side of the cavity. The results of the conducted simulations with
the SST model are in very good agreement with the experimental data at all throughflow rates and Reynolds numbers.
There is a minimal discrepancy to the Reynolds stress model of Poncet [7]. The velocity profiles for Re = 1 × 106 and
CW = 5929 at other radial locations (not illustrated) also match the LDA data in a very satisfactory way and are slightly
closer to the measured values than the Reynolds stress model presented in literature.

In figure 5 the pressure coefficient Cp = P∗(x) − P∗(x = 0.92) with P∗ = 2 p/(ρW ω r2
2) is plotted versus the non-

dimensional radius x for Re = 1×106 and three throughflow rates. The predictions of the SST model are compared to the
Reynolds stress model of Poncet [7] and their experimental pressure data. For all throughflow rates pressure decreases
towards the center of the cavity. With higher throughflow rates the pressure drop increases (lower absolute values).
This is in accordance with theory (see equation 3) and measurements. The overall agreement between the predictions
with the SST turbulence model and the pressure measurements is good. For all throughflow rates investigated there
is some deviation. Predictions of the pressure profiles in the cavity with the Reynolds stress model in literature are
more accurate than predictions with the SST model. Still the SST model implemented in ANSYS CFX 16.2 is a good
compromise in terms of prediction quality, convergence and modeling effort.

8

DOI: 10.13009/EUCASS2017-40



S. MAIER; B. WAGNER; L. VEGGI; J.D. PAUW; P. BECK. ASSESSMENT OF AXIAL THRUST BALANCING SYSTEMS IN
LRE TURBOPUMPS

Figure 4: The computed profiles of the non-dimensional tangential and radial velocities c∗
Θ

= cΘ/(ω r) and c∗r = cr/(ω r)
at the radial location x = 0.56 in comparison to LDA data from the experiments in literature [7] and the predictions of
the Reynolds stress turbulence model therein for two Reynolds numbers and three throughflow rates

Figure 5: The pressure coefficient Cp from simulations with the SST model compared to experimental data and the
Reynolds stress model from literaure [7] for three throughflow rates
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4.2 Verification of the Analytical Model

Figure 6 presents the fluid rotational ratio kCFD in the mean of the cavity taken from the simulation results at Re = 1×106

with three throughflow rates and at Re = 4.15 × 106 with CW = 5929. Moreover the plot shows the fluid rotational
ratio kcalc calculated with the program module for a rotor-stator cavity. For latter calculation the fluid rotation ratio
at the throughflow entry opening is defined as kE = 0.5 which represents the average value of the linear profile of
the tangential velocity. All graphs show increasing values towards the center of the cavity. With rising throughflow
rates the fluid rotation intensifies. This is in accordance with the conservation of angular momentum and the boosting
influence of a centripetal throughflow on the fluid rotation in the cavity. There are small discrepancies in the region
next to the hub. Apart from that agreement between both methods is very good for all cases investigated.

Figure 6: The fluid rotation ratio kcalc from analytical calculations compared to the ratio kCFD taken from the simulation
results for Re = 1 × 106 (left) and Re = 4.15 × 106 (right) and three throughflow rates

Table 1 shows the pressure drop ∆p in the cavity from the outer edge of the disk (x = 1.0) to the hub (x = 0.152)
along with the axial force FR acting on the rotor for the investigated cases at Re = 1 × 106 and Re = 4.15 × 106 and
for throughflow rates of CW = 1976, 5929 and 9881. The pressure level at x = 1.0 is defined to be the reference
pressure of pre f = 0 bar. The pressure drop in the cavity is calculated from the fluid rotation ratio kcalc which is
determined using equation 6 and from the fluid rotation ratio kCFD extracted from the flow simulation results. Also
the pressure drop is identified from latter (∆pCFD) as well as the axial force (FR,CFD). Moreover the axial thrust is
calculated from the fluid rotations ratio kcalc and kCFD. The pressure drop increases with intensifying throughflow and
with higher Reynolds numbers which corresponds to theory (see section 2.3.1 and equation 3). ∆p(kCFD) and ∆pCFD

show excellent agreement for all cases. This proves that equation 3 is valid. All values of ∆p(kcalc) and FR(kcalc) match
the pressure drop ∆pCFD and respectively the axial thrust FR,CFD taken from the simulation results in a very good
way. Therefore there is a very satisfying agreement between predictions with the differential equation 6 and the CFD
predictions. Conformity between FR(kCFD) and FR,CFD verifies the integration method used in the rotor stator program
module to calculate the axial force from the fluid rotation ratio k.
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Table 1: The pressure decrease in the rotor-stator cavity ∆p and the resulting axial force FR on the rotor identified
in the simulations and those calculated from the fluid rotation ratio kcalc from equation 6 and from the fluid rotation
ratio kCFD taken from simulation results at two Reynolds numbers and three throughflow rates

Re CW ∆p(kcalc) ∆p(kCFD) ∆pCFD FR(kcalc) FR(kCFD) FR,CFD
1 × 106 1976 −0.0638 bar −0.0655 bar −0.0634 bar −267.4 kN −320.0 kN −318.6 kN
1 × 106 5929 −0.2045 bar −0.1873 bar −0.1800 bar −458.0 kN −542.7 kN −531.7 kN
1 × 106 9881 −0.3266 bar −0.3269 bar −0.2987 bar −594.4 kN −718.7 kN −693.9 kN

4.15 × 106 5929 −1.0578 bar −0.9301 bar −0.9343 bar −4536.7 kN −4793.7 kN −4828.7 kN

5. Results

The results of the analytical calculation programs and of the RANS CFD simulations are presented for the geometry and
operating conditions of the impeller under development in the project KonRAT. Suction pressure pS is 9 bar, impeller
pressure head ∆pImp is 45 bar (independent from the impeller rotation speed ω), tangential velocity at the impeller exit
cΘ is 26.58 m

s (varies linearly with ω) and the meridional velocity at the impeller exit is 10.38 m
s (independent from

ω). The geometry of the impeller and of all narrow gaps are presented in section 3.2.2. The loss coefficient ζE for the
entry of an axial gap is set to 0.15 and the coefficient ζA for the exit to 1.0. The assessment of the analytical and the
numerical methods is carried out at three rotational speeds: 10000 rpm, 15000 rpm and 20000 rpm.

5.1 Balancing System with One Governing Gap

For the analytical calculation of a balancing system with one governing gap the fluid rotation ratio kin at the entry of
the annular gap is determined from the tangential velocity at the impeller exit cΘ. Furthermore the coefficient for losses
at the entry and at the exit of the annular gap ζEA is set to 1.1. Figure 7 illustrates the pressure profile in the backside
cavity of the impeller p(x) along with the distribution of the fluid rotation ratio k(x) from the analytical calculation
and the RANS simulation at 10000 rpm and for an axial gap width saxgap of 0.15 mm. Furthermore the figure shows
the dimensions of the backside of the impeller and of the gaps. This is an example of the output of both calculations
methods. Most of the other investigated cases show similar behavior. The fluid rotation ratio k is about 0.7 at x = 1.0
and increases towards the center for both methods. Inwards from the axial gap kCFD starts to decrease while kcalc

continues to rise. The calculated values of the fluid rotation ratio k excellently match between the annular gap and the
inner radius of the axial gap. In the inner part of the cavity a complex flow can be observed which the analytical method
doesn’t account for and so kcalc deviates from kCFD. For both methods there is a pressure loss across the annular gap
at the outer radius of the impeller. Then pressure continues to decrease in the cavity between the annular and the axial
gap. At the entry to the axial gap there is another pressure loss and pressure keeps on decreasing in the gap. Between
the exit of the axial gap and the back flow channel pressure decreases further. In the section between back flow channel
and the hub the pressure is approximately constant. The calculation results of the pressure are in very good agreement
with pressure values determined with the analytical method. These are overall slightly higher. Consequently the values
of the calculated axial forces and of the volumetric leakage flow show a very good match: 27.29 kN and 1.227 l/s from
analytical calculation compared to 25.74 kN and 1.268 l/s from numerical prediction.

In figure 8 all results for the axial force Fbs and the volumetric leakage flow Qbs of the analytical and numerical
method are plotted versus an axial gap width saxgap up to 0.5 mm at three rotation speeds. Analytical calculations show
decreasing axial force with increasing gap width for all rotation speeds. At 10000 rpm a almost linear behavior with
an overall stiffness of about 7.5 kN/mm can be observed. At higher rotation speeds stiffness decreases and only for
a gap width smaller than 0.15 mm there is a notable change in axial force. The numerical predictions generally have
a negative offset for all cases and gap widths which is because of the pressure profiles being at a slightly lower level
than the analytically calculated ones. Overall they reflect the behavior of the analytical calculations but show a little
increasing tendency from saxgap = 0.15 mm towards greater gap widths for higher rotation speeds. The analytically
calculated values for the volumetric leakage flow Qbs show an increase with bigger gap widths and a decrease with
rising rotational speeds. The numerical results excellently match the analytical values for 10000 rpm. At higher rotation
speeds of 15000 rpm and 20000 rpm there is some discrepancy but still both methods indicate the same behavior of
the leakage. Overall there is very good agreement for the axial force and good agreement for the leakage.
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Figure 7: The pressure profile p(x) and the distribution of the fluid rotation ratio k(x) in the backside cavity of the
impeller from the analytical and the numerical method (left) along with the dimensions of the simulation domain in
millimeters (right) for a balancing system with one governing gap

Figure 8: The results of the analytical and the numerical method for the axial force Fbs and the leakage Qbs of a
balancing system with one governing gap plotted versus the axial gap width saxgap for three rotations speeds
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5.2 Balancing System with Two Governing Gaps

The fluid rotation ratio k(x) and the pressure profile p(x) in the backside cavity of the impeller from analytical calcula-
tion and from numerical simulation are presented in figure 9 for an axial balancing system with two governing gaps. It
is an exemplary case at 10000 rpm with equal axial gap widths (saxgap,i = saxgap,o = 0.25 mm). The fluid rotation ratio
k starts at around 0.6 at the outer radius of the backside cavity and increases towards the center for both methods. At
the back flow channel kCFD drops while kcalc continues to rise. The distributions of k show an excellent match. The
deviation in the region next to the hub is because the analytical method does not consider the complex flow there. Both
methods show a very similar pressure distribution. Starting from the impeller exit pressure there is a pressure drop at
the entry to the outer axial gap. In the gap pressure increases because of the dominating centrifugal forces. From the
outer radius of the backside cavity pressure decreases towards the center. In the inner part of the cavity the behavior
of pressure is identical to the system with one governing gap. The part of the outer axial gap in the pressure profile
is marked with grey color because there the pressure acts contrary to the suction side. The pressure profiles of both
methods are in very good agreement. The pressure values of the analytical calculation are somewhat higher than the
numerical prediction between the axial gap exit and the back flow channel. The calculated values of the axial force
Fbs and the volumetric leakage flow Qbs reflect that observation: 26.43 kN and 1.935 l/s from analytical calculation in
comparison to 25.70 kN and 1.989 l/s from numerical simulation.

Figure 9: The pressure profile p(x) and the distribution of the fluid rotation ratio k(x) in the backside cavity of the
impeller from the analytical and the numerical method (left) along with the dimensions of the simulations domain in
millimeters (right) for a balancing system with two governing gaps

Figure 10 illustrates all results for the axial force Fbs and volumetric leakage flow Qbs from analytical calculations
and numerical computations for a rotor displacement ∆s at three rotation speeds. For ∆s = 0.0 mm the inner axial gap
width is 0.35 mm and the outer axial gap width is 0.15 mm. Both methods show a decreasing axial force when the
rotor moves towards the suction side. After a first steep part the gradients of the analytical graphs decrease. Towards
higher rotor displacements stiffness increases again and for ∆s > 0.0 mm the force characteristic gets very steep. For
higher rotation speeds this behavior becomes more prominent. The numerical results are in excellent agreement with
those analytically calculated and reflect the behavior mentioned before. The volumetric leakage flow calculated with
the analytical method is zero at the ends of the displacement range (∆s = −0.35 mm and ∆s = 0.15 mm) and peaks
at around ∆s = −0.05 mm for all rotation speeds. The leakage flow gets less with rising impeller speed. Numerical
simulations confirm those observations and both methods are in excellent agreement.
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Figure 10: The results of the analytical and the numerical method for the axial force Fbs and the leakage Qbs of a
balancing system with two governing gaps plotted versus the rotor displacement ∆s for three rotation speeds

6. Conclusion

For the simple case of a rotor-stator cavity only, the applied numerical method shows very good agreement in com-
parison to experimental data taken from literature. The results are even comparable to existing CFD results with a
Reynolds stress tensor turbulence model. The CFD results of the rotor-stator cavity are also used to verify and validate
the analytical model for the k ratio distribution. Once a again, good agreement could be found. Therefore both methods
are validated and they can be used for the presented case study. Two types of active balancing systems are modeled,
a system with one governing gap and a system with two governing gaps. The geometry and the boundary conditions
are representative for a 120 kN rocket engine LOx turbopump impeller. The gap flow program well predicts both,
the k ratio distribution and the pressure profile. Even for three different rotation speeds and over a wide range of axial
displacement the analytical solutions provide satisfying results for the axial forces and the leakage mass flow compared
to the simulations. For the one gap system a discrepancy to the simulation results can be found. In future, the presented
programs will be joined into the existing analytical prediction tool for the entire turbopump [10]. A loss coupling to
a rotordynamic tool is also planned. The rotor displacement would be an input from the rotor analysis and calculated
axial force will be returned to the dynamic tool. The analytical programs are rapid, reliable, and simple tools, which
are helpful in the iterative design and assessment of active axial balancing systems.
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