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Abstract
This paper focuses on the implementation of a fixed planar fins model in a Reusable Launch Vehicle
(RLV) re-entry dynamics simulator with closed-loop guidance and control integration. The vehicle first-
stage booster studied, evolving in the terrestrial atmosphere, is steered by a thrust vector control system
correcting the trajectory deviations from the reference profile computed in real-time by a successive con-
vex optimisation algorithm. Numerical results show that the fins model developed is viable for RLV
re-entry Guidance & Control assessment and that significant vehicle’s control authority can be provided
by aerodynamic steering for effectively reducing trajectory deviations and enabling pinpoint landing.

1. Introduction

Over the last decade, launcher reusability has become the new paradigm for reducing the cost of access to space and
for enabling future manned missions such as a return to the Moon or, even more ambitiously, the first step on Mars.
This technology was already developed in the Space Shuttle era, however, unanticipated costs and risks led to the
cancellation of the programme in 2011. But some years ago, private companies, such as SpaceX and Blue Origin,
completely disrupted the space sector and demonstrated the cost effectiveness and technical feasibility of reusable
rockets. More particularly, SpaceX’s Falcon 9 was, in 2017, the first Vertical Take-Off Vertical Landing (VTVL)
vehicle having its first stage recovered after launch and reused for another mission, and then became, in 2020, the first
private rocket to take astronauts to the International Space Station thanks to its cargo spacecraft Dragon [1]. The leading
company is now successfully testing its Super Heavy rocket equipped with the Starship spacecraft with the objective to
carry both crew and cargo on long-duration interplanetary flights and to make humanity return to the Moon and travel to
Mars and beyond. In the meantime, Blue Origin is also developing advanced reusable launchers such as New Shepard,
a sub-orbital launch vehicle designed for space tourism, and New Glenn, a heavy-lift reusable rocket which should be
able to bring heavy payloads to Earth orbit and beyond [2]. Consequently, national agencies and intergovernmental
institutions are following the same path, increasing research and development on launcher reusability.

Reusable Launch Vehicles (RLVs) atmospheric re-entry and precision soft-landing on Earth is very challenging,
mainly due to the atmosphere presence. Indeed, during this phase, the vehicle is subjected to fast system dynamics
changes induced by external loads such as lift and drag, unpredictable wind and gusts, and also to control-induced
actuation commands to answer the landing constraints satisfaction, allowing the so-called pinpoint landing while pre-
serving the vehicle’s integrity. All those involve uncertainties and nonlinearities as well as coupling effects with high
frequencies, which leads to vehicle’s instability and therefore give reason why for a high performance Guidance, Navi-
gation & Control (GNC) system implementation. This demanding problem became feasible in the past decade with the
development of convex optimisation: a particular class of methods which allows to compute, in real-time and based on
the current flight conditions, optimal trajectories to be followed satisfying desired constraints (which must be convex).
This technology has been demonstrated with the Masten Space Systems’ VTVL demonstrator Xombie which used a
vision-based system and a fuel-optimal convex guidance algorithm to optimally fly towards the desired landing site [3].

Research on convex optimisation for the entry, descent and soft pinpoint landing of VTVL reusable launchers
was actively carried out in the last years with the development of advanced techniques such as successive convex
optimisation [4], and pseudospectral convex optimisation [5]. In Ref. [6], Liu extended this first method by combining
aerodynamic forces and propulsion as control inputs to gain optimality with the consideration of the aerodynamics of
the vehicle, previously ignored. Then in Ref. [7], Sagliano et al. combined both methods and proposed to separate
the aerodynamic descent and the powered landing into two different optimal control problems, using the aerodynamic
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forces as control inputs for the first phase, and a combination of aerodynamic and propulsive control for the second
phase. Finally, in Ref. [8], Simplício et al. have achieved a trade-off between efficiency and optimality according to
the study of the coupled flight mechanics and considered a larger flight envelope encountered by the RLV.

Indeed the coupled flight mechanics which intervene in reusable launchers re-entry are usually not considered
in the design of optimal guidance algorithms. The disturbances and uncertainties acting on the vehicle and coming
from the nonlinear dynamics, external events (e.g. wind, aerodynamics), the actuation system, and the environment,
are counteracted thanks to a robust control system. Classic techniques involves the use of linear control theory based
on the linearisation of the equations of motion and feedback of defined control parameters with gain-scheduling [9].
However, these techniques require an extensive verification and validation campaign with Monte-Carlo analyses, which
renders the process very time and cost consuming. Lately, advanced robust control methods have been studied in both
academia and industry, such as linear parameter varying approach [10] and the H∞ family of methods, more particularly
the structured H∞ technique [11].

The steering of a VTVL reusable rocket during the atmospheric re-entry is generally mainly achieved by a Thrust
Vector Control (TVC) system, which actuates by deflecting the engine’s nozzle along the two body axes perpendicular
to the vehicle’s longitudinal axis by specific gimbal angles, computed by the control algorithm for satisfying the
reference trajectory generated by the guidance. To increase the control authority of the RLV, especially at low thrust
during the aerodynamic descent, steerable fins are crucial. They are placed above the vehicle’s centre of pressure with
usually one pair for controlling the pitch motion and another pair for controlling the yaw motion. Finally, a Reaction
Control System (RCS) based on cold gas thrusters is often added to be used at high altitude in low dynamic pressure
conditions. However, the aerodynamics generated by steerable fins are usually not considered in the guidance [8], or
interpolated through multidimensional look-up tables, which depend on Mach number, angle of attack, sideslip angle
and on the fin deflections [7]. In Ref. [12], Simplício et al. developed a model for planar fins implementation on a RLV
controlled through their control effectiveness according to the current flight conditions and pitch and yaw deviations
compared to the reference profile given by the guidance.

In this work, an approach is proposed to integrate the fins implementation into the guidance scheme, in order to
evaluate their impact in the computation of the reference trajectory, and then, on the RLV re-entry dynamics simulator.
A model of two pairs of planar fins, similar to the one designed by Simplício et al. in Ref. [12], have been developed.
For this preliminary study, the fins are considered fixed and uncontrolled. Therefore, they are inserted in a RLV re-entry
dynamics simulator with closed-loop guidance and control integration, which covers a VTVL vehicle first-stage booster
atmospheric re-entry and soft pinpoint landing. It includes the Six-Degree-of-Freedom (6-DoF) re-entry dynamics of
a rigid-body model with varying mass, evolving in the terrestrial atmosphere with varying environmental parameters,
uncertainties and disturbances (atmospheric density, ambient pressure, wind), and subjected to external forces (gravity,
aerodynamics). The steering of the spacecraft is carried out by a TVC system, correcting the trajectory deviations with
respect to the reference profile generated by a successive convex optimisation guidance algorithm and updated several
times during the flight.

The paper is organised as follows. Sec. 2 introduces the reusable launchers re-entry dynamics simulator with the
description of all the building blocks of the model: from environment models and vehicle’s properties to closed-loop
guidance and control methods implementation. Then, in Sec. 3, the planar fins model is described and implemented in
the guidance method and in the simulator. Subsequently, several simulations are performed in Sec. 4 and compared to
the standard case without fins. A sensitivity analysis is carried out, modifying design parameters, to study the impact
of the fins in the simulator and better address them for control implementation. Finally, conclusions and future works
are provided in Sec. 5.

2. Reusable launchers re-entry dynamics simulator

The RLV re-entry dynamics simulator developed in this paper relies on the nonlinear 6-DoF dynamics of a VTVL
vehicle first-stage booster modelled as a rigid body with varying mass, subjected to external forces induced by the
terrestrial atmosphere and controlled through embedded closed-loop guidance and control strategies. Therefore, it
is composed of several building blocks with interconnections between them. The elements have been implemented
through MATLAB/Simulink and will be briefly presented in the following subsections. A performance analysis of the
simulator described hereafter has been carried out in Ref. [13].

Reference frames and environment models adopted for gravity, atmospheric parameters and wind are explained
in Sec. 2.1. Then, equations of motion, aerodynamics calculation, and center of gravity (CG) and inertia estimations
are described in Sec. 2.2. At this stage of the RLV re-entry simulator design, the vehicle is only steered via TVC,
introduced in Sec. 2.3.

Finally, the simulator is equipped with a Guidance & Control (G&C) system divided in two subsystems. The
first one, the guidance algorithm, is responsible for the real-time generation of a reference trajectory to be followed by
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the vehicle with thrust and attitude commands. In this simulator, a successive convex optimisation guidance is used and
the global strategy will be more detailed in Sec. 2.4. Then, the control algorithm generates the necessary commands
to correct the possible deviations from the reference trajectory due to uncertainties and disturbances existing in the
terrestrial atmosphere. A classic linear control theory method with gain-scheduled Proportional-Integral-Derivative
(PID) controllers is used and presented in Sec. 2.5. Note that, at this stage of the RLV re-entry dynamics simulator
design, no navigation system is considered meaning that it is assumed to have a direct access to the actual states of the
vehicle.

2.1 Reference frames and environment models

This subsection describes the reference frames and environment models that have been adopted in the RLV re-entry
dynamics simulator. They are essential to simulate the re-entry of a reusable rocket in the terrestrial atmosphere.

Two reference frames are considered. The first one is the landing site reference frame. Its origin is at the landing
site and it is an Up-East-North reference frame, such that the xI-axis points Up, yI-axis East, while zI-axis North. This
reference frame is considered inertial and the equations of motion are referred to it. The simulations are initiated from
an initial position in this reference frame rI(0), with an initial velocity vI(0). The second reference frame is the vehicle’s
body-fixed reference frame. It is fixed to the vehicle’s CG and the basis vectors can be defined as: xB-axis lies along
the vehicle’s longitudinal axis and yB-axis is defined so as to remain perpendicular to the pitch plane while zB-axis
completes the right-handed system (and thus remains perpendicular to the yaw plane). Following those definitions,
roll, pitch and yaw angles {ϕ(t), θ(t), ψ(t)} represent the orientation of the body-fixed reference frame with respect to
the landing site inertial reference frame. These angles will be useful to control the trajectory of the vehicle. However,
in the formulation of the equations of motion, the rotation quaternion qI

B(t) is used to translate the attitude of the vehicle
to avoid the singularity caused by 90 deg of attitude. Therefore, RI

B(t) represents the rotation matrix from the inertial
reference frame to the vehicle’s body-fixed reference frame. The angular velocity is defined in the body-fixed reference
frame with an initial value ωB(0).

The atmosphere model adopted in this study, available in MATLAB Aerospace Toolbox [14], implements the
mathematical representation of the 1976 Committee on Extension to the Standard Atmosphere (COESA) which allows
to provide, as a function of altitude h(t), the atmospheric density ρ(h(t)) and the pressure Pamb(h(t)). Then, the gravita-
tional field is defined in the inertial frame by gI(h(t)) =

[
g(h(t)) 0 0

]T
where g(h(t)) is obtained as a function of the

altitude and expressed by:

g(h(t)) = g0

(
RE

RE + h(t)

)2

(1)

where g0 is the standard Earth gravity and RE is the radius of the Earth. For conciseness, these values will now be
written as function of the time t.

Finally, constant wind have been computed with the U.S. Naval Research Laboratory model Horizontal Wind
Model 14, also available in Ref. [14], which generates the meridional wmer(t) and zonal wzon(t) components of the wind
for a set of geophysical data. Wind gusts are modelled as a cosine-shape function, such that the user can define the
amplitude of the gusts and the altitude where it happens. The function is expressed as follows:

Vgust(h(t)) = Agust

(
1 − cos

(
π(h(t) − h1)

0.5∆h

))
(2)

where Agust ∈ R
3 specifies the amplitude of the gust in the three directions, h(t) is the current altitude of the spacecraft,

h1 specifies the altitude where the gust starts, while ∆h is the altitude range in which the gust is applied. Therefore, the
maximum intensity of the gust is reached in the middle of the specified altitude region. Consequently, the wind vector
is written in the inertial reference frame as follows:

wI(t) =
[
0 wmer(t) wzon(t)

]T
+ Vgust(h(t)) (3)

Note that the wind model is not considered in the re-entry dynamics of the guidance algorithm described in Sec. 2.4.

2.2 Equations of motion, aerodynamics and CG/inertia estimations

Equations of motion are written using the reference frames previously defined in Sec. 2.1. They are based on the initial
state vector xI(0) =

[
m(0) rT

I (0) vT
I (0) qI

B(0)T ωT
B(0)

]
and on the assumptions that the vehicle is a rigid body

with no effects induced by the varying mass (e.g. propellant sloshing) and structural flexibilities.
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The mass depletion dynamics are modelled by an affine function of the thrust magnitude as follows:

ṁ(t) = −
||FTVC,I(t)||2

Ispg0
−

AnozzlePamb(t)
Ispg0

(4)

where Isp is the vacuum specific impulse of the engine, g0 is the standard Earth gravity, Anozzle is the nozzle exit area of
the engine and Pamb(t) is the ambient atmospheric pressure. FTVC,I(t) ∈ R3 is the thrust vector coming from the TVC
system, introduced in Sec. 2.3, represented in the inertial reference frame. The second term is related to the reduction
of the specific impulse due to the atmospheric back-pressure [4].

The translational states, position and velocity of the vehicle in the inertial reference frame, rI(t) ∈ R3 and
vI(t) ∈ R3, are governed by the following dynamics:

ṙI(t) = vI(t)

v̇I(t) =
1

m(t)
[
FTVC,I(t) + Faero,I(t)

]
+ gI(t)

(5)

where Faero,I(t) ∈ R3 described the aerodynamic force acting on the vehicle in the inertial reference frame, introduced
hereafter.

Then, the attitude states are governed by the following rotational dynamics, using the quaternion-based kinemat-
ics equation:

q̇I
B(t) =

1
2


q4(t) −q3(t) q2(t)
q3(t) q4(t) −q1(t)
−q2(t) q1(t) q4(t)
−q1(t) −q2(t) −q3(t)

ωB(t)

ω̇B(t) = J−1(t)
[
MTVC,B(t) +Maero,B(t) − ωB(t) × JωB

]
(6)

where J is the inertia matrix of the vehicle, introduced hereafter. MTVC,B(t) ∈ R3 (Sec. 2.3) and Maero,B(t) ∈ R3

represent, respectively, the thrust and aerodynamic torques acting on the vehicle. In Eq. (6), the coupling between
angular velocity and inertia along the three axes, and the effect of centroid movement on the inertia caused by mass
consumption, are ignored.

At this stage of the RLV re-entry dynamics simulator design, a spherical aerodynamic model is used to describe
the aerodynamics of the vehicle. This model, introduced by Szmuk et al. in Ref. [4], approximates the relationship be-
tween the aerodynamic force and the velocity vector and has the advantage to be easily implementable in the successive
convex optimisation guidance method. The aerodynamic force Faero,I(t) is considered always anti-parallel with respect
to the air-relative velocity vair,I(t) as if the vehicle was subjected to a pure drag force, where vair,I(t) = vI(t) − wI(t)
accounts for the wind. Therefore, assuming that the rocket is axisymmetric, the aerodynamic forces and moments in
the vehicle’s body-fixed reference frame are expressed by:

Faero,B(t) = −
1
2
ρ(t)||vair,I(t)||2S re f CaeroRI

B(t)vair,I(t)

Maero,B(t) = [xCP − xCG(t)] × Faero,B(t)
(7)

where S re f is the reference aerodynamic area of the vehicle, and xCP =
[
xCP 0 0

]T
and xCG =

[
xCG(t) 0 0

]T

represent, respectively, the center of pressure (CP) and the CG. Caero is the aerodynamic coefficient matrix defined by
Caero = diag

([
ca,x ca,x ca,x

])
where ca,x is a positive scalar considered assumed constant during all the flight.

Finally, because of propellant mass and level variations along the flight, the total vehicle CG and the moments
of inertia are also varying. The CG is considered lying along the vehicle’s body longitudinal axis such as xCG =[
xCG(t) 0 0

]T
while the inertia tensor is assumed diagonal such as J(t) = diag

([
JA(t) JN(t) JN(t)

])
. Following

the model and data available in Ref. [12], the vehicle’s mass is broken down into structural mass and time-dependent
propellant mass, which is updated via Eq. (4) during engine burn, as follows:

m(t) = mprop(t) + mdry (8)

with mdry the dry mass of the vehicle and mprop(t) the propellant mass defined as mprop(t) = m f uel(t) + moxid(t), with
m f uel(t) the mass of fuel and moxid(t) the mass of oxidizer. Then, knowing the change over time of fuel and oxidizer
masses and their level on the corresponding tanks, h f uel(t) and hoxid(t), the vehicle’s CG can be computed as:

xCG(t) =
1

m(t)

[
m f uel(t)

(
htk, f uel +

h f uel(t)
2

)
+ moxid(t)

(
htk,oxid +

hoxid(t)
2

)
+ mdryhdry

]
(9)
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where htk, f uel and htk, f uel are the tank heights and hdry the dry CG height. The axial component of the inertia tensor is
expressed by:

JA(t) =
1
2

mprop(t)r2
tk + JA,dry (10)

where rtk is the tank radius and JA,dry the axial component of the inertia tensor of the dry vehicle. Then, the lateral
component of the inertia tensor is given by:

JN(t) = JN, f uel(t) + JN,oxid(t) + JN,dry + m f uel(t)
(
htk, f uel +

h f uel(t)
2
− xCG(t)

)2

+ moxid(t)
(
htk,oxid +

hoxid(t)
2
− xCG(t)

)2

+ mdry(hdry − xCG(t))2

(11)

where JN,dry is the lateral component of the inertia tensor of the dry vehicle and the lateral contributions of the propellant
masses relative to their CG, JN, f uel(t) and JN,oxid(t) are expressed by:

JN, f uel(t) =
1
2

m f uel(t)(3r2
tk + h2

f uel(t)) (12)

JN,oxid(t) =
1
2

moxid(t)(3r2
tk + h2

oxid(t)) (13)

2.3 Thrust Vector Control system

The trajectory of the vehicle during the descent is controlled by adjusting the magnitude and the direction of the thrust
vector generated by the main engine. It is achieved with the TVC actuator by deflecting the engine’s nozzle by βTVC,y(t)
and βTVC,y(t), respectively along the yB-axis and the zB-axis. The required thrust magnitude Tre f (t) and deflection angles
{βTVC,y(t), βTVC,z(t)} are obtained, from the guidance algorithm (2.4) and the control method (2.5) used, respectively.
The decoupling between translational and rotational dynamics is common for TVC control due to the fact that the
attitude of the vehicle can be changed faster than its trajectory [12]. Thus, the TVC-generated force and moment can
be expressed in the body-fixed frame by:

FTVC,B(t) = Tre f (t)

cos (βTVC,y(t)) cos (βTVC,z(t))
cos (βTVC,y(t)) sin (βTVC,z(t))

− sin (βTVC,y(t))


MTVC,B(t) = [xPVP − xCG(t)] × FTVC,B(t)

(14)

with xPVP =
[
xPVP 0 0

]T
the TVC pivot position.

2.4 Successive convex optimisation guidance algorithm

Convex optimisation consists in transforming the fuel-optimal trajectory problem into a convex one, more precisely
into a Second Order Cone Programming (SOCP) problem, which can be solved with efficient solvers in polynomial
time. The challenging tasks rely in converting non-convex state and control constraints into the convex form and on
the high computational power needed. Recently, the so-called lossless convexification method [15] and the progresses
in computational development have enabled to overcome these issues, and therefore to enable real-time trajectory
generation in a closed-loop fashion.

Moreover, a particular class of convex optimisation, successive convex optimisation, can be applied to approxi-
mate the remaining nonlinearities in the optimal landing problem such as the aerodynamic effects, previously ignored.
It consists in iteratively solving convex optimisation SOCP subproblems in which the nonconvex dynamics and con-
straints are repeatedly linearised using information coming from the previous iteration solution. This algorithm has
been first developed by Szmuk et al. in Ref. [4] and then adapted in different ways in Refs. [6, 8]. In this paper, the
successive convex optimisation algorithm used relies on the work achieved by Guadagnini et al. in Ref. [16] where the
strategy defined in Ref. [4] was enhanced to be applicable in a closed-loop fashion towards a 6-DoF re-entry dynamics
simulator.

For this study, the successive convex optimisation guidance algorithm has been implemented in MATLAB using
the CVX library [17] to formulate the convex problems and the ECOS routine [18] to solve them. At each simu-
lation instance defined by the simulation rate, the reference thrust profile TB,re f (t) and the reference attitude angles
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{θre f (t), ψre f (t)} are computed from the most recent guidance solution via linear interpolation. Indeed, that solution is
stored as an online lookup table which is updated at each guidance step, with the guidance update frequency fgui = 0.1
Hz, so every 10 seconds. To enable the formulation of the SOCP subproblems, the optimal control problem must
be converted into a finite dimensional parameter optimisation problem. Therefore, the trajectory and optimisation
variables are discretised into K uniformly spaced points. At each guidance step, the time vector is divided in that way:

tk =
k − 1
K − 1

t f , k ∈ [1,K] (15)

and because the estimated time of flight t f → 0 as t → ToF, where ToF is the actual time of flight achieved by the
simulation, the accuracy of the discretisation becomes more precised towards the end.

Therefore, to compute the optimal reference trajectory to be followed, several state and control constraints are
considered in addition to the re-entry dynamics. Regarding the state constraints, the first one is a lower bound of the
mass: for each time instant tk, k ∈ [1,K], the mass cannot be lower than the dry mass of the vehicle. This constraint is
expressed by:

m[k] ≥ mdry (16)

The second constraint is the so-called glide-slop constraint: it restricts the inertial position to lie within a glide-slope
cone with half-angle γgs ∈ [0, 90 deg) and vertex at the landing site. This constraint is enforced by:

e1 · rI[k] ≥ tan (γgs)
∣∣∣∣∣∣∣∣[e2 e3

]T
rI[k]

∣∣∣∣∣∣∣∣
2

(17)

where ei, i ∈ [1, 3] are the versors. Then, the third constraint concerns the tilt angle, i.e. the angle between the x-axes
of the two reference frames, which is bounded to be less than a maximum θmax ∈ [0, 90 deg). It is defined by:

cos (θmax) ≤ eT
I,1 RB

I [k] eB,1 (18)

Then, the fourth constraint limits the angular rate of the vehicle, it is enforced by:

||ωB[k]||2 ≤ ωmax (19)

Finally, an additional constraint preserves the unit norm of the quaternion, as follows:

||qI
B[k]|| = 1 (20)

Then, boundary constraints are added regarding initial and desired final conditions. Note that the initial attitude has not
been constrained for the first guidance iteration while it was when the problem is solved during the flight to preserve
the continuity of the solution. Morevoer, a so-called State-Triggered Constraint (STC) [4] is added. In that case, it
consists in imposing an angle of attack α constraint, αmax, when the dynamic pressure Q is larger than a prescribed
value Qmax. This constraint is written in a continuous formulation with a trigger-function gα and a constraint-function
cα as follows:

hα(rI[k], vI[k],qI
B[k]) = −min(gα(vI[k], rI[k]), 0) · cα ≤ 0

cα(vI[k],qI
B[k]) = e1 · RI

B[k]vI[k] + cos (αmax)||vI[k]||2

gα(rI[k], vI[k]) = Qmax −
1
2
ρ[k]||vI[k]||22

(21)

Finally, two control constraints are considered to bound the direction and magnitude of the thrust force. The direction
is bounded by limiting the TVC up to a maximum gimbal angle δmax. It is enforced by:

cos (δmax)||TB,re f [k]||2 ≤ e1 · TB,re f [k] (22)

Then, the thrust magnitude is bounded between a minimum and maximum values, such as:

0 < Tmin ≤ ||TB,re f [k]||2 ≤ Tmax (23)

where Tmin and Tmax are the lower and upper bounds, respectively.
However, the optimisation problem subjected to the described dynamics and state and control constraints is not

convex and must therefore be convexified. In order to do so, the first step is to convert the free-final-time nonlinear
continuous-time optimal control problem into an equivalent fixed-final-time nonlinear continuous-time problem. It
is achieved in normalising the time of flight from t ∈ [0, t f ] to τ ∈ [0, 1], where τ is the normalised time of flight.
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Summarising the nonlinear dynamics as ẋ(t) = f (x(t),u(t)) with x(t) =
[
m(t) rT

I (t) vT
I (t) qI

B(t)T ωT
B(t)

]T
the

state vector and u(t) = TB,re f (t) the control vector, they can be re-written as follows:

ẋ(t) =
dτ
dt

d
dτ

x(t) (24)

Therefore, having σ = (dτ/dt)−1, the normalised nonlinear dynamics are expressed by:

d
dτ

x(τ) = σ · f (x(τ),u(τ)) (25)

Then, the nonlinear re-entry dynamics equations, defined in Eqs. (4-6), are discretised and linearised about the solution
of the previous iteration, through a first-order Taylor approximation and the nonconvex constraints are convexified. It
concerns two state constraints, the norm of the quaternion (Eq. (20)) and the STC (Eq. (21)), and one control contraint,
the lower bound of the thrust magnitude (Eq. (23)). The convexification of the Eq. (20) is obtained through a first-order
Taylor expansion approximation evaluated about the previous SOCP (i − 1)th iteration:

||qI,i−1
B [k]||2 +

qI,i−1
B [k]T

||qI,i−1
B [k]||2

(qI,i
B [k] − qI,i−1

B [k]) = 1 (26)

The same method is used for the STC (Eq. (21)). However, due to the min (·) function, the constraint is approximated
as follows: 

hα(ξi−1[k]) +
∂hα
∂ξ

∣∣∣∣∣
ξi−1[k]

(ξi[k] − ξi−1[k]) ≤ 0, if gα(ξi−1[k]) < 0

0, otherwise
(27)

where ξi[k] =
[
vi

I[k]T qI,i
B [k]T

]T
, k = {1, ...,K} is the reference trajectory parameters obtained from the SOCP ith

iteration. Lastly, it is applied to the lower bound of the thrust magnitude, obtaining the following expression for
k ∈ [1,K − 1]:

hT (u[k]) = Tmin − ||TB,re f [k]||2

hT (ui−1[k]) +
∂hT

∂u

∣∣∣∣∣
ui−1[k]

(ui[k] − ui−1[k]) ≤ 0
(28)

Finally, the successive convex optimisation strategy involves the use of trust regions and virtual controls to
prevent artificial unboundedness and artificial infeasibility, respectively. Trust regions implementation allows to limit
the deviation between two consecutive iterations. They are defined for state and control vectors but also for the time of
flight:

||xi[k] − xi−1[k]||2 + ||ui[k] − ui−1[k]||2 ≤ ∆i
x,u[k]

||σi − σi−1||2 ≤ ∆
i
σ

(29)

Virtual controls are additional control inputs νi which allows reaching each point of the solution domain, through
dynamics relaxation. All that terms must be penalised in the cost function. For the norm ∆i

x,u and for the virtual control
vector νi, it is needed to define an auxiliary variable, respectively S i

∆
and S i

ν, to avoid a quadratic term in the cost
function joined with an inequality constraint [16]. Therefore, the following constraints are added:

||∆i
x,u||2 ≤ S i

∆x,u

||νi||2 ≤ S i
ν

(30)

The objective of the optimal control problem defined is to find the optimal trajectory, subjected to the defined re-
entry dynamics and state and control constraints, minimising the vehicle’s fuel consumption, which corresponds to
maximising the vehicle’s final mass. Due to the monotonic behaviour of the propellant consumption with respect to
time, the time of flight is selected as the value to be minimised. Therefore, the cost function can be written as follows
at each SOCP ith iteration:

J = σi + wνS i
ν + w∆S i

∆ + w∆σ∆
i
σ (31)

where wν, w∆ and w∆σ are penalisation weights.
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2.5 Gain-scheduled PID controllers

From the reference trajectory computed by the previously defined guidance algorithm and the current states of the
vehicle, the control algorithm must be able to generate the necessary commands, in terms of thrust magnitude Tre f (t)
and deflection angles {βTVC,y(t), βTVC,z(t)}, to be applied by the actuators, here the TVC system only, to correct the
trajectory of the vehicle. The method adopted here considers the use of two gain-scheduled PID controllers to compute
the respective deflection angles. Indeed, the commanded thrust magnitude is directly taken from the guidance algorithm
Tre f (t) = ||TB,re f (t)||2. This approximation is penalised by a low-pass filter which simulates the intrinsic physical of the
device and the delay induced is compensated by a PI-controller.

Using a reference trajectory pre-computed offline corresponding to the conditions of the problem studied, the
system of equations is linearised and evaluated at the points of the reference trajectory. Thus, the system can be
rewritten in terms of perturbed variables x̃(t) = x(t) − x̄(t) and ũ(t) = u(t) − ū(t), where x̄(t) and ū(t) are the reference
state and control vectors respectively, to finally obtain:

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t)
y(t) = C(t)x̃(t)

(32)

where A(t) ∈ R10×10 and B(t) ∈ R10×3 are the Jacobian matrices of the nonlinear equations with respect to the state
and control variables respectively, computed with the function jacobian in MATLAB, and C(t) ∈ R2×10 enables the
extraction of the pitch angle error θ̃(t) and the yaw angle error ψ̃(t).

The problem is then separated into two 3-DoF problems. One is characterised by the motion in the xBzB-plane
with the controller on the pitch angle θ(t) through the deflection angle βTVC,y(t). The second problem is characterised
by the motion in the xByB-plane with the controller on the yaw angle ψ(t) through the deflection angle βTVC,z(t). An
assumption is made on the roll angle ϕ(t) considering it small so that no coupling effects in the dynamics could arise.
Therefore, the two linear systems consider the following parameters:

xpitch(t) =
[
m(t) vx(t) vz(t) ωy(t) θ(t)

]T
∈ R5, upitch(t) = βTVC,y(t), ypitch(t) = θ(t)

xyaw(t) =
[
m(t) vx(t) vy(t) ωz(t) ψ(t)

]T
∈ R5, uyaw(t) = βTVC,z(t), yyaw(t) = ψ(t)

(33)

where vx(t), vy(t) and vz(t) are respectively the x, y and z components of vB(t), and ωy(t), ωz(t), respectively the y and
z component of ωB(t). The corresponding Jacobian matrices are computed in a similar way than for the linear system
defined in Eq. (32). This decoupling of the dynamics has been validated in [16].

Due to the time-varying nature of the problem, a single PID controller maybe unable to stabilise the system for
the whole trajectory. Therefore, the time of flight has been discretised into 25 slots where the linearisation has been
performed. In this way, the problem is divided into regions where it is possible to analyse if the controller is able
to stabilise the system. Thanks to that, the controllers can be considered as gain-scheduled PID as the gains can be
changed in order to have the desired levels of performance in all the regions. For each system, the gains are tuned
with the following performance requirements: an overshoot inferior to 10%, a settling time strictly inferior to 1 s and
a phase margin superior to 60 deg. The tuning was performed with the MATLAB application PID tuner.

3. Fixed planar fins implementation in the RLV re-entry dynamics simulator

A preliminary assessment of the G&C strategies was carried out in Ref. [13]. It was shown that an enhanced robust-
ness towards perturbations due to external events as well as uncertainties and nonlinearities in the models could be
achieved in adding vehicle’s control authority. Therefore, the implementation of fixed planar fins will be studied in this
subsection.

The implementation of planar fins for G&C strategy was already studied in the literature. Usually two pairs of fins
are placed above the vehicle’s CG: one pair, {β f in,1, β f in,2}, is controlling the motion in the pitch plane while the other,
{β f in,3, β f in,4}, is controlling the motion in the yaw plane. In Ref. [7], Sagliano et al. used aerodynamic coefficients
lookup tables which directly consider the state of the vehicle (angle of attack α, sideslip angle β, Mach number Ma)
and the fin deflections {β f in,1, β f in,2, β f in,3, β f in,4}. In Ref. [19], they developed a fin model with its corresponding
lookup table for the axial coefficient and the derivative of the normal coefficient, only depending on the Mach number.
Therefore, the lookup tables are the same for the four fins and the generated force is determined by the fin’s local angle
of attack defined as functions of the fin deflection and the vehicle’s angle of attack or sideslip angle. Finally, in Ref.
[12], Simplício et al. also developed a fin model but considering only the normal force which is calculated as function
of the fin’s local angle of attack.

The fin model developed and used is introduced in Sec. 3.1. Then, its implementation in the guidance method
and in the RLV re-entry dynamics simulator is presented in Sec. 3.2.
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3.1 Fixed planar fins model

As described previously, the vehicle is equipped with four fins working in pairs: one pair is assigned to pitch motion
with the deflections {β f in,1, β f in,2} and the other pair to yaw motion with {β f in,3, β f in,4}. It is considered that there is not
any roll perturbation, meaning that the two pairs always remain in the trajectory yaw and pitch planes, respectively.
Table 1 defined the fin positions with its corresponding deflection.

Table 1: Position of the fins’ CP with respect to the base of the RLV and corresponding deflections

Fin 1 Fin 2 Fin 3 Fin 4
Fin CP position x f in,i

[
x f in yz f in 0

]T [
x f in −yz f in 0

]T [
x f in 0 yz f in

]T [
x f in 0 −yz f in

]T

Fin deflection β f in,i β f in,1 β f in,2 β f in,3 β f in,4

It is further assumed that, due to the reduced fin area compared to the RLV body, only the normal force contri-
bution is considered [12]. Then, the value of normal coefficient of the fin is estimated using lifting-line theory [20].
Knowing that for a symmetric airfoil, the lift coefficient can be approximated by:

cl(α(t)) = 2πα(t) (34)

To obtain the lift coefficient CL of the corresponding wing, it is necessary to define the aspect ratio, denoted by AR and
defined as

AR =
b2

S
=

b
c

(35)

where b is the wing span, S is the wing reference area and c is the wing chord. Therefore, the following approximation
is obtained [21]:

CL(α(t)) =
( AR

AR + 2

)
cl(α(t)) (36)

This theory is then adapted for the fins of the RLV. Because the flow separation is neglected and the angle of attack
of the rocket is around π during the descent, the normal fin coefficient has a sinusoidal dependence on the fin angle of
attack γ f in,i(t) and can be approximated by:

CN, f in,i(γ f in,i(t)) = 2π
(

AR f in

AR f in + 2

)
sin (γ f in,i(t)), i = {1, 2, 3, 4} (37)

It remains to define the ith fin’s angle of attack and its associated force F f in,i(t) and moment M f in,i(t) in the vehicle
body-fixed reference frame. Figure 1 shows the motion of the vehicle in the pitch plane and from it, it is possible to
define: 

γ f in,i(t) = β f in,i − α(t)

F f in,i(t) =
1
2
ρ(t)||vair,I(t)||22S f inCN, f in,i(γ f in,i(t))

[
− sin (β f in,i) 0 cos (β f in,i)

]T

M f in,i(t) = [x f in,i − xCG] × F f in,i(t)

, i = {1, 2} (38)

where α(t) is the vehicle’s angle of attack and S f in is the fin reference area. And similarly, the following formula is
obtained in the yaw plane:

γ f in,i(t) = −β f in,i − β(t)

F f in,i(t) =
1
2
ρ(t)||vair,I(t)||22S f inCN, f in,i(γ f in,i(t))

[
sin (β f in,i) cos (β f in,i) 0

]T

M f in,i(t) = [x f in,i − xCG] × F f in,i(t)

, i = {3, 4} (39)

where β(t) is the vehicle’s sideslip angle.
Finally, the total force generated by the fixed planar fins in the inertial reference frame and the total moment

generated in the vehicle’s body-fixed reference frame are given by:

F f ins,I(t) = RB
I (t)

4∑
i=1

F f in,i(t) (40)

M f ins,B(t) =
4∑

i=1

M f in,i(t) (41)
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Figure 1: RLV model in the pitch plane

3.2 Implementation in the guidance strategy and in the RLV re-entry dynamics simulator

From the previously defined fixed planar fins model, the equations of motion introduced in Eqs. (4-6), are enhanced
and updated in the RLV re-entry dynamics simulator as follows:

ṁ(t) = −
||FTVC,I(t)||2

Ispg0
−

AnozzlePamb(t)
Ispg0

ṙI(t) = vI(t)

v̇I(t) =
1

m(t)

[
FTVC,I(t) + Faero,I(t) + F f ins,I(t)

]
+ gI(t)

q̇I
B(t) =

1
2


q4(t) −q3(t) q2(t)
q3(t) q4(t) −q1(t)
−q2(t) q1(t) q4(t)
−q1(t) −q2(t) −q3(t)

ωB(t)

ω̇B(t) = J−1(t)
[
MTVC,B(t) +Maero,B(t) +M f ins,B(t) − ωB(t) × JωB

]

(42)

The vehicle’s angle of attack and sideslip angle are obtained from the air-relative velocity expressed in the
vehicle’s body-fixed reference and are defined by:

α(t) = atan2(vair,B,z(t), vair,B,x(t)) (43)

β(t) = arcsin
(

vair,B,y(t)
||vair,B(t)||

)
(44)

In what concerns the guidance strategy, the nonlinear re-entry dynamics equations, defined in Eq. (42), are dis-
cretised and linearised about the solution of the previous iteration, through a first-order Taylor approximation, following
the scheme achieved in Sec. 2.4, but adding the fins-generated force and moment.

4. Simulation results

This section illustrates the results obtained with the proposed G&C architecture coupled with the RLV re-entry dynam-
ics simulator with and without fins implementation (Sec. 4.1). Then, a sensitivity analysis is carried out to assess the
impact of specific parameters on the obtained trajectory (Sec. 4.2).

4.1 Comparison of results without fins and with fins for one specific scenario

In order to assess the impact of the fins, a specific scenario with and without fins have been tested. The initial and
final conditions are described in Tables 2a and 2b, respectively. The parameters regarding the fins implementation are
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summarized in Table 2c. The initial conditions of the case studied allows to study the impact of fins for a trajectory
evolving mainly in the pitch plane. Other simulations have also been carried out for a trajectory mainly in the yaw
plane and for a trajectory in both planes and showed similar results, therefore they are not displayed in this paper. Note
that for this simulation, no wind is considered.

Table 2: Initial, final conditions and fins model parameters

(a) Initial conditions

Parameter Value
rI[0] [25 0 − 12]T km
vI[0] [−850 − 50 700]T m/s
ωB[0] [0 0 0]T rad/s

m0 12, 000 kg

(b) Final conditions

Parameter Value
rI[K] [0 0 0]T km
vI[K] [−5 0 0]T m/s
ωB[K] [0 0 0]T rad/s
qI

B[K] [0 0 0 1]T

(c) Fins model parameters

Parameter Value Unit
x f in 11.1 m
yz f in 2.5 m
b f in 1.2 m
c f in 0.8 m
S f in 0.96 m2

AR f in 1.5 −

β f in,i 0 deg

(a) Trajectory of the RLV without fins (b) Trajectory of the RLV with fins
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(c) Altitude vs. downrange

Legend
Propagated Trajectory

Computed Reference Trajectories
Vertical Body Axis (RB

I e1)
Inertial Velocity (vI)

Thrust (TI)
Aerodynamic Force (Faero,I)

Fins Aerodynamic Force (F f ins,I)
Pitch Fins Vertical Body Axis (RB

I RFy

B e1)
Initial State
Final State

Temporal Node

Figure 2: Comparison of RLV re-entry trajectories without fins and with fins

Figure 2 shows the converged trajectory for the case without fins and the case with fins, and a comparison of
their altitude versus downrange profile. The temporal nodes which represent the moment when the guidance algorithm
is executed, i.e. when a new reference trajectory is computed, are displayed. Moreover, the forces acting on the vehicle
as well as the vertical axes of the vehicle and fins are represented at different times of the descent. From this simulation,
it is clear that the aerodynamic forces are always anti-parallel to the velocity vector and are therefore interpreted as
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drag forces (see Eq. (7)). For the case without fins in Figure 2a, it implies that the commanded thrust vector is nearly
anti-parallel to the velocity vector to counteract the aerodynamic drag. For the case with fins in Figure 2b, the attitude
of the rocket coupled with the trajectory lead to the creation of an aerodynamic force generated by the fins controlling
the pitch motion. Therefore, in that case the commanded thrust vector is modified accordingly. Note that the initial
attitude of the vehicle qI

B[0] is not constrained, therefore the guidance algorithm finds different initial reference optimal
trajectories in terms of attitude. Finally, fins lead to a larger downrange error (see Figure 2c) more likely due to the
lack of control authority from the TVC to correct the deviation caused by their addition.

4.2 Sensitivity analysis

In this section, the fins model parameters displayed in Table 2c are modified independently in order to study their
impact on the generated RLV re-entry trajectory. Moreover, wind is added in the simulator and fin deflections are
modified accordingly to counteract the induced deviations. This study enables to demonstrate how the addition of
fins can increase the control authority of the vehicle and therefore increase its robustness towards disturbances and
uncertainties.

4.2.1 Fin deflections

For this study, several fin deflections configurations have been applied to the vehicle and are compared in Figure 3.
Assuming perfect roll attitude control, it is considered that β f in,1 = β f in,2 = β f in,y and β f in,3 = β f in,4 = β f in,z.

(a) Trajectory of the RLV with β f in,y = −10 deg and β f in,z = 0 deg (b) Trajectory of the RLV with β f in,y = 5 deg and β f in,z = 0 deg
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(c) Trajectories in the pitch plane

-10 -5 0 5 10

5

10

15

20

25

(d) Trajectories in the yaw plane

Figure 3: Comparison of RLV re-entry trajectories with different fin deflections configurations

From this figure, the effect of fin deflections is clear. A negative fin deflection of the fins controlling the pitch
motion leads to a positive downrange error towards the North while a positive fin deflection of the same fins leads to
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a negative downrange error. Figures 3a and 3b illustrate this statement showing also the attitude of the vehicle during
the re-entry and the forces involved. Figure 3c confirms that a fin deflection of {β f in,1, β f in,2} enables the motion in the
pitch plane. Figure 3d draws the same conclusions for a deflection of {β f in,3, β f in,4} regarding the yaw motion.

4.2.2 Fin positions

The position of the fins in the longitudinal axis of the RLV, x f in, is a critical parameter involved in the level arm gen-
erating the fin-induced aerodynamic moment. Figure 4 shows the RLV re-entry trajectories for different fin positions.
From Figure 4a showing the different trajectories in the pitch plane, it is possible to see that the final trajectory is
quite sensitive to this parameter. Indeed, the fins aerodynamic forces generated (Figure 4b) fluctuates due to different
reference trajectory computations. Moreover, as it is illustrated in Figure 4c and proved by Eq. (38, 39), the higher is
the fin in the vehicle’s longitudinal axis, the more is the fin-induced aerodynamic moment, therefore the more is the
available control authority. Finally, this parameter also affects the time of flight and therefore the fuel consumption,
therefore a trade-off must be carried out as a high fin position induces a longer time of flight.
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(a) Trajectories in the pitch plane
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(b) Fins aerodynamic force magnitude

0 20 40 60 80 100 120

0

1

2

3

4

5

6
10

5

(c) Fins aerodynamic moment magnitude

Figure 4: Comparison of RLV re-entry trajectories with different fin positions

4.2.3 Fin dimensions

In this study, the dimensions of the fins have been modified. It implies the fin span b f in and the fin chord c f in, and
therefore the fin aspect ratio AR f in and its reference area S f in. Three cases have been tested and the results are displayed
in Figure 5; in the first one, the fin span is increased by 10%, in the second one, the fin chord is increased by 10%, and
in the last case, both fin span and chord are increased by 10%. As for the fin positions, a trade-off must be achieved to
choose the best parameters. A higher aspect ratio increases the available control authority (Figure 5c) and enables better
performance (Figures 5a-5b). Higher fin reference area shows enhanced control authority but can cause instabilities at
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(a) Trajectories in the pitch plane (zoomed)
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(b) Altitude vs. downrange (zoomed)
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(c) Fins aerodynamic force magnitude

Figure 5: Comparison of RLV re-entry trajectories with different fin dimensions

13

DOI: 10.13009/EUCASS2022-6193



REUSABLE LAUNCHERS RE-ENTRY CONTROLLED DYNAMICS SIMULATOR

the beginning of the flight (Figure 5c).

4.2.4 Wind

In this study, wind has been added to the simulator. Retrieving Eqs. (2,3), the amplitude of the gust has been defined
as Agust =

[
14 14 14

]T
m/s from an altitude of 11, 000 m to 2, 000 m. Figure 6 compares two simulations with

wind conditions: one without fin deflection, the other with 5 deg deflection of the fins controlling the pitch motion to
counteract the deviation induced by the wind. Looking at the trajectory in the pitch plane (Figure 6a) and the downrange
error (Figure 6b), it is clear that the case with fin deflections shows better performance and therefore demonstrates that
the addition of fin control authority is relevant to counteract disturbances.
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(a) Trajectories in the pitch plane
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(b) Altitude vs. downrange

Figure 6: Comparison of RLV re-entry trajectories with wind conditions

5. Conclusions

This paper presents a RLV re-entry dynamics simulator with closed-loop guidance and control integration, from design,
to validation and critical discussion on some representative simulation cases. This simulator covers a VTVL first-stage
booster atmospheric re-entry and soft pinpoint landing. It includes the 6-DoF re-entry dynamics of a rigid-body model
with varying mass, evolving in the terrestrial atmosphere with varying environmental parameters, uncertainties and
disturbances, and subjected to external forces. To steer the spacecraft towards a controlled atmospheric re-entry and a
soft pinpoint landing, the vehicle is equipped with a TVC system controlled by gain-scheduled PID controllers, which
correct the trajectory deviations with respect to the reference profile generated by a successive convex optimisation
guidance algorithm. In addition to this, to enhance the RLV control authority during the atmospheric re-entry, the
insertion of two pairs of planar fins for increased aerodynamic effectiveness is particularly studied and their impact on
the vehicle’s trajectory is analysed.

Several simulations case studies are presented, each illustrating one modification in a sensitive parameter of the
fins model implemented, affecting the vehicle’s final trajectory. Numerical results and vehicle’s behaviour confirmed
that the proposed planar fins model is viable to assess G&C strategies for RLV atmospheric re-entry. There are several
lessons learned from this study. The first is that a significant vehicle’s control authority can be provided by planar
fins compared to TVC, especially at high altitude where the gravity is not predominant, and particularly to counteract
disturbances such as wind. The second aspect is that fixed fins implementation lead to deviations from the reference
trajectory computed by the guidance algorithm. Therefore, the control of TVC gimbal angles with gain-scheduled PID
controllers is not robust enough to compensate accelerations and uncertainties coming from fin aerodynamics. Future
extensions of this work will implement a more robust control method considering TVC and moveable fins as actuators.
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