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Abstract
Orbits for spacecraft formation flight along unstable orbit are designed. Hamiltonian structure-preserving
(HSP) control is employed to stabilize the motion of spacecraft. Using a simple switching control strategy,
the size of a circular orbit relative to a nominal trajectory can be systematically designed. By applying the
switching HSP control repeatedly, station-keeping problem of a single spacecraft can be solved. The non-
linear stability of the controller is analyzed by using Lagrange-Dirichlet criterion. Numerical simulation
results show that the switching HSP controller works well in Earth-Moon system’s L2 halo orbit.

1. Introduction

In recent years, spacecraft formation flying have been widely performed because the concept of the spacecraft formation
flying has various advantages: reducing the cost, enhancing the system robustness and increasing the space observatory
resolution. Most of research on the spacecraft formation flying have focused on Earth-centered missions, which are
based on two-body problem called Keplerian orbit. However, as space mission requirements become complicated, the
location of spacecraft are not restricted in the Earth orbit.

One of the most promising locations in the deep-space mission are libration points which are equilibria of the circular-
restricted three-body problem (CR3BP). Around the libration points, there exist several families of orbits which are
called Libration Point Orbit (LPO). There exist many research works on LPO based station-keeping problem.1 Starting
with ISEE-3, launched in 1978, a single spacecraft, for example, the Genesis, WMAP and Herchel have been already
in LPO.

In recent years, not only a single spacecraft station-keeping problem but also a multiple spacecraft formation flying
problem about a LPO has drawn much interest. NASA’s planned missions, Terrestrial Planet Finder (TPF) and the
Micro-Arcsecond X-ray Imaging Mission (MAXIM) are examples of multiple spacecraft formation flight. However,
LPO is a non-Keplerian orbit, and therefore formation flying strategies based on Keplerian orbit cannot be applied.
There are several research on LPO-based formation flying. Marchand et al.2 investigated natural and non-natural
formation flying in the vicinity of the LPO. Gurfil et al.3 proposed a nonlinear adaptive neural control. Peng et al.4

proposed an optimal periodic controller for formation flying on LPO. Impulsive control method was also studied by Qi
et al.5 Among the previous research, Scheeres et al.6 presented a non-traditional continuous controller that achieves
bounded motion, which is applicable to formation flying near the LPO. Because Scheeres’ controller preserves the
system’s mathematical structure (symplectic Hamiltonian structure), it is called a Hamiltonian structure-preserving
(HSP) controller. After Scheeres’ work, there have been several research using HSP control. However, most of the
previous research were focused only on stabilization, not on the shape of spacecraft formation pattern.

In this study, a simple switching HSP controller is suggested to stabilize the spacecraft and to make a circular relative
trajectory whose radius size varies arbitrary. Numerical simulation is performed to demonstrate the effectiveness of the
proposed controller.
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2. Preliminaries

2.1 Dynamic Model of the CR3BP

The equations of motion in the CR3BP can be represented as7

ẍ − 2ω f ẏ − x = − (1 − µ)(x + µ)
r3

1

− µ(x − 1 + µ)
r3

2

(1a)

ÿ + 2ω f ẋ − y = − (1 − µ)y
r3

1

− µy
r3

2

(1b)

z̈ = − (1 − µ)z
r3

1

− µz
r3

2

(1c)

where r̄ = (x, y, z) is a rotating frame of which the origin is the barycenter of the system. Conventionally, quantities in
the CR3BP are normalized such that the distance between two primaries, as well as the mean motion ω̄ f = (0, 0, ω f ) of
the primaries, are both equal to a constant value of unity. In addition, the normalized mass unit is M = m1 +m2, and the
mass ratio is µ = m2/M. Using the dimensionless units, the first primary is located on the x-axis at the point (−µ, 0, 0),
while the second primary is at (1 − µ, 0, 0). And, r1 = [(x + µ)2 + y2 + z2]1/2 and r2 = [(x − 1 + µ)2 + y2 + z2]1/2 are
non-dimensional distances between primaries and spacecraft, respectively. Figure 1 shows the geometry of the CR3BP.
The pseudo-potential function U(r̄) is defined as

U(r̄) = V(r̄) + Φ(r̄) (2)

where V(r̄) is the gravitational potential function of two primaries, and Φ(r̄) is the potential due to the rotation of the
reference frame, which are defined as

V(r̄) =
1 − µ

r1
+
µ

r2
(3a)

Φ(r̄) =
1
2

(ω̄ f × r̄) · (ω̄ f × r̄) (3b)

Then, the equations of motion can be rewritten as follows,

ẍ − 2ω f ẏ = ∇xU(r̄), ÿ + 2ω f ẋ = ∇yU(r̄), z̈ = ∇zU(r̄) (4)

Figure 1: Geometry of the CR3BP and the spacecraft formation

The equilibrium points of the CR3BP can be obtained by solving ∇U(r̄) = 0 in Eq. (4) with ˙̄r = ¨̄r = 0. In Earth-
Moon system case, there are five equilibrium points (also known as libration points), including three collinear points
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that lie along the x-axis and two equilateral points. Linearization about any collinear equilibrium point reveals an
eigenvalue structure of the type (hyperbolic)×(center)×(center).8 It is well known that there are infinite number of
periodic/quasi-periodic unstable orbits around the libration points, which are called LPO. Halo and Lissajous orbits are
special periodic and quasi-periodic orbits around the collinear libration points. Figure 2 shows a halo orbit around the
L2 point in the Earh-Moon system. The main objective of this study is to design a new type of spacecraft station-keeping
and formation flying method along the orbits of these libration points.

Figure 2: Southern halo family near the L2 Earth-Moon libration point

2.2 Hamiltonian Dynamics

Equation (4) can be also derived using Euler-Lagrange equation with a Lagrangian

L(r̄, ˙̄r) =
1
2
{(ẋ − ω f y)2 + (ẏ + ω f x)2 + z2} + 1 − µ

r1
+
µ

r2
(5)

If the equation of motion is derived using the Lagrangian, then it has a Lagrangian structure. Let us consider a Legendre
transformation.

[
q̄
p̄

]
=

[
I3 03
−ω f J I3

] [
r̄
˙̄r

]
where J =


0 1 0
−1 0 0
0 0 0

 (6)

Then, Eq. (4) can be transformed into the canonical Hamiltonian system form.

q̇1 =
∂H
∂p1

= p1 + ω f q2 , ṗ1 = − ∂H
∂q1

= ω f p2 − (1 − µ)(q1 + µ)
r3

1

− µ(µ + q1 − 1)
r3

2

(7a)

q̇2 =
∂H
∂p2

= p2 − ω f q1 , ṗ2 = − ∂H
∂q2

= −ω f p1 − (1 − µ)q2

r3
1

− µq2

r3
2

(7b)

q̇3 =
∂H
∂p3

= p3 , ṗ3 = − ∂H
∂q3

= − (1 − µ)q3

r3
1

− µq3

r3
2

(7c)

with the following Hamiltonian function.

H(q̄, p̄) =
1
2

p̄T p̄ + ω f p̄T Jq̄ +
1
2
ω2

f q̄(1 : 2)T q̄(1 : 2) − U(q̄)

=
1
2

(p2
1 + p2

2 + p2
3) + ω f (p1q2 − p2q1) − 1 − µ

r1
− µ

r2

(8)

In the dynamical system point of view, CR3BP can be classified as a Hamiltonian systems. One of the important char-
acteristics of the Hamiltonian systems is that vector fields governed by Hamilton’s equations are volume-preserving.
In other words, Hamiltonian system cannot have an asymptotic stable equilibrium point by nature.
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3. Hamiltonian structure-preserving control

The concept of Hamiltonian structure-preserving(HSP) control was suggested by Scheeres et al.6 whose work focused
on Sun-Earth system halo orbit around the L2 point. HSP control uses the eigenstructure of the linearized equations of
motion, evaluated along the orbit. Originally, the suggested HSP controller uses projected components of the position
error along stable/unstable manifolds. By compensating the stable/unstable components of the position errors, it creates
an artificial center manifold, as the eigenvalues of the linearized system are located on the imaginary axis. Although
stabilization of the relative motion over a short time does not guarantee the orbit stability, Scheeres et al. showed that
the orbit stability can be achieved when control gain is high. HSP control have been widely applied to stabilization of
spacecraft on a solar sail,9 J2-perturbed mean circular orbit,10 elliptic orbit,11 quasi-halo orbit,12 and high-amplitude
distant prograde orbits.13 Because HSP control makes the system marginally stable not asymptotically stable, the
resulting motion of HSP control is a bounded trajectory (not converging trajectory). Due to the HSP control’s feature,
it is defficult to design the relative trajectory of the spacecraft because it cannot make the spacecraft converge to specific
points or trajectories. In other words, using the HSP control, it is hard to make the spacecraft track the reference orbit.
As a result, all of the previous research focused on only stabilization, not on shape of spacecraft relative motion. In
this study a simple switching HSP controller is suggested to stabilize the spacecraft and to make a circular relative
trajectory whose radius size varies arbitrary.

3.1 Linear HSP controller design

The relative distance between two spacecrafts is usually very small compared with r1 and r2, and therefore lineariza-
tion is a useful approximation. Linearization of equation (4) with respect to a libration point leads to a linear time
invariant system. However, linearization of equation (4) along a LPO results in a linear time varying system. There-
fore, controller design for an orbit maintenance or formation flying along the orbit should be based on the linear time
varying system model. Proceeding with the nonlinear equation (4), the periodic reference orbit can be defined as
R̄r = [xr, yr, zr]T with the property R̄r(t +T ) = R̄r(t) and velocity V̄r(t +T ) = V̄r(t). Let us define a real trajectory, which
can be written as R̄ = [x, y, z]T and V̄ = [ẋ, ẏ, ż]T , and system state vector is defined as X̄ = [R̄, V̄]T . Then, the small
deviations of the real trajectory of the spacecraft from the reference orbit can be defined as

δX̄ = X̄ − X̄r (9)

δ ˙̄X = ˙̄X − ˙̄Xr ≈ A(t)δX̄ (10)

A(t) =

[
03 I3

URR 2ω f J

]
(11)

where URR is the second derivative of the pseudo-potential function in equation (2), and 2ω f J is the term related to
the Coriolis acceleration. Because the linearized equation (10) is also a Hamiltonian system. Equation (10) can be
transformed to linear Hamiltonian system using a Legendre transformation.

d
dt

[
δq̄
δ p̄

]
=

[
I3 03
−ω f J I3

] [
03 I3

URR 2ω f J

] [
I3 03
−ω f J I3

]−1 [
δq̄
δ p̄

]
(12)

with following Hamiltonian function

H2(δq̄, δp̄) =
1
2

[
δq̄T δ p̄T

] [03 −I3
I3 03

] [
I3 03
−ω f J I3

] [
03 I3

URR 2ω f J

] [
I3 03
−ω f J I3

]−1 [
δq̄
δ p̄

]

=
1
2

[
δq̄T δ p̄T

] [−URR − ω2
f JJ −ω f J

ω f J I3

] [
δq̄
δ p̄

] (13)

Using equation (10), a linearized motion about a LPO can be written as

δ ¨̄r − 2ω f Jδ ˙̄r − URRδr̄ = 0 (14)

Previous study6 proved that if the reference orbit is cut for a very short time interval, then each orbit piece can be
treated as a time invariant system. In other words, URR can be treated as a constant in a short time interval. Based on
the knowledge of a linear time invariant system, a linear feedback control input can be designed as

Tc = Tδr̄ + Kδ ˙̄r (15)
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Then, the equation of motion in the closed loop system can be written as

δ ¨̄r − (2ω f J + K)δ ˙̄r − (URR + T )δr̄ = 0 (16)

Equation (16) can be simplified as a following form

δ ¨̄r − S δ ˙̄r − Ũδr̄ = 0 (17)

where S , 2ω f J + K, and Ũ , URR + T .

Control input conditions preserving the symplectic Hamiltonian structure are as follow: i) T is a symmetric matrix, ii)
K is skew symmetric matrix. Note that the controller forms of previous works6, 9, 13 are examples of feedback control
law satisfy above conditions. Therefore, it is unnecessary to restrict the controller form like previous research. Hsiao
et al.14 pointed out that if conditions of Ũ and S for stable relative motions are found, then the control input can be
obtained by simply subtracting URR and 2ω f J from the desired Ũ and S . Therefore, in this study, let us concentrate on
finding the condition for stable relative motion rather than proposing a specific controller form.
Negative definiteness of Ũ is a sufficient condition for the stability of the equilibrium points in linear sense. Assume
that the controlled equations of motion can be made as follows

δ ¨̄r − Ũδr̄ = 0 (18)

with a negative definite matrix Ũ. Then, the relative motion can be considered as a combination of three simple
harmonic oscillations. Because Ũ is symmetric, Ũ is always diagonalizable as follows

Ũ = MΛM−1 (19)

where M is an eigenvector matrix of the Ũ, and Λ is a diagonalized matrix of Ũ. Equation (18) can be rewritten as

δ ¨̄r − MΛM−1δr̄ = 0 (20)

Let us define a new variable δg , M−1δr̄, then, equation (20) can be rewritten as

δ ¨̄g − Λδḡ = 0 (21)

where δḡ is a new representation of δr̄ with respect to eigenvector matrix M. It is clear that equation (21) provides
a simple harmonic oscillation. Due to the symmetry of Ũ matrix, the eigenvector matrix M is orthonormal. In other
words, δḡ, which is the new representation of δr̄, does not affect on an orthogonality of δr̄ in the phase space. Therefore,
all of the remaining orbital motion analysis can be performed based on the basis which are the eigenvector of the Ũ
matrix.

3.2 Switching HSP controller design

If HSP control can make the equations of motion as Eq. (18), it is clear that the relative motion of deputy spacecraft is
a combination of three simple harmonic oscillations. The relative motion of the deputy can be written as follows

δr̄(t) = M ·

δg1(t)
δg2(t)
δg3(t)



=
[
h̄1, h̄2, h̄3

]
·

δg1(t)
δg2(t)
δg3(t)

 =

3∑

i=1

[δgi(t) · h̄i] =

3∑

i=1

[{
Aicos(ωit) + Bisin(ωit)

}
h̄i

]
(22)

where Ai and Bi are constant coefficients, ω2
i is the magnitude of the eigenvalues of the Ũ and h̄i is the eigenvectors

of the Ũ. Hsiao et al.15 showed that the trajectory described by each oscillation mode forms an elliptical orbit with
origin of frame at the center. Accordingly, the real relative trajectory is a linear combination of three elliptical orbits.
Generally, it is difficult to imagine the real trajectories which are the combinations of three elliptical orbits. However,
if a proper initial conditions and mode frequencies, i.e., eigenvalues, are given, the real trajectory (combined result of
each mode) can be an elliptical/circular orbit. If the exact conditions making the real trajectory elliptical/circular orbit
are known using that knowledge, then it is possible to design a switching HSP controller. With the switching controller,
the size of elliptic/circular orbit can be changed systematically. In addition, a switching control is used repeatedly, the
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position convergence about the reference orbit can be achieved. Note that Liberzon et al.16, 17 provided a basic idea of
asymptotic stabilization using a state-dependent switching control. They discussed the stabilizing switching strategy
for the harmonic oscillator which is applicable to the HSP controller.
In this study, following cases will be discussed: i) transfer from a circular orbit with radius R1 to an elliptical orbit
whose apsis distances are R1 and R2, respectively, and ii) from an elliptical orbit whose apsis distances are R1 and
R2 to a circular orbit with radius R2. The basic concept of the switching HSP control is similar to Hohmann transfer.
Firstly, let us assume that the deputy spacecraft rotates a circular orbit with radius R1. At any point on the circular orbit,
deputy spacecraft switches the HSP controller to transfer to the elliptical orbit, whose apsis distances are R1 and R2,
respectively. After transferring to the elliptic orbit, the spacecraft switches the HSP controller again at the other apsis
to transfer to the circular orbit whose radius is R2. By following these two step switching, it is possible to resize the
deputy’s circular orbit. For try switching strategy, it is required to know the orbital properties of the deputy spacecraft.

3.2.1 Orbital Properties of deputy spacecraft

Differentiating equation (22) with respect to t gives the relative velocity vector as

δ ˙̄r(t) =

3∑

i=1

[{
−Aiωisin(ωit) + Biωicos(ωit)

}
h̄i

]
(23)

First of all, to make a real trajectory elliptical/circular orbit, each mode frequency should be same (ωi = ω). If the
real trajectory is an elliptical orbit, the position and velocity vector will be perpendicular each other at the periapsis or
apoapsis. By defining the apsis angle variable θ⊥, a following equation will hold.

δr̄(taps) · δ ˙̄r(taps) =

( 3∑

i=1

[{
Aicos(θ⊥) + Bisin(θ⊥)

}
h̄i

])
·
( 3∑

i=1

[
ω
{
−Aisin(θ⊥) + Bicos(θ⊥)

}
h̄i

])

=
ω

2

{ 3∑

i=1

(
−A2

i + B2
i

)}
sin(2θ⊥) + ω

{ 3∑

i=1

(
AiBi

)}
cos(2θ⊥) ≡ 0

(24)

Therefore, we have

cos(2θ⊥) = ±
∑3

i=1

(
A2

i − B2
i

)

√{∑3
i=1

(
A2

i − B2
i

)}2

+ 4
{∑3

i=1

(
AiBi

)}2
(25)

sin(2θ⊥) = ±
2
{∑3

i=1

(
AiBi

)}

√{∑3
i=1

(
A2

i − B2
i

)}2

+ 4
{∑3

i=1

(
AiBi

)}2
(26)

Periapsis and apoapsis distances are represented as follows

|δr̄(taps)|2 =

( 3∑

i=1

[{
Aicos(θ⊥) + Bisin(θ⊥)

}
h̄i

])
·
( 3∑

i=1

[{
Aicos(θ⊥) + Bisin(θ⊥)

}
h̄i

])

=
1
2

{ 3∑

i=1

(
A2

i + B2
i

)}
±

1
2

{∑3
i=1

(
A2

i − B2
i

)}2

+ 2
{∑3

i=1

(
AiBi

)}2

√{∑3
i=1

(
A2

i − B2
i

)}2

+ 4
{∑3

i=1

(
AiBi

)}2

(27)

Because the coefficients of each mode, Ai and Bi, are determined by the initial conditions, the distance of apsis can be
also determined by given initial conditions.

3.2.2 Switching Point 1: From circular orbit to elliptical orbit

Under the equation of motion (18) with mode frequency ω at any point on the circular orbit (with radius R1), the
position and velocity of the spacecraft are expressed as equations (22) and (23). Assuming that the time at switching
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point is t = 0, the position and velocity vector can be expressed as follows

δr̄(0) =

3∑

i=1

(Aih̄i) (28a)

δ ˙̄r(0) = ω

3∑

i=1

(Bih̄i) (28b)

The objective is to transfer the spacecraft from a circular orbit to an elliptical orbit whose target apsis distance is R2.
After switching, the equation of motion become equation (18) with new mode frequency ω1. Under this switched
equation of motion, the position and velocity of the spacecraft can be expressed as follows

δr̄(0) =

3∑

i=1

[{
Cicos(ω1t) + Disin(ω1t)

}
h̄i

]
(29a)

δ ˙̄r(0) = ω

3∑

i=1

[{
−Ciω1sin(ω1t) + Diω1cos(ω1t)

}
h̄i

]
(29b)

Then, we have

δr̄(0) =

3∑

i=1

(Cih̄i) (30a)

δ ˙̄r(0) = ω1

3∑

i=1

(Dih̄i) (30b)

At the switching point, the position and velocity vectors should be same, and therefore following equations can be
obtained.

Ai = Ci , ωBi = ω1Di (31)

In addition, if ω1 = kω (k is real number), then Di = B/k. Under these relations, the periapsis and apoapsis distances
can be expressed as follows

|δr̄(taps)|2 =
1
2

{ 3∑

i=1

(
C2

i + D2
i

)}
±

[
1
2

{∑3
i=1(C2

i − D2
i )
}2

+ 2
{∑3

i=1(CiDi)
}2]

√{∑3
i=1

(
C2

i − D2
i

)}2

+ 4
{∑3

i=1

(
CiDi

)}2

=
1
2

{ 3∑

i=1

(
A2

i +
B2

i

k2

)}
±

[
1
2

{∑3
i=1

(
A2

i −
B2

i
k2

)}2
+ 2

{∑3
i=1

(
AiBi

k

)}2]

√{∑3
i=1

(
A2

i −
B2

i
k2

)}2

+ 4
{∑3

i=1

(
AiBi

k

)}2

(32)

After plugging the desired apsis value,R2, in the left hand side of equation (32), equation (32) is solved numerically to
get the k value. Then, switched system’s mode frequency can be determined by ω1 = kω. Finally, the HSP controller
can be constructed as follows

Tc1 = Tδr̄ + Kδ ˙̄r

= (MΛ1M−1 − URR)δr̄ − 2ω f Jδ ˙̄r

= (−ω2
1I3 − URR)δr̄ − 2ω f Jδ ˙̄r

(33)

3.2.3 Switching Point 2: From elliptical orbit to circular orbit

The second switching strategy is used when the spacecraft traveling along the elliptical orbit reaches the other apsis.
Assume that, after the second switching, the equation of motion is equation (18) with new mode frequency ω2. Then,
it is designed that the motion of the switched system is a circular orbit (with radius R2). At the switching point, the
position and velocity vectors are perpendicular each other, and therefore the remaining dynamics condition of the
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switched system to achieve the circular motion is the magnitude of acceleration. The magnitude of acceleration for
the circular orbit is |δ ¨̄r| = |δ ˙̄r|2/|δr̄|. By using the switched system’s equations of motion δ ¨̄r − MΛ2M−1δr̄ = 0, the
following equations should hold for a circular motion.

|MΛ2M−1δr̄| = ω2
2|δr̄| ≡

|δ ˙̄r|2
|δr̄| (34)

Solving equation (34), a new mode frequency ω2 can be obtained. Finally, the HSP controller can be constructed as
follows

Tc2 = Tδr̄ + Kδ ˙̄r

= (MΛ2M−1 − URR)δr̄ − 2ω f Jδ ˙̄r

= (−ω2
2I3 − URR)δr̄ − 2ω f Jδ ˙̄r

(35)

3.3 Stability of controller

3.3.1 Nonlinear Stability

It is well-known that if a linearized system matrix has only pure imaginary eigenvalues, the Hartman-Grobman theorem
cannot conclude nonlinear stability of the equilibrium points. Because HSP controller makes the topology type of
the equilibrium change from hyperbolic to elliptic, a nonlinear stability of the stabilized equilibrium points is not
guaranteed. Therefore, it is needed to prove the nonlinear stability of the HSP controller. Arnold’s stability theorem
can be applied to prove the nonlinear stability of the elliptic equilibrium in 2DOF system. However, Arnold’s stability
theorem cannot be applied to a 3DOF system and also does not guarantee the nonlinear stability in resonance condition.
Xu et al.9 showed the nonlinear stability of the controller with respect to an equilibrium point by the Morse lemma.
In this study, the nonlinear stability of the HSP controller with respect to a periodic orbit is proved using Lagrange-
Dirichlet criterion. The Lagrange-Dirichlet theorem is a general stability theorem for the equilibria of Hamiltonian
systems.

Theorem 1 (Lagrange-Dirichlet) If the second variation (Hessian) of the Hamiltonian, i.e., Hzz with z̄ = (q̄, p̄), is
definite at the nondegenerate critical point z∗, then the equilibrium point is stable.18

Before applying the HSP control, Hamiltonian of the system is described as in Eq. (8). Then, controlled Hamiltonian
(, H̃) can be modified as

H̃(q̄, p̄) =
1
2

p̄T p̄ + ω f p̄T Jq̄ + ∆ p̄T Jδq̄ +
1
2

∆2δq̄(1 : 2)Tδq̄(1 : 2) + ∆ω f q̄(1 : 2)Tδq̄(1 : 2) + ∆q̄T J ˙̄q∗ − U(q̄)

+
1
2
ω2

f q̄(1 : 2)T q̄(1 : 2) − 1
2
δq̄T Tδq̄

=
1
2

(p2
1 + p2

2 + p2
3) + ω f (−p2q1 + p1q2) + ∆

{
−p2(q1 − q∗1) + p1(q2 − q∗2)

}
+

1
2

∆2
{
(q1 − q∗1)2 + (q2 − q∗2)2

}

+ ∆

{
ω f q1(q1 − q∗1) + ω f q2(q2 − q∗2) + q1q̇2

∗ − q2q̇1
∗
}
−

[
1 − µ

r1
+
µ

r2

]
− 1

2

{
T11(q1 − q∗1)2 + T22(q2 − q∗2)2

+ T33(q3 − q∗3)2 + 2T12(q1 − q∗1)(q2 − q∗2) + 2T13(q1 − q∗1)(q3 − q∗3) + 2T23(q2 − q∗2)(q3 − q∗3)
}

(36)

where ∆ is the magnitude of feedback angular velocity of the frame. In other words, K = 2∆J. Then, Hessian of the
controlled Hamiltonian can be written as follows

∇2H̃(q̄, p̄) =



0 −(ω f + ∆) 0
B (ω f + ∆) 0 0

0 0 0
0 (ω f + ∆) 0 1 0 0

−(ω f + ∆) 0 0 0 1 0
0 0 0 0 0 1



(37)

B =



∂2H̃
∂q2

1

∂2H̃
∂q2∂q1

∂2H̃
∂q3∂q1

∂2H̃
∂q1∂q2

∂2H̃
∂q2

2

∂2H̃
∂q3∂q1

∂2H̃
∂q1∂q3

∂2H̃
∂q2∂q3

∂2H̃
∂q2

3


(38)
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∂2H̃
∂q2

1

= 2∆ω f + ∆2 + ω2
f − Uxx − T11 (39a)

∂2H̃
∂q2

2

= 2∆ω f + ∆2 + ω2
f − Uyy − T22 (39b)

∂2H̃
∂q2

3

= −Uzz − T33 (39c)

∂2H̃
∂q2∂q1

= −Uxy − T12 (39d)

∂2H̃
∂q3∂q1

= −Uxz − T13 (39e)

∂2H̃
∂q3∂q2

= −Uyz − T23 (39f)

Let us propose a control input as follows

Tc = Tδr̄ + Kδ ˙̄r

= (MΛnewM−1 − URR)δr̄ − 2ω f Jδ ˙̄r

= (−ω2
newI3 − URR)δr̄ − 2ω f Jδ ˙̄r

(40)

Then, the magnitude of controlled angular velocity of the frame is zero (ω f + ∆ = 0). Consequently, Hessian of
the controlled Hamiltonian is a diagonal matrix. Because B has full rank at the equilibrium point, the Hessian of
Hamiltonian also has full rank at the equilibrium point. Therefore, the equilibrium is nondegenerate and the Hessian of
Hamiltonain is positive definite. In conclusion, by Lagrange-Dirichlet criterion, HSP controller is nonlinearly stable.

3.3.2 Orbit Stability

In contrast to autonomous systems, non-autonomous periodic system may be unstable even though the equilibrium is
always stable during its period. Scheeres et al.6 evaluated the orbit stability (= Lagrange stability) using Floquet theory
and numerical integration. The orbit stability can be evaluated by computing the eigenvalues of the monodromy matrix.
If all of the eigenvalues of the monodromy matrix reside on the unit circle in the complex plane, then the orbit motion
is stable in the sense of Lagrange. For the spacecraft formation flying along the halo orbit, both Lyapunov stability and
orbit stability should be satisfied. In this study, the orbit stability is also investigated.

4. Numerical Simulation

Table 1: System parameter values

Quantity Value Units
Gravitational constant 6.674 × 10−20 km3kg−1s−2

Earth mass (m1) 5.972 × 1024 kg
Moon mass (m2) 7.347 × 1022 kg
Mass parameter (µ) 0.01215 N/A
Characteristic length (l∗) 385692.5 km
Characteristic Time (t∗) 4.364 days

Table 2: Reference halo orbit parameter values

Quantity Value Units
Z-amp. -55154.03 km
Period 14 days
Jacobi constant 3.07607 N/A
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Figure 3: Reference Halo Orbit

System parameters used in the simulation are summarized in Table 1, and the properties of the reference halo orbit
are summarized in Table 2. Radii of transfer orbits and the initial values of deputy spacecrafts are summarized in
Table 3 and 4, respectively. The reference orbit is one of the potential orbits for coverage of the lunar south pole.19

All the numerical simulations are conducted based on this reference orbit. Figure 4 7 show the numerical simulation
results. Numerical simulations are performed using full nonlinear dynamics, ¨̄r − 2ω f J ˙̄r = ∇U(r̄) + Tc, rather than
using the linearized dynamics, δ ¨̄r − 2ω f Jδ ˙̄r = ∇2U(r̄) + Tc. Simulation results show that, by applying the switching
HSP control, it is possible to change the size of circular motion of the deputy spacecraft. The switching process using
piecewise simple harmonic oscillation was discussed by Liberzon.17 Liberzon and Morse showed that even if piecewise
system matrices are not asymptotic stable, asymptotic stabilization of the system could be achieved by using simple
switching strategies. In our cases, switching strategy can also make position convergence to the reference trajectory.
However, as the radius of circular orbit decreases, the rotating frequency increases. Therefore, convergence to the
reference trajectory using switching HSP control is not efficient in fuel consumption point of view. Figure 8 shows that
switching HSP controller works well when the location of the deputy spacecraft is far from the leader spacecraft. Note
that the required distances for spacecraft formation flying mission are usually 1~100km.14, 20 Also, the magnitude of
eigenvalues of monodromy matrix are all unity, and therefore orbit stability is guaranteed.

Table 3: Radius of transfer orbit

Deputy 1 Deputy 2 Deputy 3
R1 [m] 100 100 100
R2 [m] 200 50 100

Table 4: Deputy spacecrafts initial value

Quantity Value
Frequency (ω) 70
Plane orientation (n̄) (1,1,1)
Deputy#1 position dir. (1,1,-2)
Deputy#2 position dir. (1,-2,1)
Deputy#3 position dir. (-2,1,1)

10

DOI: 10.13009/EUCASS2017-39



FORMATION FLYING ALONG HALO ORBIT USING SWITCHING HSP CONTROL

Figure 4: Orbit transfer using Switching HSP control (relative motion)

Figure 5: Relative Position of Deputy S/C #1 (R1 = 100m→ R2 = 200m)

Figure 6: Relative Position of Deputy S/C #2 (R1 = 100m→ R2 = 50m)
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Figure 7: Relative Position of Deputy S/C #3 (R = 100m)

Figure 8: Exaggerated Orbit size formation flying scenario along halo orbit (R1 = 2000km→ R2 = 3000km)

5. Conclusions

The original concept of the Hamiltonian structure-preserving control to design the elliptic/circular orbit pattern of
spacecraft was extended by using simple switching control strategy. For targeting the desired apsis distance, the
properties of orbit motion, which are very similar to Hohmann transfer strategy, are utilized. Proposed switching
HSP controller can make the orbit size change to desired one systematically, which was impossible using previous
HSP controllers. The nonlinear stability of the controller was analyzed using Lagrange-Dirichlet criterion. Numerical
simulation are performed to demonstrate the performance of the switching Hamiltonian structure-preserving controller
in usual formation flying ranges.
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