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Abstract

This paper deals with the computation of the trimmed conditions in cruise as well as the prediction of the
range taking into account the fuel flow rate, i.e. the weight decrease of the aircraft. A special emphasis
was put on analytical computation, which leads to very simple expressions of correcting factors to apply
on current fomulas used to compute the equilibrated conditions and range of the aircraft.
These analytical expressions have all been validated by a numerical simulation solving the flight dynamics
equations with the introduction of a fuel flow rate proportional to the thrust.
It has been demonstrated that the Bréguet range formula used to estimate the performance in cruise at
constant airspeed and angle of attack is optimistic and should be reduced by a factor ke only depending on
the equilibrated airspeed and Thrust Specific Fuel Consumption. This correction represents approx 0.6%
of the range in the case of an airliner in cruise at a Mach number equal to 0.82.

1. Introduction

The prediction of the range and endurance of an aircraft is not a new subject. From the mid 20’s onwards, an analytical
formulation of the range and endurance for a propeller-driven airplane has been proposed with the so-called “Bréguet
formulas”,2 even if the original computation should rather be put at the benefit of the Colonel Émile Dorand.1 After
World War II and the apparition of the jet engines, this formula has then been extended to the performance of airliners
by considering that the fuel mass flow rate is proportional to the thrust in this case.
More recently,6 a comparison between the actual range of aircraft collected by the US Department of Transportation
and the estimation given by the Bréguet range equation has shown a good accuracy of this formula even if a residual
difference (around 10%) remains for long-haul flights.
If a large part of the deviation between the prediction and the actual performance is due to the fraction of fuel burnt
during the phases outside the steady state cruise (taxi, climb, descent. . . ), another part is due to the assumptions made
to perform the analytical computation (constant airspeed, L/D ratio, SFC. . . ).
Amongst these is the assumption of a constant total weight of the aircraft for the computation of the aircraft trimmed
conditions. If this makes sense for short term analyses (few minutes), for long term analyses (several hours), the weight
decrease – due to the fuel flow rate – turns out in conflict with the assumption of a steady-level flight without any further
input on the commands. Indeed, a simple analysis shows that the weight decrease automatically implies a continuous
drift up with a residual flight path angle during a cruise at constant airspeed and angle of attack,4 reason why such
flight operation is also called the “cruise-climb” schedule.9

In light of this, the goal of this study was firstly to assess the effect of fuel flow rate on the aircraft trim states and
secondly to correct the range computation with a special focus on the Bréguet range formula. In this article, a special
emphasis was put on analytical computations leading to very simple expressions of the correcting factors which have
very good accuracy with the numerical simulations.
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2. Assumptions and models

2.1 Atmosphere

In this article, the atmosphere state parameters are given by the International Standard Atmosphere (ISA) model.3 For
analytical computations, an exponential model of air density is used:

ρ = ρref eah(h−href) (1)

where ρref and href denote reference air density and altitude depending on the atmosphere layer. This leads to:

ρ̇

ρ
= ahḣ (2)

In the troposphere, i.e. from sea level to 11 km of altitude where the temperature decreases linearly, ah is
approximated by a least-squares curve fit of the actual evolution of the air density vs. altitude:

ah = −1/9042 m−1

In the lower stratosphere, i.e. from 11 km to 25 km of altitude where the temperature is constant, ah is directly
computed with the ideal gas law:

ah = −1.5777 10−4m−1

2.2 Aerodynamic forces and moment

Drag and lift are the result of the projection of the aerodynamic force acting on the aircraft on the longitudinal aerody-
namic axes:


D = 1

2ρS V2CD

L = 1
2ρS V2CL

(3)

In these expressions, V denotes the True Air Speed (TAS), S corresponds to the aircraft’s reference area and the
coefficients CD and CL are the drag and lift coefficient respectively. The drag coefficient CD is expressed in terms of the
lift coefficient and Mach number:11

CD = CD (CL, M) (4)

Considering simple static models, the lift coefficient CL is a function of the angle of attack α only :

CL = CL (α)

Concerning the aerodynamic pitching moment M, we have:

M =
1
2
ρS V2c Cm (5)

The pitching moment coefficient Cm is expressed in terms of lift coefficient CL, pitch rate q and elevator deflec-
tion δm:5

Cm = Cm (CL, q, δm) (6)
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2.3 Propulsion and fuel consumption

The thrust delivered to a jet engine is assumed to be a function of the altitude and TAS:12

T = kTρV
λT δx (7)

In this expression, the exponent λT is negative and depends on the by-pass ratio of the engine. The term δx
denotes the throttle lever position, from 0 (idle) to 1 (full thrust).
For an aircraft equipped with jet engines, the fuel mass flow rate ṁ

fuel
is assumed to be proportional to the thrust:

ṁ
fuel
= c

T
T (8)

where c
T

denotes the thrust-specific fuel consumption (TSFC) which is assumed to be constant in this article.
And of course, the weight decrease of the aircraft ṁ is the opposite of ṁ

fuel
:

ṁ = −c
T
T (9)

2.4 Governing equations

Considering a symmetric aircraft with the thrust aligned with the fuselage reference line, the longitudinal equations of
motion are the projections of the Newton’s second law on the aerodynamic axes:10


V̇ = 1

m
(T cosα − D − mg sin γ)

γ̇ = 1
mV

(T sinα + L − mg cosγ)
(10)

In these expressions, α and γ denote the angle of attack (AoA) and flight path angle (FPA) respectively.
Assuming that the thrust is located at the aircraft center of gravity, the pitch rate comes from the aerodynamic pitching
moment M only and we have in this case:

q̇ =
M

IYY

(11)

This set is completed by the kinematic equation in pitch:

α̇ = q −
1

mV
(T sinα + L − mg cosγ) (12)

and altitude:

ḣ = V sin γ (13)

In these equations, the fuel flow rate ṁ
fuel

is already included into the thrust.7, 13 Moreover, the effect of the fuel
mass flow rate on the pitching moment of inertia IYY is assumed to be neglectible in this article.
In equilibrated flight conditions, the flight dynamics equations (Eq. (10)) directly give:


Te cosαe − De − mg sin γe = 0

Te sinαe + Le − mg cosγe = 0
(14)

In these expressions, the subscript denote the equilibrated conditions.
Assuming neglectible AoA and low FPA, i.e. αe ≈ 0 and γe ≪ 0, this leads to the well-known equilibrated thrust and
lift equations:

{
Te − De = mgγe

Le = mg
(15)

Moreover, considering a cruise at constant angle of attack αe and TAS Ve, the range is predicted by the “Bréguet
range equation” :

R =
Ve fe

gc
T

ln

(
mi

mf

)
(16)

In this expression, fe denotes the lift-over-drag ratio corresponding to the equilibrated lift coefficient CLe, i.e.

fe =
CLe

CDe

, whereas mi and mf correspond to the initial and final mass of the aircraft for the cruise phase.
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2.5 Case study

In this article, the aircraft is representative of a classic twin-engine liner from the Airbus wide-body family8 with the
following caracteristics :

• total mass m = 130 tons

• reference area S = 260 m2

• thrust exponent λT = −0.3

For an equilibrated flight corresponding to a cruise performed at the altitude he = 30 000 ft and Mach number
M = 0.82, the following correspondance between the equilibrated state parameters and commands of the aircraft was
computed by solving the equilibrated flight equations (Eq. (15)):

{
δme = −4.7◦

δxe = 0.91
⇐⇒



Ve = 248.58 m/s
αe = 0.4 deg
γe = 0 deg
qe = 0

(17)

Without any further input on the commands and at a constant weight, these parameters remain constant all along
the flight.

3. Equilibrium analysis

3.1 Numerical results

From the conditions corresponding to the equilibrated flight (Eq. (17)), the evolution of the state vector of the aircraft
vs. time was computed with the effect of the weight decrease due to the fuel flow rate. These results was obtained by
numerically solving the longitudinal equations of motion (Par. (2.4)).
In this simulation, the fuel flow rate ṁ

fuel
given by (Eq. (8)) was introduced abruptly at the initial time. The figures

(Fig. (1)) and (Fig. (2)) show that after a transitional phase (made of the phugoïd mode) and without any further input
on the commands, the aircraft converges toward new equilibrated flight conditions different from the initial ones.
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Figure 1: Evolution of the flight path angle vs. time.
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Figure 2: Evolution of the TAS vs. time.

Thus, when taking into account the weight decrease of the aircraft ṁ, the correspondance between the equili-
brated state parameters and commands of the aircraft already computed at constant weight (Eq. (17)) is modified as
follows:

{
δme = −4.7◦

δxe = 0.91
⇐⇒



Vṁ = 247.9 m/s
αṁ = αe

γṁ = 0.0276 deg
qṁ = qe

(18)
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In this expression and from now on, the subscript ṁ denotes the equilibrated parameters taking into account the
fuel flow rate of the aircraft.
It must be noted that the aircraft converges toward an equilibrated flight in a very light climb (γṁ > 0) and a slightly
lower speed (Vṁ < Ve). Moreover, the longitudinal parameters αe and qe do not change as it’s assumed that ṁ does not
produce any pitching moment (Eq. (11)).
In addition, the figure (Fig. (3)) shows that the equilibrated TAS Vṁ slightly increases when a correcting factor ǫδx is
applied to the equilibrated thrust lever δxe:

δx′e = δxe (1 + ǫδx)

Then, an “optimal” correcting factor ǫ̃δx given by the condition Vṁ = Ve can be computed with the use of the
numerical computation. This also leads to an “optimal” thrust lever position δ̃xe given by:

δ̃xe = δxe (1 + ǫ̃δx) (19)

The numerical simulation gives:

ǫ̃δx = 0.00632

The figure (Fig. (4)) confirms that the aircraft converges toward the same equilibrated TAS as its initial value in
this case. In this figure, the phugoïd mode is still visible but its amplitude is very small in this case (maximum around
0.08 m/s). This oscillation is due to the fact that the FPA is initialized at 0 and the aircraft converges toward γṁ through
the phugoïd mode. Thus, this transitional phase can be completely erased by initializing the FPA directly at γṁ in the
simulation.
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Figure 3: Evolution of the TAS vs. ǫδx and computation of
the correcting factor ǫ̃δx.
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Figure 4: Evolution of the TAS vs. time with the correc-
tion ǫ̃δx.

With the correcting factor ǫ̃δx, the correspondance between the equilibrated state parameters and commands of
the aircraft (Eq. (18)) is then shifted as follows:

{
δme = −4.7◦

δ̃xe = δxe (1 + ǫ̃δx)
⇐⇒



Vṁ = Ve

αṁ = αe

γṁ = 0.0276◦

qṁ = qe

(20)

3.2 Analytical computation

Considering the equilibrated lift equation (Eq. (15)), as lift always equals weight, i.e. Lṁ = mg, the decrease of weight
due to the fuel flow rate implies at the same time a decrease of the lift. Moreover, the rate of decrease of the lift is given
by:

L̇ṁ

Lṁ

=
ṁ

m
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Assuming that ṁ does not produce any pitching moment (Eq. (11)) and without any input on the pitch command,
the lift coefficient CL is constant which leads to:

ρ̇ṁ

ρṁ

= ahḣṁ =
ṁ

m
(21)

This expression clearly shows that the weight decrease due to the fuel flow rate, i.e. ṁ = −ṁ
fuel
< 0, produces an

increase of altitude given by ḣṁ =
ṁ

ahm
> 0.

Moreover, as ḣṁ = Vṁ sin γṁ, this leads to the following expression of the residual FPA γṁ coming from the weight
decrease:

sin γṁ =
ṁ

ahVṁm

Finally, assuming that γṁ is small and by introducing the expression of ṁ (Eq. (9)), this can be written as:

γṁ =
−c

T
g

ah fe

1
Vṁ

(22)

Additionaly, the thrust equation (Eq. (15)) written in equilibrated flight conditions taking into account the weight
decrease ṁ is given by:

Tṁ − Dṁ = mgγṁ (23)

By comparison with the equilibrated thrust equation at constant weight and γe = 0, i.e. Te = De =
mg

fe
, this leads

to the relation:

Tṁ

Te

−
Dṁ

De

= feγṁ (24)

At a given altitude (ρ fixed), and considering the propulsion and drag models, we get:

Tṁ

Te

=

(
Vṁ

Ve

)λT

and
Dṁ

De

=

(
Vṁ

Ve

)2

The equation (Eq. (24)) then leads to :

(
Vṁ

Ve

)λT

−

(
Vṁ

Ve

)2

− ke

(
Vṁ

Ve

)−1

= 0 (25)

With:

ke =
−c

T
g

ahVe

(26)

Assuming that the difference between Vṁ and Ve is small and Vṁ < Ve , Vṁ is given by:

Vṁ = Ve (1 − ǫV ) (27)

Where the correcting factor ǫV is small (ǫV ≪ 1). Finally, a first order development of the equation (Eq. (25))
directly leads to an analytical expression of ǫV :

ǫV =
ke

2 − λT − ke

(28)

Considering (Eq. (22)), this gives for γṁ:

γṁ =
ke

fe
(1 + ǫV )

Finally, when the optimal correcting factor ǫ̃δx is applied to the thrust lever (Eq. (19)), the equilibrated thrust
equation is given by:

T̃e − D̃e = mgγṁ (29)

6

DOI: 10.13009/EUCASS2019-117



CORRECTION OF THE BREGUET RANGE EQUATION

By comparison with the equilibrated thrust equation at constant weight and γe = 0, i.e. Te = De =
mg

fe
, this leads

to the relation:

T̃e

Te

−
D̃e

De

= feγṁ (30)

At a given altitude (ρ fixed), and considering the propulsion and drag models, we have in this case:

T̃e

Te

= (1 + ǫ̃δx) and
D̃e

De

= 1

This gives directly the expression of ǫ̃δx:

ǫ̃δx = feγṁ = ke (1 + ǫV )

Considering that ke and ǫV are small, these expressions can be simplified as follows:



γṁ =
ke

fe

ǫV =
ke

2 − λT

ǫ̃δx = ke

With these formulas, the numerical application gives:



γṁ = 0.0273◦

Vṁ = 247.9 m/s

ǫ̃δx = 0.00629

Thus, the analytical expressions presented here are in very good accordance (difference< 1%) with the numerical
results presented in the previous paragraph.

4. Performances analysis

4.1 Numerical results

The range has been computed between 2 moments, ti and tf during the equilibrated conditions presented in the previous
section (Par. (3.1)), i.e. (V = Vṁ;α = αe; γ = γṁ; q = qe). Moreover, each moment corresponds to an aircraft total mass
mi and mf :

{
ti = 2.5 h → mi = 115.53 tons

tf = 5 h → mf = 102.67 tons

The numerical simulation gives:

Rṁ = 2231.08 km

In addition, when the correctiong factor ǫ̃δx is applied to the thrust lever (Eq. (19)), the numerical simulation
gives in this case:

R̃e = 2237.21 km

These numerical results can be compared with the result given by the Breguet range formula (Eq. (16)) for each
case. In the first case, the formula is given by:

R
[B]
ṁ
=

Vṁ fe

gc
T

ln

(
mi

mf

)
(31)

And for the second case:
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R[B]
e =

Ve fe

gc
T

ln

(
mi

mf

)
(32)

Based on these analytical expressions, the computation gives:



R
[B]
ṁ
= 2244.05 →

Rṁ − R
[B]
ṁ

R
[B]
ṁ

= −0.58%

R
[B]
e = 2250.19 →

R̃e − R
[B]
e

R
[B]
e

= −0.58%

(33)

4.2 Analytical analysis

Considering the expression of Vṁ (Eq. (27)), we obviously have the relation:

R
[B]
ṁ
= (1 − ǫV ) R[B]

e

Moreover, the range is given by:

R = −

∫ mf

mi

V

c
T
T

dm

Assuming a cruise at constant TAS Vṁ, we have for Rṁ:

Rṁ = −Vṁ

∫ mf

mi

dm

c
T
Tṁ

(34)

With (Eq. (23)) and considering that at a given weight we have Dṁ = De =
mg

fe
, this leads to:

Tṁ =
mg

fe
(1 + feγṁ)

The integration of (Eq. (34)) gives:

Rṁ =
Vṁ fe

c
T
g

1
(1 + feγṁ)

ln

(
mi

mf

)

As ke = feγṁ is small, this finally leads to:

Rṁ = (1 − ke) R
[B]
ṁ

Considering the range R̃e performed at constant TAS Ve which takes into account the thrust lever correction ǫ̃δx,
we have in this case:

R̃e = −Ve

∫ mf

mi

dm

c
T
T̃e

(35)

With:

T̃e = Te (1 + ǫ̃δx) = Te (1 + feγṁ)

The integration of (Eq. (35)) gives:

R̃e =
Ve fe

c
T
g

1
(1 + feγṁ)

ln

(
mi

mf

)

Which also leads to:

R̃e = (1 − ke) R[B]
e

Based on these analytical expressions, the computation gives:
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Rṁ = 2230km

R̃e = 2236.06km
(36)

These analytical expressions are in good accordance with the numerical results presented in the previous para-
graph. It must be noted that a slight difference remain (≈ 1 km) due to the approximation αe ≈ 0 in the equilibrated
equations (Eq. (15)).

5. Synthesis

It has been demonstrated that the range R
[B]
e given by the traditional Breguet range equation has to be corrected to give

the actual performance of an aircraft taking into account the decrease of its total weight.
The correcting factor to apply depends on the targeted range to compute. Typically, for a cruise at a given TAS Ve and
lift over drag ratio fe, the formula has to be corrected by ke. Moreover, the thrust lever corresponding to the equilibrated
conditions has to be increased by ǫ̃δx to get exactly Ve for the cruise:


V = Ve

f = fe
=⇒


δ̃xe = (1 + ǫ̃δx) δxe

R̃e = (1 − ke) R
[B]
e

(37)

Additionally, another range can be computed considering that the thrust lever is not corrected which leads to
an equilibrated speed in cruise Vṁ lower than the targeted TAS Ve. In this case, the corresponding range Rṁ can be
estimated from R

[B]
e by applying the correcting factor (ke + ǫV ):


δx = δxe

f = fe
=⇒


V = Vṁ

Rṁ = (1 − (ke + ǫV )) R
[B]
e

(38)

As ǫV and ke are both positive terms and ǫV < ke with λT < 1, the ranking between the different ranges computed
in this article is as follows:

R[B]
e > R

[B]
ṁ
> R̃e > Rṁ (39)

Finally, the range R
[B]
e provided by the traditional Breguet range formula is the most optimistic result compared

to the actual performance of the aircraft.

6. Concluding remarks

In this article, it has been demonstrated that the fuel flow rate of the aircraft affects the computation of the trimmed
conditions in cruise as well as the prediction of the range.
As far as the equilibrated flight is concerned and compared to its traditional computation, this study shows that at a
given altitude and true airspeed, the equilibrated thrust lever has to be increased by a factor ǫ̃δx to “pay” for the flight
path angle γṁ resulting from the weight decrease of the aircraft and get the targeted TAS Ve in cruise.
An application of this result concerns the initial trimmed conditions for flight simulations which are traditionally
computed at a constant weight. With this correction, the undue transients due to the application of in-flight fuel burn
could be erased.
Another interesting result concerns the prediction given by the well-known Breguet range equation which should be
corrected by the factor ke =

−c
T

g

ahVe
. As ke is inversely proportional to Ve, the correction is small for the range performance

of an airliner, around 0.6% in this case, which has to be compared to the 10% of deviation presented in the introduction
of this article.
It must be noted that if this article is focused on the cruise performed at constant TAS and AoA, the same analysis
could be performed for the cruise at constant altitude and TAS, and constant altitude and AoA.
As a conclusion, this article aims at providing engineers with a deeper understanding of aircraft equilibrium and the
corrections which have to be applied to analytical expressions based on simplifying assumptions.
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