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Abstract 
Analytical expressions for spatial distribution of the time-averaged volumetric force generated by 
dielectric barrier discharge actuator are proposed in approximation of nondivergent field of this force. 
Calculated flow-field of the actuator induced near-wall jet agrees both qualitatively and quantitatively 
with experimental data. Main peculiarities of the distributions of the wall-normal and wall-parallel 
volumetric force components observed in experiments are explained. 

1. Introduction 

At present significant attention is given to study of possible applications of plasma actuators based on dielectric 
barrier discharge (DBD-actuators) for gas flow control. Detailed information concerning physical characteristics of 
plasma actuators and respective experimental studies can be finding in reviews [1-7]. Generated volumetric force and 
consumed electric power are the primary characteristics of DBD-actuators for many aerodynamic applications. These 
characteristics depend on a large number of geometric and physical parameters [5, 8] therefore an experimental 
optimization of DBD-actuator for any specific application is very labor-consuming. The problem of optimization of 
actuator parameters can be facilitated with the help of preliminary parametric numerical modelling with the use of 
adequate models of the volumetric force and heat release attainable in DBD-actuator. The efforts of many 
researchers to develop physico-mathematical models of DBD of high level complexity [9-14] up till now didn’t 
result in any model convenient for routine numerical modelling. Therefore numerical simulations of flow-control 
based on DBD-actuator impact commonly use various simplified phenomenological models of volumetric force 
generated in DBD [15-21]. But namely experimental data concerning spatial distributions of the volumetric force 
have to help both in a clear understanding of physical mechanisms of the force production and in a development of 
adequate mathematical models by comparison results of numerical modelling with reliable experimental data [22]. 

Experimental estimations of two-dimensional distributions of the volumetric force generated by DBD-actuator 
commonly are based on particle image velocimetry (PIV) method permitting to measure with high accuracy both 
instantaneous and time-averaged flow fields induced by actuator [5]. The measured flow fields are used then to 
estimate the spatial distributions of the volumetric force components on the basis of two widely used methods. The 
first method is based on Navier-Stokes equations [23] and the second one uses the vorticity equation [24]. Different 
simplifying assumptions are applied in these methods. Nevertheless both methods result in similar distributions of 
the wall-parallel force component and identical values of the spatial integrated force [25, 26]. Based on these results, 
the conclusion on validity of simplifying assumptions accepted in both methods is drawn. 

The spatial distribution of the wall-parallel force component obtained in experiments [25, 26] was approximated by 
analytic functions in [19]. The products of the second power polynomial and exponential function independently in 
wall-parallel and wall-normal directions were used. The dependent variables of this approximation has been adjusted 
using a least-squares fit to minimize the difference between experimental and calculated force distributions. Similar 
approach has been applied in [20] to approximate both wall-parallel and wall-normal force components. Numerical 
modelling after substitution of the analytic approximations of the force distributions in Reynolds-Averaged Navier-
Stokes equations in [19] or compressible Navier-Stokes equations in [20] resulted in satisfactory agreement between 
calculated and measured flow fields. Note that the analytic approximations proposed in [19, 20] include 8 dependent 
variables in approximation of the wall-parallel force component and 64 variables in wall-normal component. In 
contrast to [19, 20], simple analytic expressions for spatial distributions of the volumetric force components 
qualitatively differing from distributions obtained in experiments[25, 26] by the methods [23, 24] have been 
proposed in [27]. Numerical modelling in the framework of Navier-Stokes equation with the use of the proposed 
force approximation permitted to explain the most of features of the experimental force distributions. Here other 
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simple analytic expressions for the force components are proposed and some peculiarity of the experimental force 
distribution is explained which was omitting in [27]. 

2. Peculiarities of experimental distributions of the volumetric force components 

The experimental study of DBD-actuator executed in [25, 26] is simulated below. The design of actuator and the 
Cartesian coordinate system used in calculations are presented in upper Fig. 1. The DBD-actuator consists of two flat 
electrodes separated by a dielectric layer. The right edge of the upper exposed electrode is arranged under the left 
edge of the lower buried electrode. The buried electrode is grounded and the alternating high voltage is applied to the 
exposed electrode. The discharge ignites under the dielectric surface on the right from the exposed electrode. Dashed 
corves under the dielectric surface represent schematically the field lines of the time-averaged volumetric force 
arising in DBD. 

 

Figure 1: Design of DBD-actuator. Calculated velocity distributions of the induced near-wall jet 

The mentioned above force-determination methods based on velocity field measurements [23, 24] imply two-
dimensional, steady, incompressible flow. The method [23] (designated later as the method 1) relies on the 
momentum equations written for our convenience in the following form:  
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Here fx and fy are the volumetric force components along the appropriate axes, u and v are the velocity components, p 
is the static pressure, ρ and μ are the density and the dynamic viscosity of air. The subscript 1 denotes the force 
components estimated by the method 1. 

All terms in the right sides of the equations (1), (2) are calculated using the measured time-averaged flow field and 
therefore are known. Unknown in experiment pressure field is excluded from a consideration due to neglecting the 
pressure gradient as compared with the volumetric force components: 
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Hence the method 1 estimates in fact the “seeming” force components including unknown pressure gradient. 

The method [24] (designated as the method 2) excludes the unknown pressure distribution from a consideration by 
the use the vorticity equation which is obtained by differentiation of equations (1) and (2) on y and x, respectively, 
and subtraction the second resulting equation from the first one: 
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Because in this case only one equation remains for two force components, it is assumed that the curl of the force is 
strongly dominated by vertical gradient of the wall-parallel force component, i.e. 
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Thus only the “seeming” wall-parallel force component fx2 is determined by the method 2 which is related with the 
real component fx by the following expression: 
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One can indicate the following intrinsic peculiarities of the distributions of the “seeming” force components fx1, fy1, 
and fx2 obtained in experiments [25, 26]. Note that these peculiarities are observed also in parametric experimental 
study [22] at variation both the amplitude and the frequency of the applied voltage. 

1. The distributions of the wall-parallel force components fx1 and fx2 are qualitatively similar and contain the regions 
of elevated force located near the active edge of the exposed electrode (see Fig. 7 in [25]). 

2. This region is more distinguished in the fx2 distribution.  

3. The second local maximum of the wall-parallel force components fx1 and fx2 is observed downstream from the 
electrode edge at some distance from the dielectric surface. 

4. Space integration of fx1 and fx2 results it the same values of the total wall-parallel force per unit length along the 
electrode edge. 

5. The extremal value of the wall-normal force component fy1 is about the order of magnitude less than the maximum 
of the wall-parallel component fx1 (see Fig. 8, a, b in [26]). 

6. The distribution of the wall-normal component fy1 contains the sign-alternating region near the edge of the exposed 
electrode (see Fig. 8, b in [26]). 

7. The distributions of the wall-parallel force components fx1 and fx2 contain narrow near-wall regions of negative 
values arising at significant distance from the electrode edge (see Fig. 7 in [25]). 

3. Analytic force distribution 

The validity of the simplifying assumptions (3) and (5) has been revised in [28] where the approximation of a 
nondivergent nature of the volumetric force field [29] has been applied. The volumetric force in DBD is created 
mainly due to momentum transfer from ions accelerated by electric field to neutrals. Negative ions of oxygen 
participate in this procces when the potential of the exposed electrode decreases and positive ions of oxygen and 
nitrogen when the potential increases [30]. Ions of different sign and mass have different transport coefficients 
(mobility and diffusion) which though don’t depend on electric field strength and, hence, on coordinates. Therefore 
one can consider that the volumetric force averaged during the cycle of the applied voltage is generated in unipolar 
charge medium with some average transport coefficients of charge carriers. The charge transfer in unipolar medium 
is governed by the following equation of charge conservation: 
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Here q is the volumetric charge density, S is the algebraic sum of charge sources and sinks, J, E and V are the 
vectors of the current density, the electric field strength, and the convective velocity of medium, b and D are the 
coefficients of mobility and diffusion of charge carriers. 

For the steady-state case (∂/∂t ≡ 0) the algebraic sum of charge sources and sinks averaged during the applied voltage 
cycle equals zero. If the medium velocity |V| < 100 m/s, the convective charge transfer can be neglected in 
comparison with the drift transfer, i.e. |V| << b|E|. Neglecting the diffusion transfer in the main region of the 
discharge yields the condition of nondivergent field of the volumetric force vector f = (fx, fy): 
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Simple model of the volumetric force satisfying the relation (8) based on only Gaussian functions for x and y 
coordinates has been considered in [28]. Here this model is modified with the aim to simulate the experiments [25, 
26]. The analytic distributions of the force components denoted by the subscript 0 are specified as follows: 
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Here xm is the coordinate of a maximum of the wall-parallel component fx0 achieving on the dielectric surface (the 
wall-normal component fy0 changes sign in this point), xl and xr are the characteristic scales of Gaussian distributions 
of the wall-parallel component at the left and at the right from the maximum, y0 is the characteristic scale normal to 
the wall, F is the space integrated wall-parallel force per unit length along the exposed electrode edge. The formula 
(9) for fx0 contains the second power polynomial on x ensuring a continuity of the second derivative of fx0 on x what 
will be explained further. 

The total wall-parallel force F depends on geometric and physical parameters of actuator and can be estimated, for 
example, with the help of empirical model [31]. Here the value F = 0.025 N/m is taken for a comparison with 
experiments [25, 26]. The following geometric parameters have been selected from the condition of a satisfactory 
agreement between calculated and experimental flow fields induced by actuator action: xm = 0.5 mm, xl = 0.75 mm, 
xr = 3 mm, y0 = 0.9·mm. The relation of characteristic scales r = (xl + xr)/y0 ≈ 4 seemingly is typical for the force 
distributions created by DBD-actuators. 

Results of numerical modeling on the base of steady incompressible Navier-Stokes with the volumetric force 
determined by the equations (9)-(10) are presented on Fig. 1. Details of calculational procedure can be finding in 
[27]. The spatial distributions of the absolute of values of the velocity vector are shown on Fig. 1, a, b in different 
scales for comparison with experimental data presented on Fig. 5, a, b in [25]. This comparison demonstrates both 
qualitative and quantitative coincidence of the calculated flow field achieved by simple model of the volumetric 
force (9)-(10) containing only 5 parameters.  

4. Explanation of peculiarities of the force distributions observed in experiments 

The spatial distribution of the wall-parallel force component fx0 determined by the equations (9) is shown on Fig. 
2, a. Comparison with the distribution of the “seeming” wall-parallel force component fx1 reconstructed in 
experiments by the method 1 and presented in Fig. 8, a in [26] demonstrates that the maximal value fx0max ≈ 8.5 
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kN/m3 achieving on the dielectric surface slightly exceeds the experimental value fx1max ≈ 8 kN/m3 which observed 
above the surface. 

 
Figure 2: Distributions of the given wall-parallel force (a), the induced wall-parallel pressure gradient (b) 

 
Figure 3: Distributions of the calculated “seeming” wall-parallel force component fx1 (a), fx2 (b) 

The calculated distribution of the wall-parallel gradient of static pressure ∂p/∂x induced by actuator action is shown 
on Fig. 2, b. First of all note, that the induced pressure gradient on absolute magnitude is comparable with the wall-
parallel force, as it has been shown earlier in [27, 28]. It means that the first assumption (3) in the method 1 is 
incorrect. The wall-parallel pressure gradient is negative to the left from the exposed electrode edge at x ≤ 0.3 mm. It 
seems evident that namely this region of negative pressure gradient propagating far enough upstream (where the 
volumetric force decays) supports a flow acceleration before the electrode edge. The pressure gradient becomes 
positive downstream in the region of maximal concentration of the volumetric force and thereby attenuates the force 
impact of actuator. Further downstream at x ≥ 2.4 mm a stretched region of low intensive negative pressure gradient 
appears again in such a way supporting flow acceleration. 

Mentioned features of the wall-parallel pressure gradient permit to explain the peculiarities of the “seeming” force 
component fx1 denoted as 1 and 3 in the item 2. The distribution of the residual of the given force and the induced 
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pressure gradient fx1 = fx0-∂p/∂x is shown on Fig. 3, a. The upstream region of the negative pressure gradient reveals 
as local region of elevated force on the left from the electrode edge, in accordance with the peculiarity 1. The region 
of positive pressure gradient, at first, decreases the maximal value of the “seeming” force fx1 and, at second, shifts its 
maximum from the wall, accordingly the peculiarity 3. 

The analytic distribution (9)-(10) permits to calculate an analogue of the “seeming” wall-parallel force component fx2 
recovered by the method 2. Substitution of fx = fx0 and fy = fy0 in the left side of the equation (6) results in 
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It is evident from (11) that the continuity of the second derivative of fx0 on x ensures a continuity of fx2 at 0x . The 
distribution (11) is shown on Fig. 3, b. This distribution, similar to Fig. 3, a, contains the upstream region of elevated 
force but more intensive than in Fig. 3, a. Thus the explanation of the peculiarities 1 and 2 of the item 2 is given.  

The identity of the total wall-parallel force recovered by two methods (peculiarity 4) seems to be evident. The 
conditions of decay of static pressure disturbances caused by actuator action and volumetric force at infinity result in  
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Hence the spatial integration of the “seeming” force components determined by the relations (1) and (6) results in the 
identical values of the total force 
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The volumetric force components determined by the expressions (9)-(10) don’t satisfy the simplifying assumption 
(5) of the method 2. The distribution of the given wall-normal component force fy0 is presented on Fig. 4, a. First of 
all note that the maximal value of this component is comparable with a maximum of the wall-parallel force 
component, in contrast to experimental data concerning “seeming” force recovered by the method 1 and presented on 
Fig. 8, a, b in [26]. The wall-normal force component fy0 is positive on the left from the point of maximum of the 
wall-parallel component xm = 0.5 mm and is negative on the right from this point. It means that the vectors of the 
volumetric force determined by the model (9)-(10) are directed upward and right in the whole semi-space situated at 
the left from vertical line xm = 0.5 mm. Respectively the force vectors are directed downward and right in semi-space 
x > 0.5 mm. Note that this feature of the volumetric force field agrees with numerical modeling of DBD [13]. At the 
same time it is very difficult to imagine a behavior of the field lines of the “seeming” force seeing on the distribution 
of the wall-normal component presented on Fig. 8, b in [26] (see also peculiarity 6 in the item 2).  

Nevertheless this peculiarity can be explained in the framework of the present model of the volumetric force. The 
calculated distribution of the induced wall-normal pressure gradient is shown on Fig. 4, b. Comparison of Figs. 4, a 
and b demonstrates that this pressure gradient almost completely compensates the wall-normal force. The residual of 
the force and pressure gradient difference fy1 = fy0-∂p/∂y is shown on Fig. 4, c. It is seen that the “seeming” wall-
normal force fy1 is about the order of magnitude less than the wall-parallel force, in accordance with experiments [26] 
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where the wall-normal force component varies in the range from -0.8 up to 0.8 kN/m3. Moreover, the distribution of 
fy1 shown on Fig. 4, c contains the region of sign-alternating force near the electrode edge in conformity with the 
experimental distribution presented on Fig. 8, b in [26]. Thus the peculiarities 5 and 6 are explained too. 

 
Figure 4: Distributions of the given wall-normal force component fx0 (a), the induced wall-normal pressure gradient 

(b), the calculated “seeming” wall-normal force component fy1 (c) 

A presence of experimentally observed near-wall region of intense negative wall-parallel force arising at some 
distance from the exposed electrode and propagating downstream (see Fig. 8, a in [26]) can not be explained in the 
framework of DBD physics. By our opinion, this phenomenon is related with turbulent stresses developing in near-
wall jet. Thorough numerical modeling of the considered flow induced by DBD-actuator executed in [19] on the 
basis of Steady Reynolds-Averaged Navier-Stokes (RANS) equations revealed the transient character of jet flow 
closer to turbulent case. Executed in [19] analysis of experimental and calculated velocity distributions with taking 
into account theoretical consideration of near-wall jet stability [32] confirmed this conclusion. The necessity to use 
RANS equation in force-determination methods is emphasized also in [33].  

The analysis of the hydrodynamic stability of the jet flow presented on Fig. 1 fulfilled in the framework of well-
known eigenvalue problem for Orr-Sommerfeld equation gives other confirmation of transient character of the 
considered flow. Unsteady disturbances of velocity components and pressure have been specified in the form 
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wave number, ω is the real circular frequency. The calculated neutral stability curve and velocity profiles in some 
cross-sections with the velocity scale above the first velocity profile are shown on Fig. 5, a. The increments of spatial 
growth of disturbances a = -αi are presented on Fig. 5, b. It is evident that the considered flow is highly unstable. 

In the case of turbulent flow the application of the force-determination method 1 results in the following equation for  
the “seeming” wall-parallel force component: 
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Here μT is the eddy viscosity and, again, only terms in right side of this equation is known from measurements of the 
velocity field. The “seeming” wall-parallel force component includes in this case both unknown pressure gradient 
and Reynolds stress term. By our opinion, the last reveals as near-wall region of negative wall-parallel force in 
experimental distributions. To verify this assumption, the calculation of RANS has been executed with the use of 
standard k-ε model [34] for termination of eddy viscosity. The results of calculation presented below are only 
demonstrational, taking into account many limitations of the used model of turbulence.  

a)   b)  

Figure 5: Jet flow velocity profiles and neutral stability curve (a), increments of spatial growth of unsteady 
disturbances (b) 

 
Figure 6: Distributions of the Reynolds stress term (a), the “seeming” wall-parallel force component fx1T (b) 

The distribution of the calculated Reynolds stress term is shown on Fig. 6, a. The region of intense turbulent 
dissipation begins at x ≈ 1 mm and propagates expanding downstream. The distribution of the resultant “seeming” 
wall-parallel force fx1T shown on Fig. 6, b is in good qualitative agreement with the experimental distribution on 
Fig. 8, a in [26]. Note that the minimal negative value of this component obtained in our modelling coincides with 
the experimental one. So the last peculiarity 7 in the item 2 seems to be explained. 
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5. Conclusion 

The nondivergent field approximation for the time-averaged volumetric force generated by DBD-actuator permits to 
explain main peculiarities of distributions of the volumetric force components obtained by two well-known 
differential force-determination .methods based on PIV-measurements of velocity fields. It is established that main 
simplifying assumptions used in both methods are unjustified. Absolute values of the components of both body force 
and pressure gradient in actuator induced jet flow are comparable. Namely taking into account the induced pressure 
gradient explains the most of peculiarities of the experimental force distributions. Seeming occurrence of intense 
negative wall-parallel force arising downstream from the exposed electrode apparently is explained by a neglect of 
Reynolds stresses developing in unstable jet flow. The proposed simple analytic expressions for the volumetric force 
components seem to be an adequate model for time-averaged volumetric force generated by DBD-actuator. 
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